1
|
Ghosh C, Westcott R, Skvasik D, Khurana I, Khoury J, Blumcke I, El-Osta A, Najm IM. GLUT1 and Cerebral Glucose Hypometabolism in Human Focal Cortical Dysplasia Is Associated with Hypermethylation of Key Glucose Regulatory Genes. Mol Neurobiol 2025:10.1007/s12035-025-04871-z. [PMID: 40195216 DOI: 10.1007/s12035-025-04871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Focal cortical dysplasia (FCD) is a significant etiological factor in drug-resistant epilepsy, linked with disturbances in neurovascular metabolism. Our study investigated regulation of glucose-transporter1 (GLUT1) and cerebral hypometabolism within FCD subtypes. Surgically excised human brain specimens underwent histopathological categorization. A subset of samples was assessed for DNA methylation changes of glucose metabolism-related genes. We evaluated GLUT1, vascular endothelial growth factor alpha (VEGFα), monocarboxylate-transporter (MCT2), and mammalian target of rapamycin (mTOR) expression, measured glucose-lactate concentrations, and established correlations with patients' demographic and clinical profiles. Furthermore, we investigated the impact of DNA methylation inhibitor decitabine and hypometabolic condition on the uptake of [3H]-2-deoxyglucose and ATPase in epileptic-brain endothelial cells (EPI-EC). We observed hypermethylation of GLUT1 and glucose metabolic genes in FCD brain/blood samples and could distinguish FCDIIa/b from mild malformations of cortical development (mMCD), with oligodendroglial hyperplasia (MOGHE) and non-lesional brains. Low GLUT1 and glucose-lactate ratios corresponded to elevated VEGFα and MCT2 in FCDIIa/b vs. non-lesional tissues, independent of age, gender, seizure-onset, or duration of epilepsy. Increased mTOR-signaling in FCDIIa/b tissues was evident. Decitabine stimulation increased GLUT1, decreased VEGFα expression, restored glucose uptake and ATPase activity in EPI-ECs, and reduced mTOR and MCT2 levels in human embryonic-kidney cells. We demonstrated: hypermethylation of glucose regulatory genes distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types, glucose uptake reduction is due to GLUT1 suppression mediated possibly by a GLUT1-mTOR mechanism; and DNA methylation regulates cellular glucose uptake and metabolism. Together, these studies may lead to GLUT1-mediated biomarkers and identify early intervention strategies in FCD.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Rosemary Westcott
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - David Skvasik
- Neurovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jean Khoury
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ingmar Blumcke
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Lemmens MJDK, van Lanen RHGJ, Uher D, Colon AJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Gijselhart I, Drenthen GS, Jansen JFA, Backes WH, Rijkers K, Schijns OEMG. Ex vivo ultra-high field magnetic resonance imaging of human epileptogenic specimens from primarily the temporal lobe: A systematic review. Neuroradiology 2025; 67:875-893. [PMID: 40056183 PMCID: PMC12041060 DOI: 10.1007/s00234-024-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 03/10/2025]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is the preferred diagnostic tool for the detection of structural cerebral lesions in patients with epilepsy. Ultra-high field (UHF) MRI with field strengths ≥7 Tesla has been reported to improve the visualization and delineation of epileptogenic lesions. The use of ex vivo UHF MRI may expand our knowledge on the detection and detailed micromorphology of subtle epileptogenic lesions by bridging the gap between in vivo MRI and histopathology. METHODS A systematic review of available literature was conducted following PRISMA guidelines. A descriptive analysis of included articles was performed, focusing on (I) the ability of ex vivo UHF MRI to detect subtle abnormalities related to epilepsy, (II) different post-processing methods, and (III) concordance between UHF MRI and histopathology. RESULTS Eleven studies with focus on the depiction of focal cortical dysplasia (n = 4) or hippocampal sclerosis (n = 7) as causative lesion of drug-resistant epilepsy were included. Ex vivo UHF MRI proved its ability to visualize the anatomy of cortical and hippocampal structures in greater detail when compared to ex vivo conventional field strengths. Different MRI post-processing methods enabled differentiation between lesional subtypes and provided novel insights into (peri)lesional characteristics. Concordance between ex vivo UHF MRI findings and histopathology was high. CONCLUSION Acquisition of ex vivo UHF MRI and its image processing has the potential to depict epileptogenic abnormalities in greater detail with a spatial resolution approximating histological images. The translation of ex vivo UHF MRI features to in vivo clinical settings remains challenging and urges further exploration.
Collapse
Affiliation(s)
- Marie-Julie D K Lemmens
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands.
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - D Uher
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Centre d'Etude et de Traitement de l'Epilepsie, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - M C Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - I Gijselhart
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - G S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - J F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
3
|
Chen S, Jiao Y, Han C, Li Y, Zou W, Liu J. Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment. Mol Neurobiol 2024; 61:10023-10040. [PMID: 38087164 DOI: 10.1007/s12035-023-03757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2024]
Abstract
Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host's response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.
Collapse
Affiliation(s)
- Shuna Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Yang Jiao
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Ghosh C, Westcott R, Skvasik D, Khurana I, Khoury J, Blumcke I, El-Osta A, Najm IM. GLUT1 and cerebral glucose hypometabolism in human focal cortical dysplasia is associated with hypermethylation of key glucose regulatory genes. RESEARCH SQUARE 2024:rs.3.rs-4946501. [PMID: 39483922 PMCID: PMC11527251 DOI: 10.21203/rs.3.rs-4946501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal cortical dysplasia (FCD) is recognized as a significant etiological factor in pharmacoresistant intractable epilepsy, linked with disturbances in neurovascular metabolism. Our study investigated regulation of glucose-transporter1 (GLUT1) and cerebral hypometabolism within FCD subtypes. Surgically excised human brain specimens underwent histopathological categorization. A subset of samples (paired with matching blood) was assessed for DNA methylation changes of glucose metabolism-related genes. We evaluated GLUT1, VEGFα, MCT2, and mTOR expression by western blot analysis, measured glucose-lactate concentrations, and established correlations with patients' demographic and clinical profiles. Furthermore, we investigated the impact of DNA methylation inhibitor decitabine and hypometabolic condition on the uptake of [3H]-2-deoxyglucose and ATPase in epileptic brain endothelial cells (EPI-EC). We observed hypermethylation of GLUT1 and glucose metabolic genes in FCD brain/blood samples and could distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types in brain. Low GLUT1 and glucose-lactate ratios corresponded to elevated VEGFα and MCT2 in FCDIIa/b vs non-lesional tissues, independent of age, gender, seizure-onset, or duration of epilepsy. Increased mTOR signaling in FCDIIa/b tissues was evident. Decitabine stimulation increased GLUT1, decreased VEGFα expression, restored glucose uptake and ATPase activity in EPI-ECs and reduced mTOR and MCT2 levels in HEK cells. We demonstrated: 1) hypermethylation of glucose regulatory genes distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types, 2) glucose uptake reduction is due to GLUT1 suppression mediated possibly by a GLUT1-mTOR mechanism; and 3) DNA methylation regulates cellular glucose update and metabolism. Together, these studies may lead to GLUT1-mediated biomarkers, glucose metabolism and identify early intervention strategies in FCD.
Collapse
|
5
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
6
|
Maharathi B, Mir F, Hosur K, Loeb JA. INTUITION: a data platform to integrate human epilepsy clinical care and support for discovery. Front Digit Health 2023; 5:1091508. [PMID: 37363274 PMCID: PMC10285513 DOI: 10.3389/fdgth.2023.1091508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
To make appropriate clinical decisions, clinicians consider many types of data from multiple sources to arrive at a diagnosis and plan. However, the current health systems have siloed data, making it challenging to develop information platforms that integrate this process into a single place for comprehensive clinical evaluation and research. INTUITION is a human brain integrative data system that facilitates multimodal data integration, unified storage, cohort selection, and analysis of multidisciplinary datasets. In this article, we describe the use of INTUITION to include electronic health records together with co-registered neuroimaging and EEG from patients who undergo invasive brain surgery for epilepsy. In addition to providing clinically useful visualizations and analytics to help guide surgical planning, INTUITION also links a bank of human brain epileptic tissues from specific brain locations to quantitative EEG, imaging, histology, and omics studies in a unique, completely integrated informatics platform. Having a clinically useful platform for integrating multimodal datasets can not only aid in clinical management decisions but also in creating a unique resource for research and discovery when linked to spatially mapped tissue samples.
Collapse
Affiliation(s)
- Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
- Center for Clinical and Translational Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Fozia Mir
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
| | - Karthik Hosur
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
- Center for Clinical and Translational Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Chong D, Jones NC, Schittenhelm RB, Anderson A, Casillas-Espinosa PM. Multi-omics Integration and Epilepsy: Towards a Better Understanding of Biological Mechanisms. Prog Neurobiol 2023:102480. [PMID: 37286031 DOI: 10.1016/j.pneurobio.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The epilepsies are a group of complex neurological disorders characterised by recurrent seizures. Approximately 30% of patients fail to respond to anti-seizure medications, despite the recent introduction of many new drugs. The molecular processes underlying epilepsy development are not well understood and this knowledge gap impedes efforts to identify effective targets and develop novel therapies against epilepsy. Omics studies allow a comprehensive characterisation of a class of molecules. Omics-based biomarkers have led to clinically validated diagnostic and prognostic tests for personalised oncology, and more recently for non-cancer diseases. We believe that, in epilepsy, the full potential of multi-omics research is yet to be realised and we envisage that this review will serve as a guide to researchers planning to undertake omics-based mechanistic studies.
Collapse
Affiliation(s)
- Debbie Chong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| |
Collapse
|
8
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Oja KT, Ilisson M, Reinson K, Muru K, Reimand T, Peterson H, Fishman D, Esko T, Haller T, Kronberg J, Wojcik MH, Kennedy A, Michelotti G, O’Donnell-Luria A, Õiglane-Šlik E, Pajusalu S, Õunap K. Untargeted metabolomics profiling in pediatric patients and adult populations indicates a connection between lipid imbalance and epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.29.23287640. [PMID: 37034709 PMCID: PMC10081398 DOI: 10.1101/2023.03.29.23287640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Introduction Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.
Collapse
Affiliation(s)
- Kaisa Teele Oja
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mihkel Ilisson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Dmytro Fishman
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Monica H. Wojcik
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Adam Kennedy
- Metabolon, 615 Davis Drive, Suite 100, Morrisville, NC, USA
| | | | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Eve Õiglane-Šlik
- Department of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu
- Children’s Clinic of Tartu University Hospital, Tartu University Hospital
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
10
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
11
|
Wang ZB, Qu J, Yang ZY, Liu DY, Jiang SL, Zhang Y, Yang ZQ, Mao XY, Liu ZQ. Integrated Analysis of Expression Profile and Potential Pathogenic Mechanism of Temporal Lobe Epilepsy With Hippocampal Sclerosis. Front Neurosci 2022; 16:892022. [PMID: 35784838 PMCID: PMC9243442 DOI: 10.3389/fnins.2022.892022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the potential pathogenic mechanism of temporal lobe epilepsy with hippocampal sclerosis (TLE+HS) by analyzing the expression profiles of microRNA/ mRNA/ lncRNA/ DNA methylation in brain tissues. Methods Brain tissues of six patients with TLE+HS and nine of normal temporal or parietal cortices (NTP) of patients undergoing internal decompression for traumatic brain injury (TBI) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60K. The cDNA was labeled and hybridized to the Agilent LncRNA+mRNA Human Gene Expression Microarray V3.0,4 × 180K. For methylation detection, the DNA was labeled and hybridized to the Illumina 450K Infinium Methylation BeadChip. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change >2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. BrainSpan database was used to screen for signatures that were not differentially expressed in normal human hippocampus and cortex (data from BrainSpan), but differentially expressed in TLE+HS’ hippocampus and NTP’ cortex (data from our cohort). The strategy “Guilt by association” was used to predict the prospective roles of each important hub mRNA, miRNA, or lncRNA. Results A significantly negative correlation (r < −0.5) was found between 116 pairs of microRNA/mRNA, differentially expressed in six patients with TLE+HS and nine of NTP. We examined this regulation network’s intersection with target gene prediction results and built a lncRNA-microRNA-Gene regulatory network with structural, and functional significance. Meanwhile, we found that the disorder of FGFR3, hsa-miR-486-5p, and lnc-KCNH5-1 plays a key vital role in developing TLE+HS.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ding-Yang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Zhi-Quan Yang,
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- Xiao-Yuan Mao,
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu,
| |
Collapse
|
12
|
Lai W, Du D, Chen L. Metabolomics Provides Novel Insights into Epilepsy Diagnosis and Treatment: A Review. Neurochem Res 2022; 47:844-859. [PMID: 35067830 DOI: 10.1007/s11064-021-03510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system. The diagnosis of epilepsy mainly depends on electroencephalograms and symptomatology, while diagnostic biofluid markers are still lacking. In addition, approximately 30% of patients with epilepsy (PWE) show a poor response to the currently available anti-seizure medicines. An increasing number of studies have reported alterations in the blood, brain tissue, cerebrospinal fluid and urine metabolome in PWE and animal models of epilepsy. The aim of this review was to identify potential metabolic biomarkers and pathways that might facilitate diagnostic, therapeutic and prognostic determination in PWE and the understanding of the pathogenesis of the disease. The PubMed and Embase databases were searched for metabolomic studies of PWE and epileptic models published before December 2020. The study objectives, types of models and reported differentially altered metabolites were examined and compared. Pathway analyses were performed using MetaboAnalyst 5.0 online software. Thirty-five studies were included in this review. Metabolites such as glutamate, lactate and citrate were disturbed in both PWE and epileptic models, which might be potential biomarkers of epilepsy. Metabolic pathways including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; glycerophospholipid metabolism; glyoxylate and dicarboxylate metabolism; and arginine and proline metabolism were involved in epilepsy. These pathways might play important roles in the pathogenesis of the disease. This review summarizes metabolites and metabolic pathways related to epilepsy and provides a novel perspective for the identification of potential biomarkers and therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, Advanced Mass Spectrometry Centre, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Pulsipher DT, Stanford LD. Serial neuropsychological testing before and after hemispherectomy in a child with electrical status epilepticus in slow wave sleep. Epilepsy Behav Rep 2022; 18:100539. [PMID: 35465472 PMCID: PMC9020129 DOI: 10.1016/j.ebr.2022.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/27/2022] Open
|
14
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
15
|
Josephson CB, Wiebe S. Precision Medicine: Academic dreaming or clinical reality? Epilepsia 2020; 62 Suppl 2:S78-S89. [PMID: 33205406 DOI: 10.1111/epi.16739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Precision medicine can be distilled into a concept of accounting for an individual's unique collection of clinical, physiologic, genetic, and sociodemographic characteristics to provide patient-level predictions of disease course and response to therapy. Abundant evidence now allows us to determine how an average person with epilepsy will respond to specific medical and surgical treatments. This is useful, but not readily applicable to an individual patient. This has brought into sharp focus the desire for a more individualized approach through which we counsel people based on individual characteristics, as opposed to population-level data. We are now accruing data at unprecedented rates, allowing us to convert this ideal into reality. In addition, we have access to growing volumes of administrative and electronic health records data, biometric, imaging, genetics data, microbiome, and other "omics" data, thus paving the way toward phenome-wide association studies and "the epidemiology of one." Despite this, there are many challenges ahead. The collating, integrating, and storing sensitive multimodal data for advanced analytics remains difficult as patient consent and data security issues increase in complexity. Agreement on many aspects of epilepsy remains imperfect, rendering models sensitive to misclassification due to a lack of "ground truth." Even with existing data, advanced analytics models are prone to overfitting and often failure to generalize externally. Finally, uptake by clinicians is often hindered by opaque, "black box" algorithms. Systematic approaches to data collection and model generation, and an emphasis on education to promote uptake and knowledge translation, are required to propel epilepsy-based precision medicine from the realm of the theoretical into routine clinical practice.
Collapse
Affiliation(s)
- Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.,Centre for Health Informatics, University of Calgary, Calgary, AB, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.,Clinical Research Unit, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Donatti A, Canto AM, Godoi AB, da Rosa DC, Lopes-Cendes I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders-Metabolites in Neurological Disorders. Metabolites 2020; 10:E389. [PMID: 33003305 PMCID: PMC7601919 DOI: 10.3390/metabo10100389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
There are, still, limitations to predicting the occurrence and prognosis of neurological disorders. Biomarkers are molecules that can change in different conditions, a feature that makes them potential tools to improve the diagnosis of disease, establish a prognosis, and monitor treatments. Metabolites can be used as biomarkers, and are small molecules derived from the metabolic process found in different biological media, such as tissue samples, cells, or biofluids. They can be identified using various strategies, targeted or untargeted experiments, and by different techniques, such as high-performance liquid chromatography, mass spectrometry, or nuclear magnetic resonance. In this review, we aim to discuss the current knowledge about metabolites as biomarkers for neurological disorders. We will present recent developments that show the need and the feasibility of identifying such biomarkers in different neurological disorders, as well as discuss relevant research findings in the field of metabolomics that are helping to unravel the mechanisms underlying neurological disorders. Although several relevant results have been reported in metabolomic studies in patients with neurological diseases, there is still a long way to go for the clinical use of metabolites as potential biomarkers in these disorders, and more research in the field is needed.
Collapse
Affiliation(s)
- Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Amanda M. Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| |
Collapse
|
17
|
Kirchner A, Bagla S, Dachet F, Loeb JA. DUSP4 appears to be a highly localized endogenous inhibitor of epileptic signaling in human neocortex. Neurobiol Dis 2020; 145:105073. [PMID: 32890776 DOI: 10.1016/j.nbd.2020.105073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We previously identified the Mitogen Activated Protein Kinase (MAPK) pathway as focally upregulated in brain regions with high epileptic activity and showed that inhibition of MAPK signaling reduces epileptic spiking in an animal model. Here we examined how activators and inhibitors of the MAPK pathway are expressed in human epileptic cortex and how these could contribute to the localization of epileptic signaling. METHODS We localized gene and protein expression in human epileptic neocortical tissues based on epileptic activities from 20 patients based on long-term intracranial recordings. Follow-up mechanistic studies by depolarization of human Sh-SY5Y cell line were used to model epileptic activity in the human brain. RESULTS A clustering algorithm of differentially expressed genes identified a unique gene expression cluster distinct from other MAPK genes. Within this cluster was dual specificity phosphatase 4 (DUSP4), a potent MAPK inhibitor. In situ hybridization studies revealed focal patches of DUSP4 mRNA in layer 2/3 brain regions associated with a dramatic reduction in MAPK signaling genes. In vitro depolarization led to the rapid and transient induction of DUSP4 protein, which, in turn, reduced MAPK activity. Activity-dependent induction of DUSP4 protein was transient and required MAPK signaling. Human epileptic brain regions with lower epileptic activity had lower MAPK activity and higher DUSP4 protein levels. DISCUSSION DUSP4 is a highly localized, endogenous feedback inhibitor of pro-epileptogenic MAPK signaling in the human epileptic brain. Increasing DUSP4 expression could therefore be a novel therapeutic approach to prevent the development and spread of epileptic circuits. SIGNIFICANCE STATEMENT Epilepsy is a chronic debilitating disease. Once it develops, epileptic circuits often persist throughout life. Fortunately, in focal forms of epilepsy, these circuits can remain highly localized and are amenable to surgical resections, suggesting that endogenous mechanisms restrict their spread to other brain regions. Using a high-throughput genomic analysis of human epileptic brain regions, we identified DUSP4 as an activity-dependent inhibitor of MAPK signaling expressed in focal patches surrounding human neocortical epileptic brain regions. Our results suggest that DUSP4, through local inhibition of MAPK signaling, acts as an endogenous, spatially segregated safety mechanism to prevent the spread of epileptic activity. Augmenting DUSP4 expression could be a novel disease-modifying approach to prevent or treat human epilepsy.
Collapse
Affiliation(s)
- A Kirchner
- University of Illinois at Chicago, Department of Neurology and Rehabilitation, 912 S Wood Street, Chicago, IL 60612, United States of America
| | - S Bagla
- Wayne State University, Department of Pediatrics, Children's Hospital of Michigan, 3901 Beaubien Blvd., Detroit, MI 48201, United States of America
| | - F Dachet
- University of Illinois at Chicago, Department of Neurology and Rehabilitation, 912 S Wood Street, Chicago, IL 60612, United States of America; University of Illinois at Chicago, University of Illinois Neuro-Repository, 912 S Wood Street, Chicago, IL 60612, United States of America
| | - J A Loeb
- University of Illinois at Chicago, Department of Neurology and Rehabilitation, 912 S Wood Street, Chicago, IL 60612, United States of America; University of Illinois at Chicago, University of Illinois Neuro-Repository, 912 S Wood Street, Chicago, IL 60612, United States of America.
| |
Collapse
|
18
|
Lalwani AM, Yilmaz A, Bisgin H, Ugur Z, Akyol S, Graham SF. The Biochemical Profile of Post-Mortem Brain from People Who Suffered from Epilepsy Reveals Novel Insights into the Etiopathogenesis of the Disease. Metabolites 2020; 10:metabo10060261. [PMID: 32585915 PMCID: PMC7345034 DOI: 10.3390/metabo10060261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Epilepsy not-otherwise-specified (ENOS) is one of the most common causes of chronic disorders impacting human health, with complex multifactorial etiology and clinical presentation. Understanding the metabolic processes associated with the disorder may aid in the discovery of preventive and therapeutic measures. Post-mortem brain samples were harvested from the frontal cortex (BA8/46) of people diagnosed with ENOS cases (n = 15) and age- and sex-matched control subjects (n = 15). We employed a targeted metabolomics approach using a combination of proton nuclear magnetic resonance (1H-NMR) and direct injection/liquid chromatography tandem mass spectrometry (DI/LC-MS/MS). We accurately identified and quantified 72 metabolites using 1H-NMR and 159 using DI/LC-MS/MS. Among the 212 detected metabolites, 14 showed significant concentration changes between ENOS cases and controls (p < 0.05; q < 0.05). Of these, adenosine monophosphate and O-acetylcholine were the most commonly selected metabolites used to develop predictive models capable of discriminating between ENOS and unaffected controls. Metabolomic set enrichment analysis identified ethanol degradation, butyrate metabolism and the mitochondrial beta-oxidation of fatty acids as the top three significantly perturbed metabolic pathways. We report, for the first time, the metabolomic profiling of postmortem brain tissue form patients who died from epilepsy. These findings can potentially expand upon the complex etiopathogenesis and help identify key predictive biomarkers of ENOS.
Collapse
Affiliation(s)
- Ashna M. Lalwani
- Department of Biochemistry and Molecular Biology, Hamilton College, 198 College Hill Rd, Clinton, NY 13323, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Oakland University-William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI 48309, USA
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Halil Bisgin
- Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, 303 E. Kearsley St, Flint, MI 48502, USA;
| | - Zafer Ugur
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Sumeyya Akyol
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Stewart Francis Graham
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Oakland University-William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI 48309, USA
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
- Correspondence: ; Tel.: +1-248-551-2038
| |
Collapse
|
19
|
Kundap UP, Paudel YN, Shaikh MF. Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review. Pharmaceuticals (Basel) 2020; 13:ph13060106. [PMID: 32466498 PMCID: PMC7345684 DOI: 10.3390/ph13060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
| | - Yam Nath Paudel
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-3-551-44-483
| |
Collapse
|
20
|
Peng B, Li J, Li X, Wang X, Zhu H, Liang W, Liang H, Chen W. Neuropsychological Deficits in Patients with Electrical Status Epilepticus During Sleep: A Non-invasive Analysis of Neurovascular Coupling. Brain Topogr 2020; 33:375-383. [PMID: 32128654 DOI: 10.1007/s10548-020-00759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022]
Abstract
To evaluate the effects of electrical status epilepticus during sleep (ESES) on cerebral blood flow (CBF) and explore the associated neuro-vascular coupling and neuropsychological deficits. 19 ESES patients were recruited to undergo real-time transcranial doppler ultrasonography (TCD) and video-EEG monitoring (vEEG). Patients were grouped based on their cognitive functions or their EEG patterns. The mean cerebral blood flow velocity (CBFVm) of the unilateral middle cerebral artery was measured using TCD and was used to calculate various relevant parameters. The 19 patients participated in a total of 54 effective TCD-vEEG monitoring sessions. We found a significant effect of clinical severity for the following measurements: spike wave index (SWI), peak and average deep sleep stage (N3) CBFVm, peak, average and minimum deep sleep and awake CBFVm, and CBFVm oscillations during deep sleep. Nevertheless, CBFVm oscillations were not related to SWI. Furthermore, CBFVm oscillations revealed a statistically significant difference between the near-ESES and asymmetric-ESES groups. CBFVm oscillations may reflect the neuro-vascular coupling process associated with ESES disfunction. Understanding the relationship between CBFVm oscillations and epileptic activity will be important for assessing the neuropsychological damage associated with ESES and for developing treatment options for this and other diseases.
Collapse
Affiliation(s)
- Bingwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China.
| | - Jialing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Xiuying Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Wei Liang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Huici Liang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Wenxiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| |
Collapse
|
21
|
Diagnostica per immagini funzionale nell’epilessia. Neurologia 2020. [DOI: 10.1016/s1634-7072(20)43296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Abstract
Candidates for epilepsy surgery must undergo presurgical evaluation to establish whether and how surgical treatment can stop seizures without causing neurological deficits. Various techniques, including MRI, PET, single-photon emission CT, video-EEG, magnetoencephalography and invasive EEG, aim to identify the diseased brain tissue and the involved network. Recent technical and methodological developments, encompassing both advances in existing techniques and new combinations of technologies, are enhancing the ability to define the optimal resection strategy. Multimodal interpretation and predictive computer models are expected to aid surgical planning and patient counselling, and multimodal intraoperative guidance is likely to increase surgical precision. In this Review, we discuss how the knowledge derived from these new approaches is challenging our way of thinking about surgery to stop focal seizures. In particular, we highlight the importance of looking beyond the EEG seizure onset zone and considering focal epilepsy as a brain network disease in which long-range connections need to be taken into account. We also explore how new diagnostic techniques are revealing essential information in the brain that was previously hidden from view.
Collapse
|
23
|
Kirchner A, Dachet F, Loeb JA. Identifying targets for preventing epilepsy using systems biology of the human brain. Neuropharmacology 2019; 168:107757. [PMID: 31493467 DOI: 10.1016/j.neuropharm.2019.107757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
Approximately one third of all epilepsy patients are resistant to current therapeutic treatments. Some patients with focal forms of epilepsy benefit from invasive surgical approaches that can lead to large surgical resections of human epileptic neocortex. We have developed a systems biology approach to take full advantage of these resections and the brain tissues they generate as a means to understand underlying mechanisms of neocortical epilepsy and to identify novel biomarkers and therapeutic targets. In this review, we will describe our unique approach that has led to the development of a 'NeuroRepository' of electrically-mapped epileptic tissues and associated data. This 'Big Data' approach links quantitative measures of ictal and interictal activities corresponding to a specific intracranial electrode to clinical, imaging, histological, genomic, proteomic, and metabolomic measures. This highly characterized data and tissue bank has given us an extraordinary opportunity to explore the underlying electrical, cellular, and molecular mechanisms of the human epileptic brain. We describe specific examples of how an experimental design that compares multiple cortical regions with different electrical activities has led to discoveries of layer-specific pathways and how these can be 'reverse translated' from animal models back to humans in the form of new biomarkers and therapeutic targets. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Allison Kirchner
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fabien Dachet
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Neuro Repository, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Neuro Repository, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Carvill GL, Dulla CG, Lowenstein DH, Brooks-Kayal AR. The path from scientific discovery to cures for epilepsy. Neuropharmacology 2019; 167:107702. [PMID: 31301334 DOI: 10.1016/j.neuropharm.2019.107702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Dan H Lowenstein
- Department of Neurology, University of California, San Francisco, CA, 94941, USA
| | - Amy R Brooks-Kayal
- Department of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| |
Collapse
|
25
|
Tatum WO, Quinones-Hinojosa A. Onco-Epilepsy: More Than Tumor and Seizures. Mayo Clin Proc 2018; 93:1181-1184. [PMID: 30104043 DOI: 10.1016/j.mayocp.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022]
|
26
|
De la Torre AJ, Luat AF, Juhász C, Ho ML, Argersinger DP, Cavuoto KM, Enriquez-Algeciras M, Tikkanen S, North P, Burkhart CN, Chugani HT, Ball KL, Pinto AL, Loeb JA. A Multidisciplinary Consensus for Clinical Care and Research Needs for Sturge-Weber Syndrome. Pediatr Neurol 2018; 84:11-20. [PMID: 29803545 PMCID: PMC6317878 DOI: 10.1016/j.pediatrneurol.2018.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sturge-Weber syndrome is a neurocutaneous disorder associated with port-wine birthmark, leptomeningeal capillary malformations, and glaucoma. It is associated with an unpredictable clinical course. Because of its rarity and complexity, many physicians are unaware of the disease and its complications. A major focus moving ahead will be to turn knowledge gaps and unmet needs into new research directions. METHODS On October 1-3, 2017, the Sturge-Weber Foundation assembled clinicians from the Clinical Care Network with patients from the Patient Engagement Network of the Sturge-Weber Foundation to identify our current state of knowledge, knowledge gaps, and unmet needs. RESULTS One clear unmet need is a need for consensus guidelines on care and surveillance. It was strongly recommended that patients be followed by multidisciplinary clinical teams with life-long follow-up for children and adults to monitor disease progression in the skin, eye, and brain. Standardized neuroimaging modalities at specified time points are needed together with a stronger clinicopathologic understanding. Uniform tissue banking and clinical data acquisition strategies are needed with cross-center, longitudinal studies that will set the stage for new clinical trials. A better understanding of the pathogenic roles of cerebral calcifications and stroke-like symptoms is a clear unmet need with potentially devastating consequences. CONCLUSIONS Biomarkers capable of predicting disease progression will be needed to advance new therapeutic strategies. Importantly, how to deal with the emotional and psychological effects of Sturge-Weber syndrome and its impact on quality of life is a clear unmet need.
Collapse
Affiliation(s)
- Alejandro J De la Torre
- Department of Neurology, Northwestern University, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Aimee F Luat
- Department of Pediatrics and Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, Michigan
| | - Csaba Juhász
- Department of Pediatrics and Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, Michigan
| | - Mai Lan Ho
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Davis P Argersinger
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Kara M Cavuoto
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | - Paula North
- Department of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Craig N Burkhart
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Harry T Chugani
- Department of Neurology, Nemours DuPont Hospital for Children, Wilmington, Delaware
| | | | - Anna Lecticia Pinto
- Department of Neurology, Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, Illinois.
| |
Collapse
|
27
|
Keren-Aviram G, Dachet F, Bagla S, Balan K, Loeb JA, Dratz EA. Proteomic analysis of human epileptic neocortex predicts vascular and glial changes in epileptic regions. PLoS One 2018; 13:e0195639. [PMID: 29634780 PMCID: PMC5892923 DOI: 10.1371/journal.pone.0195639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a common neurological disorder, which is not well understood at the molecular level. Exactly why some brain regions produce epileptic discharges and others do not is not known. Patients who fail to respond to antiseizure medication (refractory epilepsy) can benefit from surgical removal of brain regions to reduce seizure frequency. The tissue removed in these surgeries offers an invaluable resource to uncover the molecular and cellular basis of human epilepsy. Here, we report a proteomic study to determine whether there are common proteomic patterns in human brain regions that produce epileptic discharges. We analyzed human brain samples, as part of the Systems Biology of Epilepsy Project (SBEP). These brain pieces are in vivo electrophysiologically characterized human brain samples withdrawn from the neocortex of six patients with refractory epilepsy. This study is unique in that for each of these six patients the comparison of protein expression was made within the same patient: a more epileptic region was compared to a less epileptic brain region. The amount of epileptic activity was defined for each patient as the frequency of their interictal spikes (electric activity between seizures that is a parameter strongly linked to epilepsy). Proteins were resolved from three subcellular fractions, using a 2D differential gel electrophoresis (2D-DIGE), revealing 31 identified protein spots that changed significantly. Interestingly, glial fibrillary acidic protein (GFAP) was found to be consistently down regulated in high spiking brain tissue and showed a strong negative correlation with spike frequency. We also developed a two-step analysis method to select for protein species that changed frequently among the patients and identified these proteins. A total of 397 protein spots of interest (SOI) were clustered by protein expression patterns across all samples. These clusters were used as markers and this analysis predicted proteomic changes due to both histological differences and molecular pathways, revealed by examination of gene ontology clusters. Our experimental design and proteomic data analysis predicts novel glial changes, increased angiogenesis, and changes in cytoskeleton and neuronal projections between high and low interictal spiking regions. Quantitative histological staining of these same tissues for both the vascular and glial changes confirmed these findings, which provide new insights into the structural and functional basis of neocortical epilepsy.
Collapse
Affiliation(s)
- Gal Keren-Aviram
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Fabien Dachet
- The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shruti Bagla
- The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Karina Balan
- The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jeffrey A. Loeb
- The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Edward A. Dratz
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
28
|
Gleichgerrcht E, Bonilha L. Structural brain network architecture and personalized medicine in epilepsy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1364133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|