1
|
Ruano-Rodríguez S, Navarro-Alonso M, Domínguez-Velasco B, Álvarez-Dolado M, Esteban FJ. STXBP1 Syndrome: Biotechnological Advances, Challenges, and Perspectives in Gene Therapy, Experimental Models, and Translational Research. BIOTECH 2025; 14:11. [PMID: 40227275 PMCID: PMC11939967 DOI: 10.3390/biotech14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
STXBP1 syndrome is a severe early-onset epileptic encephalopathy characterized by developmental delay and intellectual disability. This review addresses key challenges in STXBP1 syndrome research, focusing on advanced therapeutic approaches and experimental models. We explore gene therapy strategies, including CRISPR-Cas9, adeno-associated viral (AAV) vectors, and RNA therapies such as antisense oligonucleotides (ASOs), aimed at correcting STXBP1 genetic dysfunctions. This review presents in vivo and in vitro models, highlighting their contributions to understanding disease mechanisms. Additionally, we provide a proposal for a detailed bioinformatic analysis of a Spanish cohort of 41 individuals with STXBP1-related disorders, offering insights into specific mutations and their biological implications. Clinical and translational perspectives are discussed, emphasizing the potential of personalized medicine approaches. Future research directions and key challenges are outlined, including the identification of STXBP1 interactors, unexplored molecular pathways, and the need for clinically useful biomarkers. This comprehensive review underscores the complexity of STXBP1-related infantile epileptic encephalopathy and opens new avenues for advancing the understanding and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Silvestre Ruano-Rodríguez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Mar Navarro-Alonso
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Benito Domínguez-Velasco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Manuel Álvarez-Dolado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
2
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
3
|
Wang Z, Zhang J, Zhou Y, Liu G, Tian Z, Song X. A De Novo Splicing Mutation of STXBP1 in Epileptic Encephalopathy Associated with Hypomyelinating Leukodystrophy. Int J Mol Sci 2024; 25:10983. [PMID: 39456768 PMCID: PMC11507417 DOI: 10.3390/ijms252010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Deleterious variations in STXBP1 are responsible for early infantile epileptic encephalopathy type 4 (EIEE4, OMIM # 612164) because of its dysfunction in the central nervous system. The clinical spectrum of the neurodevelopmental delays associated with STXBP1 aberrations is collectively defined as STXBP1 encephalopathy (STXBP1-E), the conspicuous features of which are highlighted by early-onset epileptic seizures without structural brain anomalies. A girl was first diagnosed with unexplained disorders of movement and cognition, which later developed into STXBP1-E with unexpected leukoaraiosis and late onset of seizures. Genetic screening and molecular tests alongside neurological examinations were employed to investigate the genetic etiology and establish the diagnosis. A heterozygous mutation of c.37+2dupT at the STXBP1 splice site was identified as the pathogenic cause in the affected girl. The de novo mutation (DNM) did not result in any truncated proteins but immediately triggered mRNA degradation by nonsense-mediated mRNA decay (NMD), which led to the haploinsufficiency of STXBP1. The patient showed atypical phenotypes characterized by hypomyelinating leukodystrophy, and late onset of epileptic seizures, which had never previously been delineated in STXBP1-E. These findings strongly indicated that the haploinsufficiency of STXBP1 could also exhibit divergent clinical phenotypes because of the genetic heterogeneity in the subset of encephalopathies.
Collapse
Affiliation(s)
| | - Jun Zhang
- Department of Cell Biology, and Genetics, Institute of Molecular Medicine, and Oncology, Chongqing Medical University, Chongqing 400016, China; (Z.W.); (Y.Z.); (G.L.); (Z.T.); (X.S.)
| | | | | | | | | |
Collapse
|
4
|
Matsuoka T, Yoshida H, Kasai T, Tozawa T, Iehara T, Chiyonobu T. α-Synuclein pathology in Drosophila melanogaster is exacerbated by haploinsufficiency of Rop: connecting STXBP1 encephalopathy with α-synucleinopathies. Hum Mol Genet 2024; 33:1328-1338. [PMID: 38692286 DOI: 10.1093/hmg/ddae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Syntaxin-binding protein 1 (STXBP1) is a presynaptic protein that plays important roles in synaptic vesicle docking and fusion. STXBP1 haploinsufficiency causes STXBP1 encephalopathy (STXBP1-E), which encompasses neurological disturbances including epilepsy, neurodevelopmental disorders, and movement disorders. Most patients with STXBP1-E present with regression and movement disorders in adulthood, highlighting the importance of a deeper understanding of the neurodegenerative aspects of STXBP1-E. An in vitro study proposed an interesting new role of STXBP1 as a molecular chaperone for α-Synuclein (αSyn), a key molecule in the pathogenesis of neurodegenerative disorders. However, no studies have shown αSyn pathology in model organisms or patients with STXBP1-E. In this study, we used Drosophila models to examine the effects of STXBP1 haploinsufficiency on αSyn-induced neurotoxicity in vivo. We demonstrated that haploinsufficiency of Ras opposite (Rop), the Drosophila ortholog of STXBP1, exacerbates compound eye degeneration, locomotor dysfunction, and dopaminergic neurodegeneration in αSyn-expressing flies. This phenotypic aggravation was associated with a significant increase in detergent-insoluble αSyn levels in the head. Furthermore, we tested whether trehalose, which has neuroprotective effects in various models of neurodegenerative disorders, mitigates αSyn-induced neurotoxicity exacerbated by Rop haploinsufficiency. In flies expressing αSyn and carrying a heterozygous Rop null variant, trehalose supplementation effectively alleviates neuronal phenotypes, accompanied by a decrease in detergent-insoluble αSyn in the head. In conclusion, this study revealed that Rop haploinsufficiency exacerbates αSyn-induced neurotoxicity by altering the αSyn aggregation propensity. This study not only contributes to understanding the mechanisms of neurodegeneration in STXBP1-E patients, but also provides new insights into the pathogenesis of α-synucleinopathies.
Collapse
Affiliation(s)
- Taro Matsuoka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Kasai
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Guiberson NGL, Black LS, Haller JE, Brukner A, Abramov D, Ahmad S, Xie YX, Sharma M, Burré J. Disease-linked mutations in Munc18-1 deplete synaptic Doc2. Brain 2024; 147:2185-2202. [PMID: 38242640 PMCID: PMC11146428 DOI: 10.1093/brain/awae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons and heterologous cells, we found that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we found a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrated that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.
Collapse
Affiliation(s)
- Noah Guy Lewis Guiberson
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luca S Black
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aniv Brukner
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saad Ahmad
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yan Xin Xie
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
6
|
Qu G, Merchant JP, Clatot J, DeFlitch LM, Frederick DJ, Tang S, Salvatore M, Zhang X, Li J, Anderson SA, Goldberg EM. Targeted blockade of aberrant sodium current in a stem cell-derived neuron model of SCN3A encephalopathy. Brain 2024; 147:1247-1263. [PMID: 37935051 PMCID: PMC10994535 DOI: 10.1093/brain/awad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.
Collapse
Affiliation(s)
- Guojie Qu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie P Merchant
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leah M DeFlitch
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danny J Frederick
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheng Tang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Madeleine Salvatore
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jianping Li
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
van Berkel AA, Lammertse HCA, Öttl M, Koopmans F, Misra-Isrie M, Meijer M, Dilena R, van Hasselt PM, Engelen M, van Haelst M, Smit AB, van der Sluis S, Toonen RF, Verhage M. Reduced MUNC18-1 Levels, Synaptic Proteome Changes, and Altered Network Activity in STXBP1-Related Disorder Patient Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:284-298. [PMID: 38298782 PMCID: PMC10829628 DOI: 10.1016/j.bpsgos.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 02/02/2024] Open
Abstract
Background STXBP1-related disorder (STXBP1-RD) is a neurodevelopmental disorder caused by pathogenic variants in the STXBP1 gene. Its gene product MUNC18-1 organizes synaptic vesicle exocytosis and is essential for synaptic transmission. Patients present with developmental delay, intellectual disability, and/or epileptic seizures, with high clinical heterogeneity. To date, the cellular deficits of neurons of patients with STXBP1-RD are unknown. Methods We combined live-cell imaging, electrophysiology, confocal microscopy, and mass spectrometry proteomics to characterize cellular phenotypes of induced pluripotent stem cell-derived neurons from 6 patients with STXBP1-RD, capturing shared features as well as phenotypic diversity among patients. Results Neurons from all patients showed normal in vitro development, morphology, and synapse formation, but reduced MUNC18-1 RNA and protein levels. In addition, a proteome-wide screen identified dysregulation of proteins related to synapse function and RNA processes. Neuronal networks showed shared as well as patient-specific phenotypes in activity frequency, network irregularity, and synchronicity, especially when networks were challenged by increasing excitability. No shared effects were observed in synapse physiology of single neurons except for a few patient-specific phenotypes. Similarities between functional and proteome phenotypes suggested 2 patient clusters, not explained by gene variant type. Conclusions Together, these data show that decreased MUNC18-1 levels, dysregulation of synaptic proteins, and altered network activity are shared cellular phenotypes of STXBP1-RD. The 2 patient clusters suggest distinctive pathobiology among subgroups of patients, providing a plausible explanation for the clinical heterogeneity. This phenotypic spectrum provides a framework for future validation studies and therapy design for STXBP1-RD.
Collapse
Affiliation(s)
- Annemiek Arienne van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| | - Hanna Charlotte Andrea Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mala Misra-Isrie
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
- Department of Human Genetics, Clinical Genetics Section, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Marieke Meijer
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| | - Robertino Dilena
- Clinical Neurophysiology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Peter Marin van Hasselt
- Department of Metabolic Diseases, Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Engelen
- Department of (Pediatric) Neurology, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| | - Mieke van Haelst
- Department of Human Genetics, Clinical Genetics Section, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - August Benjamin Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sophie van der Sluis
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescence Psychiatry, Section of Complex Trait Genetics, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| | - Ruud Franciscus Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics, Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Universitair Medische Centra, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Jiang M, Wang Z, Lu T, Li X, Yang K, Zhao L, Zhang D, Li J, Wang L. Integrative analysis of long noncoding RNAs dysregulation and synapse-associated ceRNA regulatory axes in autism. Transl Psychiatry 2023; 13:375. [PMID: 38057311 DOI: 10.1038/s41398-023-02662-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.
Collapse
Affiliation(s)
- Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Ziqi Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Kang Yang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| |
Collapse
|
9
|
Vinci M, Costanza C, Galati Rando R, Treccarichi S, Saccone S, Carotenuto M, Roccella M, Calì F, Elia M, Vetri L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int J Mol Sci 2023; 24:16436. [PMID: 38003627 PMCID: PMC10670990 DOI: 10.3390/ijms242216436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Syntaxin-binding protein 6 (STXBP6), also known as amysin, is an essential component of the SNAP receptor (SNARE) complex and plays a crucial role in neuronal vesicle trafficking. Mutations in genes encoding SNARE proteins are often associated with a broad spectrum of neurological conditions defined as "SNAREopathies", including epilepsy, intellectual disability, and neurodevelopmental disorders such as autism spectrum disorders. The present whole exome sequencing (WES) study describes, for the first time, the occurrence of developmental epileptic encephalopathy and autism spectrum disorders as a result of a de novo deletion within the STXBP6 gene. The truncated protein in the STXBP6 gene leading to a premature stop codon could negatively modulate the synaptic vesicles' exocytosis. Our research aimed to elucidate a plausible, robust correlation between STXBP6 gene deletion and the manifestation of developmental epileptic encephalopathy.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Rosanna Galati Rando
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| |
Collapse
|
10
|
Taura Y, Tozawa T, Fujimoto T, Ichise E, Chiyonobu T, Itoh K, Iehara T. Myosin Va, a novel interaction partner of STXBP1, is required to transport Syntaxin1A to the plasma membrane. Neuroscience 2023:S0306-4522(23)00251-8. [PMID: 37315734 DOI: 10.1016/j.neuroscience.2023.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Syntaxin-binding protein 1 (STXBP1, also known as Munc18-1) regulates exocytosis as a chaperone protein of Syntaxin1A. The haploinsufficiency of STXBP1 causes early infantile-onset developmental and epileptic encephalopathy, known as STXBP1 encephalopathy. Previously, we reported impaired cellular localization of Syntaxin1A in induced pluripotent stem cell-derived neurons from an STXBP1 encephalopathy patient harboring a nonsense mutation. However, the molecular mechanism of abnormal Syntaxin1A localization in the haploinsufficiency of STXBP1 remains unknown. This study aimed to identify the novel interacting partner of STXBP1 involved in transporting Syntaxin1A to the plasma membrane. Affinity purification coupled with mass spectrometry analysis identified a motor protein Myosin Va as a potential binding partner of STXBP1. Co-immunoprecipitation analysis of the synaptosomal fraction from the mouse and tag-fused recombinant proteins revealed that the STXBP1 short splice variant (STXBP1S) interacted with Myosin Va in addition to Syntaxin1A. These proteins colocalized at the tip of the growth cone and axons in primary cultured hippocampal neurons. Furthermore, RNAi-mediated gene silencing in Neuro2a cells showed that STXBP1 and Myosin Va were required for membrane trafficking of Syntaxin1A. In conclusion, this study proposes a potential role of STXBP1 in the trafficking of the presynaptic protein Syntaxin1A to the plasma membrane in conjunction with Myosin Va.
Collapse
Affiliation(s)
- Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
12
|
Deschain T, Fabricius J, Berendt M, Fredholm M, Karlskov-Mortensen P. The first genome-wide association study concerning idiopathic epilepsy in Petit Basset Griffon Vendeen. Anim Genet 2021; 52:762-766. [PMID: 34383319 DOI: 10.1111/age.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Abstract
The dog breed Petit Basset Griffon Vendeen has a relatively high prevalence of idiopathic epilepsy compared to other dog breeds and previous studies have suggested a genetic cause of the disease in this breed. Based on these observations, a genome-wide association study was performed to identify possible epilepsy-causing loci. The study included 30 unaffected and 23 affected dogs, genotyping of 170K SNPs, and data analysis using plink and emmax. Suggestive associations at CFA13, CFA24 and CFA35 were identified with markers close to three strong candidate genes. However, subsequent sequencing of exons of the three genes did not reveal sequence variations, which could explain development of the disease. This is, to our knowledge, the first report on loci and genes with a possible connection to idiopathic epilepsy in Petit Basset Griffon Vendeen. However, further studies are needed to conclusively identify the genetic cause of idiopathic epilepsy in this dog breed.
Collapse
Affiliation(s)
- T Deschain
- Department of Veterinary and Animal Sciences, Animal Genetics, Bioinformatics & Breeding, University of Copenhagen, Gronnegaardsvej 3, Frederiksberg C, DK-1870, Denmark
| | - J Fabricius
- Department of Veterinary and Animal Sciences, Animal Genetics, Bioinformatics & Breeding, University of Copenhagen, Gronnegaardsvej 3, Frederiksberg C, DK-1870, Denmark
| | - M Berendt
- Section for Surgery, Neurology & Cardiology, Faculty of Health and Medical Sciences, University Hospital for Companion Animals, University of Copenhagen, Dyrlaegevej 16, Frederiksberg C, DK-1870, Denmark
| | - M Fredholm
- Department of Veterinary and Animal Sciences, Animal Genetics, Bioinformatics & Breeding, University of Copenhagen, Gronnegaardsvej 3, Frederiksberg C, DK-1870, Denmark
| | - P Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Animal Genetics, Bioinformatics & Breeding, University of Copenhagen, Gronnegaardsvej 3, Frederiksberg C, DK-1870, Denmark
| |
Collapse
|
13
|
Current Pharmacologic Strategies for Treatment of Intractable Epilepsy in Children. Int Neurourol J 2021; 25:S8-18. [PMID: 34053206 PMCID: PMC8171244 DOI: 10.5213/inj.2142166.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022] Open
Abstract
Epileptic encephalopathy (EE) is a devastating pediatric disease that features medically resistant seizures, which can contribute to global developmental delays. Despite technological advancements in genetics, the neurobiological mechanisms of EEs are not fully understood, leaving few therapeutic options for affected patients. In this review, we introduce the most common EEs in pediatrics (i.e., Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome) and their molecular mechanisms that cause excitation/inhibition imbalances. We then discuss some of the essential molecules that are frequently dysregulated in EEs. Specifically, we explore voltage-gated ion channels, synaptic transmission-related proteins, and ligand-gated ion channels in association with the pathophysiology of Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome. Finally, we review currently available antiepileptic drugs used to treat seizures in patients with EEs. Since these patients often fail to achieve seizure relief even with the combination therapy, further extensive research efforts to explore the involved molecular mechanisms will be required to develop new drugs for patients with intractable epilepsy.
Collapse
|
14
|
Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, Taura Y, Yamashita S, Yoshida M, Morimoto M, Higurashi N, Yamamoto T, Okano H, Hirose S. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet 2021; 30:1337-1348. [PMID: 33961044 DOI: 10.1093/hmg/ddab113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Syntaxin-binding protein 1 (STXBP1; also called MUNC18-1), encoded by STXBP1, is an essential component of the molecular machinery that controls synaptic vesicle docking and fusion. De novo pathogenic variants of STXBP1 cause a complex set of neurological disturbances, namely STXBP1 encephalopathy (STXBP1-E) that includes epilepsy, neurodevelopmental disorders and neurodegeneration. Several animal studies have suggested the contribution of GABAergic dysfunction in STXBP1-E pathogenesis. However, the pathophysiological changes in GABAergic neurons of these patients are still poorly understood. Here, we exclusively generated GABAergic neurons from STXBP1-E patient-derived induced pluripotent stem cells (iPSCs) by transient expression of the transcription factors ASCL1 and DLX2. We also generated CRISPR/Cas9-edited isogenic iPSC-derived GABAergic (iPSC GABA) neurons as controls. We demonstrated that the reduction in STXBP1 protein levels in patient-derived iPSC GABA neurons was slight (approximately 20%) compared to the control neurons, despite a 50% reduction in STXBP1 mRNA levels. Using a microelectrode array-based assay, we found that patient-derived iPSC GABA neurons exhibited dysfunctional maturation with reduced numbers of spontaneous spikes and bursts. These findings reinforce the idea that GABAergic dysfunction is a crucial contributor to STXBP1-E pathogenesis. Moreover, gene expression analysis revealed specific dysregulation of genes previously implicated in epilepsy, neurodevelopment and neurodegeneration in patient-derived iPSC GABA neurons, namely KCNH1, KCNH5, CNN3, RASGRF1, SEMA3A, SIAH3 and INPP5F. Thus, our study provides new insights for understanding the biological processes underlying the widespread neuropathological features of STXBP1-E.
Collapse
Affiliation(s)
- Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Mami Shibata
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Medical Science, School of Nursing, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
15
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
John A, Ng-Cordell E, Hanna N, Brkic D, Baker K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 2021; 157:208-228. [PMID: 32738165 DOI: 10.1111/jnc.15135] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence synaptic vesicle cycling (SVC disorders). Pathogenic variants in each SVC disorder gene lead to disturbance of at least one SVC subprocess, namely vesicle trafficking (e.g. KIF1A and GDI1), clustering (e.g. TRIO, NRXN1 and SYN1), docking and priming (e.g. STXBP1), fusion (e.g. SYT1 and PRRT2) or re-uptake (e.g. DNM1, AP1S2 and TBC1D24). We observe that SVC disorders share a common set of neurological symptoms (movement disorders, epilepsies), cognitive impairments (developmental delay, intellectual disabilities, cerebral visual impairment) and mental health difficulties (autism, ADHD, psychiatric symptoms). On the other hand, there is notable phenotypic variation between and within disorders, which may reflect selective disruption to SVC subprocesses, spatiotemporal and cell-specific gene expression profiles, mutation-specific effects, or modifying factors. Understanding the common cellular and systems mechanisms underlying neurodevelopmental phenotypes in SVC disorders, and the factors responsible for variation in clinical presentations and outcomes, may translate to personalized clinical management and improved quality of life for patients and families.
Collapse
Affiliation(s)
- Abinayah John
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Nancy Hanna
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkic
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Zhang X, Li Z, Liu Y, Gai Z. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci 2021; 18:459-473. [PMID: 33390815 PMCID: PMC7757149 DOI: 10.7150/ijms.51842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Somatic cells such as skin fibroblasts, umbilical cord blood, peripheral blood, urinary epithelial cells, etc., are transformed into induced pluripotent stem cells (iPSCs) by reprogramming technology, a milestone in the stem-cell research field. IPSCs are similar to embryonic stem cells (ESCs), exhibiting the potential to differentiate into various somatic cells. Still, the former avoid problems of immune rejection and medical ethics in the study of ESCs and clinical trials. Neurodevelopmental disorders are chronic developmental brain dysfunctions that affect cognition, exercise, social adaptability, behavior, etc. Due to various inherited or acquired causes, they seriously affect the physical and psychological health of infants and children. These include generalized stunting / mental disability (GDD/ID), Epilepsy, autism spectrum disease (ASD), and attention deficit hyperactivity disorder (ADHD). Most neurodevelopmental disorders are challenging to cure. Establishing a neurodevelopmental disorder system model is essential for researching and treating neurodevelopmental disorders. At this stage, the scarcity of samples is a bigger problem for studying neurological diseases based on the donor, ethics, etc. Some iPSCs are reprogrammed from somatic cells that carry disease-causing mutations. They differentiate into nerve cells by induction, which has the original characteristics of diseases. Disease-specific iPSCs are used to study the mechanism and pathogenesis of neurodevelopmental disorders. The process provided samples and the impetus for developing drugs and developing treatment plans for neurodevelopmental disorders. Here, this article mainly introduced the development of iPSCs, the currently established iPSCs disease models, and artificial organoids related to neurodevelopmental impairments. This technology will promote our understanding of neurodevelopmental impairments and bring great expectations to children with neurological disorders.
Collapse
Affiliation(s)
- Xue Zhang
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China.,Neonatal Intensive Care Unit, Children's Medical Center, The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Zilong Li
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.,Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China
| |
Collapse
|
18
|
Tien CW, Yu B, Huang M, Stepien KP, Sugita K, Xie X, Han L, Monnier PP, Zhen M, Rizo J, Gao S, Sugita S. Open syntaxin overcomes exocytosis defects of diverse mutants in C. elegans. Nat Commun 2020; 11:5516. [PMID: 33139696 PMCID: PMC7606450 DOI: 10.1038/s41467-020-19178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Assembly of SNARE complexes that mediate neurotransmitter release requires opening of a ‘closed’ conformation of UNC-64/syntaxin. Rescue of unc-13/Munc13 mutant phenotypes by overexpressed open UNC-64/syntaxin suggested a specific function of UNC-13/Munc13 in opening UNC-64/ syntaxin. Here, we revisit the effects of open unc-64/syntaxin by generating knockin (KI) worms. The KI animals exhibit enhanced spontaneous and evoked exocytosis compared to WT animals. Unexpectedly, the open syntaxin KI partially suppresses exocytosis defects of various mutants, including snt-1/synaptotagmin, unc-2/P/Q/N-type Ca2+ channel alpha-subunit and unc-31/CAPS, in addition to unc-13/Munc13 and unc-10/RIM, and enhanced exocytosis in tom-1/Tomosyn mutants. However, open syntaxin aggravates the defects of unc-18/Munc18 mutants. Correspondingly, open syntaxin partially bypasses the requirement of Munc13 but not Munc18 for liposome fusion. Our results show that facilitating opening of syntaxin enhances exocytosis in a wide range of genetic backgrounds, and may provide a general means to enhance synaptic transmission in normal and disease states. Opening of the UNC-64/syntaxin closed conformation by UNC-13/Munc13 to form the neuronal SNARE complex is critical for neurotransmitter release. Here the authors show that facilitating the opening of syntaxin enhances exocytosis not only in unc-13 nulls as well as in diverse C. elegans mutants.
Collapse
Affiliation(s)
- Chi-Wei Tien
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengjia Huang
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kyoko Sugita
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8
| | - Xiaoyu Xie
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Liping Han
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China.,Department of Anesthesiology, Dalian Municipal Friendship Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Philippe P Monnier
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Mei Zhen
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada, M5T 2S8. .,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
19
|
Chan WWR, Li W, Chang RCC, Lau KF. ARF6-Rac1 signaling-mediated neurite outgrowth is potentiated by the neuronal adaptor FE65 through orchestrating ARF6 and ELMO1. FASEB J 2020; 34:16397-16413. [PMID: 33047393 DOI: 10.1096/fj.202001703r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
21
|
Takai A, Yamaguchi M, Yoshida H, Chiyonobu T. Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21176442. [PMID: 32899411 PMCID: PMC7503973 DOI: 10.3390/ijms21176442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. We therefore highlight studies with Drosophila models for EIEE and discuss the future development of their practical use.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence:
| |
Collapse
|
22
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Paredes AC, González DV, Espinosa E. Encefalopatía epiléptica infantil en un paciente colombiano con una variante patogénica de novo en el gen STXBP1. REPERTORIO DE MEDICINA Y CIRUGÍA 2020. [DOI: 10.31260/repertmedcir.01217273.966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
El desarrollo de los estudios moleculares ha permitido identificar la etiología genética de diversas enfermedades como las encefalopatías epilépticas infantiles, las cuales se han asociado con variantes patogénicas en diferentes genes, entre ellos el STXBP1. La encefalopatía con epilepsia STXBP1 es una enfermedad genética con un patrón de herencia autosómico dominante, donde están alterados los mecanismos reguladores de la liberación de neurotransmisores por parte de las vesículas sinápticas, con alteración del neurodesarrollo. La edad de presentación del trastorno es temprano, con convulsiones en los primeros dos meses de vida. Los pacientes presentan dificultades en la alimentación, trastornos del movimiento y alteración del espectro autista. En este artículo presentamos el caso clínico de un paciente colombiano con encefalopatía epiléptica STXBP1 revisando los aspectos clínicos de la enfermedad, dirigido a profesionales de la salud para sensibilizarlos y así lograr el diagnóstico temprano. Esta es la primera publicación en el país de un paciente con esta etiología.
Collapse
|
24
|
Gataullina S, Bienvenu T, Nabbout R, Huberfeld G, Dulac O. Gene mutations in paediatric epilepsies cause NMDA-pathy, and phasic and tonic GABA-pathy. Dev Med Child Neurol 2019; 61:891-898. [PMID: 30680721 DOI: 10.1111/dmcn.14152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
Abstract
The aim of this study was to disentangle mechanisms of epileptogenesis in monogenic epilepsies in children. We reviewed paediatric monogenic epilepsies excluding brain malformation or an inborn error of metabolism, but including the gene function whether there is loss-of-function or gain-of-function, age at gene expression when available, and associated epilepsy syndrome. Genes for which at least five patients with similar epilepsy phenotype had been reported were selected. Three mechanisms are shared by most monogenic epilepsies: (1) excess of N-methyl-d-aspartate (NMDA) transmission activation (NMDA-pathies); (2) abnormal gamma-aminobutyric acid (GABA) transmission with reduced inhibition (phasic GABA-pathies); and (3) tonic activation of extrasynaptic GABAA receptors by extracellular GABA (tonic GABA-pathies). NMDA-pathies comprise early epileptic encephalopathy with suppression-burst, neonatal/infantile benign seizures, West and Lennox-Gastaut syndromes, and encephalopathy with continuous spike waves in slow sleep, thus brief seizures with major interictal spiking. Phasic GABA-pathies comprise mostly generalized epilepsy with febrile seizures plus and Dravet syndrome, thus long-lasting seizures with mild interictal spiking. Tonic GABA-pathies cause epilepsy with myoclonic-atonic seizures and Angelman syndrome, thus major high-amplitude slow-wave activity. This pathophysiological approach to monogenic epilepsies provides diagnostic clues and helps to guide treatment strategy. WHAT THIS PAPER ADDS: In paediatric monogenic epilepsies, electroclinical patterns point to three main mechanisms: NMDA-pathies, and phasic and tonic GABA-pathies. Antiepileptic treatment choice could be guided by each of these mechanisms.
Collapse
Affiliation(s)
- Svetlana Gataullina
- Service d' Explorations Fonctionnelles multidisciplinaires Hôpital Antoine Béclère, AP-HP, Clamart, France.,Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,Service de Pédiatrie, Centre Hospitalier Intercommunal, Montreuil, France
| | - Thierry Bienvenu
- Biochemistry and Molecular Genetics Laboratory, Hôpital Cochin, Paris Centre University Group, Paris, France.,Institut Cochin, Inserm U1016, Paris Descartes University, Paris, France
| | - Rima Nabbout
- Centre de Reference Épilepsies Rares, Necker-Enfants Malades Hospital, Paris, France
| | - Gilles Huberfeld
- Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,Clinical Neurophysiology Department, Pitié-Salpêtrière Hospital, Sorbone University, AP-HP, Paris, France.,Neuroglial Interactions in Cerebral Pathophysiology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7421, Inserm U1050, Labex MemolifePSL Research University, Paris, France
| | - Olivier Dulac
- Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,AdPueriVitam, Antony, France
| |
Collapse
|
25
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
26
|
Carvill GL, Dulla CG, Lowenstein DH, Brooks-Kayal AR. The path from scientific discovery to cures for epilepsy. Neuropharmacology 2019; 167:107702. [PMID: 31301334 DOI: 10.1016/j.neuropharm.2019.107702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Dan H Lowenstein
- Department of Neurology, University of California, San Francisco, CA, 94941, USA
| | - Amy R Brooks-Kayal
- Department of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| |
Collapse
|
27
|
Lanoue V, Chai YJ, Brouillet JZ, Weckhuysen S, Palmer EE, Collins BM, Meunier FA. STXBP1 encephalopathy. Neurology 2019; 93:114-123. [DOI: 10.1212/wnl.0000000000007786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/18/2019] [Indexed: 11/15/2022] Open
Abstract
De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also known as Munc18-1) lead to a range of early-onset neurocognitive conditions, most commonly early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1 encephalopathy), a severe form of epilepsy associated with developmental delay/intellectual disability. Other neurologic features include autism spectrum disorder and movement disorders. The progression of neurologic symptoms has been reported in a few older affected individuals, with the appearance of extrapyramidal features, reminiscent of early onset parkinsonism. Understanding the pathologic process is critical to improving therapies, as currently available antiepileptic drugs have shown limited success in controlling seizures in EIEE4 and there is no precision medication approach for the other neurologic features of the disorder. Basic research shows that genetic knockout of STXBP1 or other presynaptic proteins of the exocytic machinery leads to widespread perinatal neurodegeneration. The mechanism that regulates this effect is under scrutiny but shares intriguing hallmarks with classical neurodegenerative diseases, albeit appearing early during brain development. Most critically, recent evidence has revealed that STXBP1 controls the self-replicating aggregation of α-synuclein, a presynaptic protein involved in various neurodegenerative diseases that are collectively known as synucleinopathies, including Parkinson disease. In this review, we examine the tantalizing link among STXBP1 function, EIEE, and the neurodegenerative synucleinopathies, and suggest that neural development in EIEE could be further affected by concurrent synucleinopathic mechanisms.
Collapse
|
28
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
| |
Collapse
|
29
|
From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol 2018; 14:735-745. [DOI: 10.1038/s41582-018-0099-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Golgi-specific DHHC type zinc finger protein is decreased in neurons of intractable epilepsy patients and pentylenetetrazole-kindled rats. Neuroreport 2018; 29:1157-1165. [PMID: 29994811 DOI: 10.1097/wnr.0000000000001088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Golgi-specific DHHC type zinc finger protein (GODZ) is a member of the DHHC protein family, and its enzymatic activity is regulated by fibroblast growth factor or Src kinase-mediated tyrosine phosphorylation. In cultured neurons, GODZ affects the numbers of calcium ions channels, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, N-methy-D-aspartate receptors, and γ-aminobutyric acid A receptors on postsynaptic membrane by palmitoylation, thus modulating synaptic plasticity. As the change in synaptic plasticity plays a role in epilepsy, GODZ may play roles in epilepsy. However, the expression of GODZ has never been investigated in brain tissues in vivo, and its change during epilepsy is still unclear. In this study, the cellular distribution of GODZ in brain tissues of both patients and rats was determined using double-labeled immunofluorescence and the levels of GODZ protein and mRNA among intractable epilepsy patients, pentylenetetrazole (PTZ)-kindled rats, and controls were measured using immunohistochemistry, Western blot, and real-time quantitative polymerase chain reaction. GODZ expression was identified on cytomembranes and in the cytoplasm of neurons in the temporal neocortex of intractable epilepsy patients and in the hippocampus and the adjacent temporal cortex of PTZ-kindled rats, but not in astrocytes. Decreased GODZ protein and mRNA were identified in brain tissues of intractable epilepsy patients and PTZ-kindled rats compared with the controls. In conclusion, GODZ is expressed in neurons, but not astrocytes, and epilepsy may reduce the protein and mRNA levels of GODZ, indicating a possible role of GODZ in the pathogenesis or the pathophysiology of epilepsy.
Collapse
|
31
|
Zhou R, Jiang G, Tian X, Wang X. Progress in the molecular mechanisms of genetic epilepsies using patient-induced pluripotent stem cells. Epilepsia Open 2018; 3:331-339. [PMID: 30187003 PMCID: PMC6119748 DOI: 10.1002/epi4.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Research findings on the molecular mechanisms of epilepsy almost always originate from animal experiments, and the development of induced pluripotent stem cell (iPSC) technology allows the use of human cells with genetic defects for studying the molecular mechanisms of genetic epilepsy (GE) for the first time. With iPSC technology, terminally differentiated cells collected from GE patients with specific genetic etiologies can be differentiated into many relevant cell subtypes that carry all of the GE patient's genetic information. iPSCs have opened up a new research field involving the pathogenesis of GE. Using this approach, studies have found that gene mutations induce GE by altering the balance between neuronal excitation and inhibition, which is associated. among other factors, with neuronal developmental disturbances, ion channel abnormalities, and synaptic dysfunction. Simultaneously, astrocyte activation, mitochondrial dysfunction, and abnormal signaling pathway activity are also important factors in the molecular mechanisms of GE.
Collapse
Affiliation(s)
- Ruijiao Zhou
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Guohui Jiang
- Department of Neurology Institute of Neurological Diseases Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Tian
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Xuefeng Wang
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| |
Collapse
|
32
|
Abstract
In the current review, we discuss the process of modeling pediatric epileptic encephalopathies with a focus on in vitro iPSC-based technologies. We highlight the potential benefits as well as the challenges of these approaches and propose appropriate standards for the field.
Collapse
|
33
|
Kovačević J, Maroteaux G, Schut D, Loos M, Dubey M, Pitsch J, Remmelink E, Koopmans B, Crowley J, Cornelisse LN, Sullivan PF, Schoch S, Toonen RF, Stiedl O, Verhage M. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain 2018; 141:1350-1374. [PMID: 29538625 PMCID: PMC5917748 DOI: 10.1093/brain/awy046] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023] Open
Abstract
De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.
Collapse
Affiliation(s)
- Jovana Kovačević
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Gregoire Maroteaux
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Mohit Dubey
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | | | | | - James Crowley
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
| | - L Niels Cornelisse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Patrick F Sullivan
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics and Department of (Clinical) Genetics, Nobels väg 12A, 171 77 Stockholm, Sweden
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Reid CA, Rollo B, Petrou S, Berkovic SF. Can mutation‐mediated effects occurring early in development cause long‐term seizure susceptibility in genetic generalized epilepsies? Epilepsia 2018; 59:915-922. [DOI: 10.1111/epi.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher Alan Reid
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Ben Rollo
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Steven Petrou
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Samuel F. Berkovic
- Department of Medicine Epilepsy Research Centre Austin Health University of Melbourne Heidelberg Victoria Australia
| |
Collapse
|
35
|
Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots. G3-GENES GENOMES GENETICS 2018; 8:1115-1118. [PMID: 29438995 PMCID: PMC5873902 DOI: 10.1534/g3.118.200080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations within STXBP1 have been associated with a range of neurodevelopmental disorders implicating the pleotropic impact of this gene. Although the frequency of de novo mutations within STXBP1 for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context of de novo STXBP1 mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136 de novo/rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a 'GTA' motif (P < 0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the 'GTA' mutations are splicing compared to 14.70% (20 out of 136) of all reported mutations within STXBP1 We also noted that 11 of these 14 'GTA' associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis for STXBP1 de novo splicing mutations.
Collapse
|
36
|
Uddin M, Woodbury-Smith M, Chan A, Brunga L, Lamoureux S, Pellecchia G, Yuen RKC, Faheem M, Stavropoulos DJ, Drake J, Hahn CD, Hawkins C, Shlien A, Marshall CR, Turner LA, Minassian BA, Scherer SW, Boelman C. Germline and somatic mutations in STXBP1 with diverse neurodevelopmental phenotypes. NEUROLOGY-GENETICS 2017; 3:e199. [PMID: 29264391 PMCID: PMC5735305 DOI: 10.1212/nxg.0000000000000199] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Abstract
Objective: To expand the clinical phenotype associated with STXBP1 gene mutations and to understand the effect of STXBP1 mutations in the pathogenesis of focal cortical dysplasia (FCD). Methods: Patients with STXBP1 mutations were identified in various ways: as part of a retrospective cohort study of epileptic encephalopathy; through clinical referrals of individuals (10,619) with developmental delay (DD) for chromosomal microarray; and from a collection of 5,205 individuals with autism spectrum disorder (ASD) examined by whole-genome sequencing. Results: Seven patients with heterozygous de novo mutations affecting the coding region of STXBP1 were newly identified. Three cases had radiologic evidence suggestive of FCD. One male patient with early infantile epileptic encephalopathy, DD, and ASD achieved complete seizure remission following resection of dysplastic brain tissue. Examination of excised brain tissue identified mosaicism for STXBP1, providing evidence for a somatic mechanism. Cell-type expression analysis suggested neuron-specific expression. A comprehensive analysis of the published data revealed that 3.1% of severe epilepsy cases carry a pathogenic de novo mutation within STXBP1. By contrast, ASD was rarely associated with mutations in this gene in our large cohorts. Conclusions: STXBP1 mutations are an important cause of epilepsy and are also rarely associated with ASD. In a case with histologically proven FCD, an STXBP1 somatic mutation was identified, suggesting a role in its etiology. Removing such tissue may be curative for STXBP1-related epilepsy.
Collapse
Affiliation(s)
- Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Marc Woodbury-Smith
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Ada Chan
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Ledia Brunga
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Sylvia Lamoureux
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Giovanna Pellecchia
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Ryan K C Yuen
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Muhammad Faheem
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Dimitri J Stavropoulos
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - James Drake
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Cecil D Hahn
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Cynthia Hawkins
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Adam Shlien
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Christian R Marshall
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Lesley A Turner
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Berge A Minassian
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Stephen W Scherer
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| | - Cyrus Boelman
- Mohammed Bin Rashid University of Medicine and Health Sciences (M.U.), Dubai, UAE; The Centre for Applied Genomics (M.U., M.W.), Program in Genetics and Genome Biology (GGB) (A.C., L.B., S.L., G.P., R.K.C.Y., M.F., A.S., B.A.M., S.W.S.), Genome Diagnostics (D.J.S., C.R.M.), Paediatric Laboratory Medicine, Division of Neurosurgery (J.D., B.A.M.), and Division of Neurology (C.D.H.), The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Neuroscience (M.W.), Newcastle University, UK; Department of Molecular Genetics (A.C., S.W.S.), Department of Paediatrics (C.D.H., C.H.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Discipline of Genetics (L.A.T.), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada; and Division of Neurology (C.B.), BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
37
|
Devaux J, Dhifallah S, De Maria M, Stuart-Lopez G, Becq H, Milh M, Molinari F, Aniksztejn L. A possible link betweenKCNQ2- andSTXBP1-related encephalopathies: STXBP1 reduces the inhibitory impact of syntaxin-1A on M current. Epilepsia 2017; 58:2073-2084. [DOI: 10.1111/epi.13927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Jérôme Devaux
- CNRS, CRN2M-UMR7286; Aix-Marseille University; Marseille France
| | - Sandra Dhifallah
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Institute of Molecular and Cellular Pharmacology (IPMC); CNRS; Nice Sophia-Antipolis University; Valbonne France
| | - Michela De Maria
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Department of Medicine and Health Sciences; University of Molise; Campobasso Italy
| | - Geoffrey Stuart-Lopez
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- UMR5203 Institute of Functional Genomic (IGF); CNRS; Montpellier France
| | - Hélène Becq
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Mathieu Milh
- Timone Children Hospital, Pediatric Neurology department; APHM; Marseille France
- GMGF, INSERM UMR_S910; Aix-Marseille University; Marseille France
| | - Florence Molinari
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Laurent Aniksztejn
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| |
Collapse
|
38
|
Stamberger H, Weckhuysen S, De Jonghe P. STXBP1 as a therapeutic target for epileptic encephalopathy. Expert Opin Ther Targets 2017; 21:1027-1036. [DOI: 10.1080/14728222.2017.1386175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hannah Stamberger
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
39
|
Zuiki M, Chiyonobu T, Yoshida M, Maeda H, Yamashita S, Kidowaki S, Hasegawa T, Gotoh H, Nomura T, Ono K, Hosoi H, Morimoto M. Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci Lett 2017; 653:296-301. [PMID: 28595950 DOI: 10.1016/j.neulet.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022]
Abstract
Maternal infection during pregnancy increases the risk of neurodevelopmental conditions such as autism spectrum disorders and schizophrenia in offspring. Several previous animal studies have indicated that maternal immune activation (MIA), rather than a specific pathogen, alters fetal brain development. Among them, prenatal exposure to interleukin-6 (IL-6) has been associated with behavioral and neuropathological abnormalities, though such findings remain to be elucidated in humans. We developed a human cell-based model of MIA by exposing human induced pluripotent stem cells (hiPSCs)-derived neural aggregates to IL-6 and investigated whether luteolin-a naturally occurring flavonoid found in edible plants-could prevent MIA-induced abnormalities. We generated neural aggregates from hiPSCs using the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) method, following which aggregates were cultured in suspension. We then exposed the aggregates to IL-6 (100ng/ml) for 24h at day 51. Transient IL-6 exposure significantly increased the area ratio of astrocytes (GFAP-positive area ratio) and decreased the area ratio of early-born neurons (TBR1-positive or CTIP2-positive area ratio) relative to controls. In addition, western blot analysis revealed that levels of phosphorylated STAT3 were significantly elevated in IL-6-exposed neural aggregates. Luteolin treatment inhibited STAT3 phosphorylation and counteracted IL-6-mediated increases of GFAP-positive cells and reductions of TBR1-positive and CTIP2-positive cells. Our observations suggest that the flavonoid luteolin may attenuate or prevent MIA-induced neural abnormalities. As we observed increased apoptosis at high concentrations of luteolin, further studies are required to determine the optimal intake dosage and duration for pregnant women.
Collapse
Affiliation(s)
- Masashi Zuiki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan.
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Hiroshi Maeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Satoshi Kidowaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Tatsuji Hasegawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| |
Collapse
|
40
|
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Front Mol Neurosci 2016; 9:78. [PMID: 27656126 PMCID: PMC5012159 DOI: 10.3389/fnmol.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders.
Collapse
Affiliation(s)
- Serena Barral
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College London London, UK
| | - Manju A Kurian
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College LondonLondon, UK; Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|