1
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
2
|
Xiao X, Zheng H, Xiong M, Chen X, Jiang L, Hu Y. Genotypic and phenotypic characteristics of ADGRV1 mutations in four children and functional validation in a zebrafish model. Gene 2025; 942:149246. [PMID: 39826705 DOI: 10.1016/j.gene.2025.149246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Mutations in ADGRV1 can cause seizures, but the mechanism remains unclear. The zebrafish model can be used to assess the functions of human ADGRV1 and its variant alleles during embryonic development. In this study, we summarized the phenotypic and genotypic characteristics of four children with ADGRV1 variation and based on this, we validated the ADGRV1 loss phenotype in an adgrv1-knockout zebrafish model. We retrospectively analyzed the clinical and genotypic characteristics of four pediatric patients diagnosed as having ADGRV1 mutations at Children's Hospital Affiliated to Chongqing Medical University from April 2019 to February 2022. Moreover, we used the adgrv1-knockout zebrafish larvae model and performed morphological, behavioral, and neuroelectrophysiological testing. We found that of the four included children, two had epilepsy, one had paroxysmal kinesigenic dyskinesia, and one had febrile seizure plus. Three children had a history of febrile seizures, whereas two had a family history of febrile seizures. Three children had well-controlled clinical epilepsy seizures or motor disorders. Finally, one child with spontaneous mutation had epigenetic abnormalities and comprehensive developmental delay, one had language developmental delay, and two (paternal or maternal) had a good prognosis. Regarding the zebrafish model, the cas9-control and adgrv1-edited groups demonstrated significant differences in the interocular areas of the zebrafish observed in the open field and the maximum swimming velocity under light stimulus. In neuroelectrophysiological testing, epilepsy-related signals were observed in 2 of 26 adgrv1-edited group fish. We believe that, mutations in the ADGRV1 may lead to epileptic seizures and movement disorders. The patients usually have a history of febrile seizures or a family history. Through research using the zebrafish model, it has been found that ADGRV1 mutations can affect the expression of eye and the neuromotor development of zebrafish larvae. This might be one of the reasons for epileptic seizures caused by ADGRV1 gene mutations.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Hao Zheng
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Miao Xiong
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Xiaoqi Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Yue Hu
- Department of Neurology Children's Hospital of Chongqing Medical University, China; National Clinical Research Center for Child Health and Disorders, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China.
| |
Collapse
|
3
|
Linnert J, Kusuluri DK, Güler BE, Patnaik SR, May-Simera HL, Wolfrum U. The BBS/CCT chaperonin complex ensures the localization of the adhesion G protein-coupled receptor ADGRV1 to the base of primary cilia. Front Cell Dev Biol 2025; 13:1520723. [PMID: 40103630 PMCID: PMC11913874 DOI: 10.3389/fcell.2025.1520723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Primary cilia are antenna-like sensory organelles present on almost all eukaryotic cells. Their sensory capacity relies on receptors, in particular G-protein-coupled receptors (GPCRs) which localize to the ciliary membrane. Here we show that ADGRV1, a member of the GPCR subfamily of adhesion GPCRs, is part of a large protein network, interacting with numerous proteins of a comprehensive ciliary proteome. ADGRV1 is localized to the base of prototypic primary cilia in cultured cells and the modified primary cilia of retinal photoreceptors, where it interacts with TRiC/CCT chaperonins and the Bardet Biedl syndrome (BBS) chaperonin-like proteins. Knockdown of ADGRV1, CCT2 and 3, and BBS6 result in common ciliogenesis phenotypes, namely reduced ciliated cells combined with shorter primary cilia. In addition, the localization of ADGRV1 to primary cilia depends on the activity of a co-complex of TRiC/CCT chaperonins and the BBS chaperonin-like proteins. In the absence of components of the TRiC/CCT-BBS chaperonin co-complex, ADGRV1 is depleted from the base of the primary cilium and degraded via the proteasome. Defects in the TRiC/CCT-BBS chaperonin may lead to an overload of proteasomal degradation processes and imbalanced proteostasis. Dysfunction or absence of ADGRV1 from primary cilia may underly the pathophysiology of human Usher syndrome type 2 and epilepsy caused by mutations in ADGRV1.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sarita Rani Patnaik
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Singh M, Panda SP. Investigating the Therapeutic Property of Galium verum L. (GV) for MSG induced Audiogenic Epilepsy (AEs) and Neuroprotection through In-Silico and In-Vitro Analysis. Cent Nerv Syst Agents Med Chem 2025; 25:181-209. [PMID: 39253919 DOI: 10.2174/0118715249330123240822063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Audiogenic Epilepsy (AEs) is a subtype of epileptic seizure that is generally caused by high-intensity sounds. A large number of traditional medicines has been explored in this lieu where our study chased Galium verum L. (Rubiaceae), an herbal plant which is commonly known as Lady's Bedstraw, that contains a highly rich chemical composition including flavonoids (Hispidulin, Quercetin, and Kaempferol), and phenolic acids (chlorogenic acid, caftaric acid, and gallic acid). G verum is well known for its antioxidant, neuroprotective, and anti-inflammatory properties. Recently, the unique role of Adhesion G Protein- Coupled Receptor V1 (ADGRV1) protein in the progression of audiogenic epilepsy has been explored. AIMS AND OBJECTIVES This study aimed to examine the potent phytoconstituents of the hydroalcoholic extract of G. verum L. (HEGV) using analytical techniques. Additionally, our study sought to evaluate the antioxidant, neuroprotective, anti-inflammatory properties, and antiepileptic potency of HEGV by targeting ADGRV1 via in silico and in vitro analyses using SHSY5Y cells. METHODS HPLC and LC-MS techniques were employed to identify the flavonoids, iridoids, and phenolic acid derivatives present in HEGV. DPPH (2,2-diphenyl-1-picrylhydrazyl), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays were performed to confirm the antioxidant potential of the extract. Additionally, in silico molecular docking and molecular dynamic studies were performed using AutoDock Vina software to analyze the possible interactions between crucial phytoconstituents of HEGV and ADGRV1, followed by cell line analysis. In the in vitro analysis, antioxidant, neuroprotective, and anti-inflammatory properties were assessed via cell viability assay, IL, GABA, and glutamate estimation. RESULTS LC-MS and HPLC analyses revealed high concentrations of hispidulin, a major flavonoid found in HEGV. HEGV exhibited moderate-to-high free radical-scavenging activities comparable to those of ascorbic acid. Docking analysis demonstrated that hispidulin has a stronger binding affinity with ADGRV1 (Vina score = -8.6 kcal/mol) than other compounds. Furthermore, cell line analysis revealed that the MSG exacerbates the neurodegeneration and neuroinflammation, whereas, HEGV and Hispidulin both possess neuroprotective, antioxidant, and antiepileptic activities. CONCLUSION HEGV and Hispidulin proved to be promising candidates for treating audiogenic epilepsy by modulating ADGRV1.
Collapse
Affiliation(s)
- Mansi Singh
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| |
Collapse
|
5
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Öz-Arslan D, Durer ZA, Kan B. G protein-coupled receptor-mediated autophagy in health and disease. Br J Pharmacol 2024. [PMID: 38501194 DOI: 10.1111/bph.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles and in recycling cellular components. Deficiencies in autophagy are involved in a variety of pathological conditions. Both GPCRs and autophagy are essential in preserving homeostasis and cell survival. There is emerging evidence suggesting that GPCRs are direct regulators of autophagy. Additionally, autophagic machinery is involved in the regulation of GPCR signalling. The interplay between GPCR and autophagic signalling mechanisms significantly impacts on health and disease; however, there is still an incomplete understanding of the underlying mechanisms and therapeutic implications in different tissues and disease contexts. This review aims to discuss the interactions between GPCR and autophagy signalling. Studies on muscarinic receptors, beta-adrenoceptors, taste receptors, purinergic receptors and adhesion GPCRs are summarized, in relation to autophagy.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
- Department of Biochemistry, Acibadem MAA University, School of Pharmacy, Istanbul, Turkey
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Wang X, Xiong Z, Hong W, Liao X, Yang G, Jiang Z, Jing L, Huang S, Fu Z, Zhu F. Identification of cuproptosis-related gene clusters and immune cell infiltration in major burns based on machine learning models and experimental validation. Front Immunol 2024; 15:1335675. [PMID: 38410514 PMCID: PMC10894925 DOI: 10.3389/fimmu.2024.1335675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Burns are a global public health problem. Major burns can stimulate the body to enter a stress state, thereby increasing the risk of infection and adversely affecting the patient's prognosis. Recently, it has been discovered that cuproptosis, a form of cell death, is associated with various diseases. Our research aims to explore the molecular clusters associated with cuproptosis in major burns and construct predictive models. Methods We analyzed the expression and immune infiltration characteristics of cuproptosis-related factors in major burn based on the GSE37069 dataset. Using 553 samples from major burn patients, we explored the molecular clusters based on cuproptosis-related genes and their associated immune cell infiltrates. The WGCNA was utilized to identify cluster-specific genes. Subsequently, the performance of different machine learning models was compared to select the optimal model. The effectiveness of the predictive model was validated using Nomogram, calibration curves, decision curves, and an external dataset. Finally, five core genes related to cuproptosis and major burn have been was validated using RT-qPCR. Results In both major burn and normal samples, we determined the cuproptosis-related genes associated with major burns through WGCNA analysis. Through immune infiltrate profiling analysis, we found significant immune differences between different clusters. When K=2, the clustering number is the most stable. GSVA analysis shows that specific genes in cluster 2 are closely associated with various functions. After identifying the cross-core genes, machine learning models indicate that generalized linear models have better accuracy. Ultimately, a generalized linear model for five highly correlated genes was constructed, and validation with an external dataset showed an AUC of 0.982. The accuracy of the model was further verified through calibration curves, decision curves, and modal graphs. Further analysis of clinical relevance revealed that these correlated genes were closely related to time of injury. Conclusion This study has revealed the intricate relationship between cuproptosis and major burns. Research has identified 15 cuproptosis-related genes that are associated with major burn. Through a machine learning model, five core genes related to cuproptosis and major burn have been selected and validated.
Collapse
Affiliation(s)
- Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenfang Xiong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wangbing Hong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xincheng Liao
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guangping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengying Jiang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lanxin Jing
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghua Fu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Linnert J, Güler BE, Krzysko J, Wolfrum U. The adhesion G protein-coupled receptor VLGR1/ADGRV1 controls autophagy. Basic Clin Pharmacol Toxicol 2023; 133:313-330. [PMID: 37002809 DOI: 10.1111/bcpt.13869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
VLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest known adhesion G protein-coupled receptor. Mutations in VLGR1/ADGRV1 cause Usher syndrome (USH), the most common form of hereditary deaf-blindness, and have been additionally linked to epilepsy. Although VLGR1/ADGRV1 is almost ubiquitously expressed, little is known about the subcellular function and signalling of the VLGR1 protein and thus about mechanisms underlying the development of diseases. Using affinity proteomics, we identified key components of autophagosomes as putative interacting proteins of VLGR1. In addition, whole transcriptome sequencing of the retinae of the Vlgr1/del7TM mouse model revealed altered expression profiles of gene-related autophagy. Monitoring autophagy by immunoblotting and immunocytochemistry of the LC3 and p62 as autophagy marker proteins revealed evoked autophagy in VLGR1-deficient hTERT-RPE1 cells and USH2C patient-derived fibroblasts. Our data demonstrate the molecular and functional interaction of VLGR1 with key components of the autophagy process and point to an essential role of VLGR1 in the regulation of autophagy at internal membranes. The close association of VLGR1 with autophagy helps to explain the pathomechanisms underlying human USH and epilepsy related to VLGR1 defects.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
11
|
Leng X, Zhang T, Guan Y, Tang M. Genotype and phenotype analysis of epilepsy caused by ADGRV1 mutations in Chinese children. Seizure 2022; 103:108-114. [DOI: 10.1016/j.seizure.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
12
|
Sreepada A, Tiwari M, Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med (Berl) 2022; 100:1355-1372. [PMID: 35969283 DOI: 10.1007/s00109-022-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell-matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Mansi Tiwari
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Kasturi Pal
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| |
Collapse
|
13
|
Zhou P, Meng H, Liang X, Lei X, Zhang J, Bian W, He N, Lin Z, Song X, Zhu W, Hu B, Li B, Yan L, Tang B, Su T, Liu H, Mao Y, Zhai Q, Yi Y. ADGRV1 Variants in Febrile Seizures/Epilepsy With Antecedent Febrile Seizures and Their Associations With Audio-Visual Abnormalities. Front Mol Neurosci 2022; 15:864074. [PMID: 35813073 PMCID: PMC9262510 DOI: 10.3389/fnmol.2022.864074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objective ADGRV1 gene encodes adhesion G protein-coupled receptor-V1 that is involved in synaptic function. ADGRV1 mutations are associated with audio-visual disorders. Although previous experimental studies suggested that ADGRV1 variants were associated with epilepsy, clinical evidence is limited and the phenotype spectrum is to be defined. Methods Trio-based targeting sequencing was performed in a cohort of 101 cases with febrile seizure (FS) and epilepsy with antecedent FS. Protein modeling was used to assess the damaging effects of variants. The genotype-phenotype correlations of the ADGRV1 variants in epilepsy and audio-visual disorders were analyzed. Results ADGRV1 variants were identified in nine unrelated cases (8.91%), including two heterozygous frameshift variants, six heterozygous missense variants, and a pair of compound heterozygous variants. These variants presented a statistically higher frequency in this cohort than that in control populations. Most missense variants were located at CalX-β motifs and changed the hydrogen bonds. These variants were inherited from the asymptomatic parents, indicating an incomplete penetrance. We also identified SCN1A variants in 25 unrelated cases (24.75%) and SCN9A variants in 3 unrelated cases (2.97%) in this cohort. Contrary to SCN1A variant-associated epilepsy that revealed seizure was aggravated by sodium channel blockers, ADGRV1 variants were associated with mild epilepsy with favorable responses to antiepileptic drugs. The patients denied problems with audio-visual-vestibular abilities in daily life. However, audio-visual tests revealed auditory and visual impairment in the patient with compound heterozygous variants, auditory or vestibular impairment in the patients with heterozygous frameshift, or hydrogen-bond changed missense variants but no abnormalities in the patients with missense variants without hydrogen-bond changes. Previously reported ADGRV1 variants that were associated with audio-visual disorders were mostly biallelic/destructive variants, which were significantly more frequent in the severe phenotype of audio-visual disorders (Usher syndrome 2) than in other mild phenotypes. In contrast, the variants identified in epilepsy were monoallelic, missense mainly located at CalX-β, or affected isoforms VLGR1b/1c. Significance ADGRV1 is potentially associated with FS-related epilepsy as a susceptibility gene. The genotype, submolecular implication, isoforms, and damaging severity of the variants explained the phenotypical variations. ADGRV1 variant-associated FS/epilepsy presented favorable responses to antiepileptic drugs, implying a clinical significance.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Xiaoyu Liang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Lei
- Department of Neurology, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jingwen Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjun Bian
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhijian Lin
- Department of Neurology, Affiliated Hospital of Putian University, Putian, China
| | - Xingwang Song
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Hu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingmei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bin Tang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | | | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiongxiang Zhai
| | - Yonghong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Yonghong Yi
| |
Collapse
|
14
|
Knapp B, Roedig J, Roedig H, Krzysko J, Horn N, Güler BE, Kusuluri DK, Yildirim A, Boldt K, Ueffing M, Liebscher I, Wolfrum U. Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103108. [PMID: 35630584 PMCID: PMC9146371 DOI: 10.3390/molecules27103108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jens Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Heiko Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jacek Krzysko
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Nicola Horn
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Baran E. Güler
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Adem Yildirim
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Karsten Boldt
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Marius Ueffing
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Uwe Wolfrum
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
- Correspondence:
| |
Collapse
|
15
|
Zhang C, Li Z, Zhang Y, Zhao C, Wang H, Lin J, Liu C, Wang X, Wang H. Genomic Variations and Immune-Related Features of TMB, PD-L1 Expression and CD8+ T Cell Infiltration in Chinese Pulmonary Sarcomatoid Carcinoma. Int J Gen Med 2022; 15:4209-4220. [PMID: 35480996 PMCID: PMC9035462 DOI: 10.2147/ijgm.s357659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary sarcomatoid carcinoma (PSC) is a rare and distinct subtype of lung cancer characterized by its aggressiveness and dismal prognosis. However, genomic landscape and immune contexture have not been fully elucidated among PSC patients. Methods In the present study, whole-exome-sequencing (WES) analyses were performed to depict genomic landscape of 38 independent PSC samples. Tumor mutation burden (TMB) was calculated with the total number of non-synonymous SNVs and indel variants per megabase of coding regions. PD-L1 expression and CD8+ T cell density were evaluated by immunohistochemistry in PSC samples. Their associations with genomic mutation were further assessed in genes with most frequent mutation. Overall survival (OS) of PSC patients with top mutated genes and high and low TMB, PD-L1 and CD8+ TIL expressions were further compared. Subgroup analyses of OS stratified by morphology and pathological type were conducted. Their correlation with TMB, PD-L1 and CD8+ T cell were further assessed. Results We identified a cohort of genomic and somatic mutation in PSC patients. Subgroup patients with distinct clinicopathological features were found to harbor different genomic mutations and immunologic features. Besides, genomic profiles influenced outcomes, with SARS mutation associated with worsened prognosis. Conclusion Through the mapping of genetic and immunologic landscape, we find the heterogeneity among the subgroups of PSC. Our findings may provide opportunities for therapeutic susceptibility among Chinese PSC patients.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, 200032, People’s Republic of China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yanxiang Zhang
- Berry Oncology Corporation, Beijing, 102206, People’s Republic of China
| | - Chenglong Zhao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250013, People’s Republic of China
| | - Hui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jiamao Lin
- Department of Traditional Chinese Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Cuicui Liu
- Department of Oncology, Linyi People’s Hospital, Linyi, 276000, People’s Republic of China
| | - Xiaohui Wang
- Research Service Office, Shandong Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
- Correspondence: Haiyong Wang, Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China, Tel +86 0531 67626332, Fax +86 0531 67626332, Email
| |
Collapse
|
16
|
Güler BE, Krzysko J, Wolfrum U. Isolation and culturing of primary mouse astrocytes for the analysis of focal adhesion dynamics. STAR Protoc 2021; 2:100954. [PMID: 34917973 PMCID: PMC8669101 DOI: 10.1016/j.xpro.2021.100954] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary astrocytes have gained attention as an important model for in vitro biological and biochemical research in the last decades. In this protocol, we describe a fast and cost-effective technique for isolating, culturing, and maintaining primary mouse astrocytes at ∼ 80% purity levels, which can be used in in vitro studies for migration and focal adhesion dynamics. In addition, we present an optimized transfection and manual quantification approach for focal adhesion analysis in fixed and living cells. For complete details on the use and execution of this protocol, please refer to Kusuluri et al. (2021). High purity of primary mouse astrocyte isolation without commercial kits Isolated mouse primary astrocytes are functional for downstream applications Quantitative analysis of focal adhesion properties in fixed and living astrocytes
Collapse
Affiliation(s)
- Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
17
|
Dahawi M, Elmagzoub MS, A. Ahmed E, Baldassari S, Achaz G, Elmugadam FA, Abdelgadir WA, Baulac S, Buratti J, Abdalla O, Gamil S, Alzubeir M, Abubaker R, Noé E, Elsayed L, Ahmed AE, Leguern E. Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy. Front Neurol 2021; 12:738272. [PMID: 34744978 PMCID: PMC8567843 DOI: 10.3389/fneur.2021.738272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed S. Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Elhami A. Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- SMILE Group, CIRB, Collège de France, CNRS, INSERM, Paris, France
- Éco-anthropologie, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | | | - Wasma A. Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Julien Buratti
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| | - Omer Abdalla
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sahar Gamil
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Alzubeir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Rayan Abubaker
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, Paris, France
| | - Liena Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar E. Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Feng XL, Luo BA, Qin LL. Researching on the compliance of epilepsy patients of the Phenobarbital Epilepsy Management Project in a rural area of China: A retrospective study. Medicine (Baltimore) 2021; 100:e27172. [PMID: 34516512 PMCID: PMC8428702 DOI: 10.1097/md.0000000000027172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/11/2021] [Accepted: 08/15/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The aim of this study was to explore the compliance of epilepsy patients in the Phenobarbital Epilepsy Management Project in a rural area of China and its influencing factors, so as to provide the basis for further strategies.A retrospective study researching on the compliance of epilepsy patients in the Phenobarbital Epilepsy Management Project of Rural China was conducted. The Nan County, Hunan Province as a typical rural China was selected as the study site. We collected the compliance and other relative factors from 2017 to 2019 though the Phenobarbital Epilepsy Management Project data system.The good compliance patients in the Phenobarbital Epilepsy Management Project in a rural area of China were 98.99% (393/397); only 4 cases had poor compliance. The factors affecting the compliance of epilepsy patients were "adverse reactions of digestive tract symptoms," "how the patient felt physically, mentally, or working and learning ability during this period," and "the ratio of the attack to the previous one."The rate of good compliance among the epilepsy patients in the Phenobarbital Epilepsy Management Project in a rural area of China was high. More attention to education, patients' psychology, and the curative effect of family members may improve the compliance of patients with epilepsy further.
Collapse
Affiliation(s)
- Xiang-Lin Feng
- Department of Social Medicine and Health Management, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bang-An Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Department of Mental Health, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Lu-Lu Qin
- Department of Social Medicine and Health Management, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
20
|
Liu Z, Ye X, Zhang J, Wu B, Dong S, Gao P. Biallelic ADGRV1 variants are associated with Rolandic epilepsy. Neurol Sci 2021; 43:1365-1374. [PMID: 34160719 DOI: 10.1007/s10072-021-05403-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Rolandic epilepsy (RE) is among the most common focal epilepsies in childhood. For the majority of patients with RE and atypical RE (ARE), the etiology remains elusive. We thus screened patients with RE/ARE in order to detect disease-causing variants.. METHODS A trios-based whole-exome sequencing approach was performed in a cohort of 28 patients with RE/ARE. Clinical data and EEGs were reviewed. Variants were validated by Sanger sequencing. RESULTS Two compound heterozygous missense variants p.Val272Ile/p.Asn3028Ser and p.Ala3657Val/p.Met4419Val of ADGRV1 were identified in two unrelated familial cases of RE/ARE. All the variants were in the calcium exchanger β domain and were suggested to be damaging by at least one web-based prediction tool. These variants are not present or are present at a very low minor allele frequency in the gnomAD database. Previously, biallelic ADGRV1 variants (p.Gly2756Arg and p.Glu4410Lys) have been observed in RE, consistent with the observation in this study and supporting the association between ADGRV1 variants and RE. Additionally, a de novo mutation, p.Asp668Asn, in GRIN2B was identified in a sporadic case of ARE, and a missense variant, p.Asn1551Ser, in RyR2 was identified in a family with RE with incomplete penetrance. These genes are all calcium homeostasis associated genes, suggesting the potential effect of calcium homeostasis in RE/ARE. CONCLUSIONS The results from the present study suggest that the genes ADGRV1, GRIN2B, and RyR2 are associated with RE/ARE. These data link defects in neuronal intracellular calcium homeostasis to RE/ARE pathogenesis implicating that these defects plays an important role in the development of these conditions.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xingguang Ye
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China
| | - Jieyan Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China
| | - Benze Wu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China
| | - Shiwei Dong
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China
| | - Pingming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road 11, Foshan, 528000, Guangdong, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
22
|
Raviglione F, Douzgou S, Scala M, Mingarelli A, D'Arrigo S, Freri E, Darra F, Giglio S, Bonaglia MC, Pantaleoni C, Mastrangelo M, Epifanio R, Elia M, Saletti V, Morlino S, Vari MS, De Liso P, Pavaine J, Spaccini L, Cattaneo E, Gardella E, Møller RS, Marchese F, Colonna C, Gandioli C, Gobbi G, Ram D, Palumbo O, Carella M, Germano M, Tonduti D, De Angelis D, Caputo D, Bergonzini P, Novara F, Zuffardi O, Verrotti A, Orsini A, Bonuccelli A, De Muto MC, Trivisano M, Vigevano F, Granata T, Bernardina BD, Tranchina A, Striano P. Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study. Seizure 2021; 88:60-72. [PMID: 33831796 DOI: 10.1016/j.seizure.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.
Collapse
Affiliation(s)
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Member of ERN-ITHACA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria C Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Mastrangelo
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Maria Stella Vari
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola De Liso
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Julija Pavaine
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Luigina Spaccini
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elena Gardella
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Francesca Marchese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Clara Colonna
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Claudia Gandioli
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Giuseppe Gobbi
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Michele Germano
- Maternal and Pediatric Department, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo (FG) 71013, Italy
| | - Davide Tonduti
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Diego De Angelis
- Pediatric Department, "Sapienza" University of Rome, Rome 00185, Italy
| | - Davide Caputo
- Department of Health Sciences, Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, University of Medicine, Milan, Italy; Member of ERN EpiCARE
| | | | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Orsini
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | | | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Antonia Tranchina
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
23
|
Kusuluri DK, Güler BE, Knapp B, Horn N, Boldt K, Ueffing M, Aust G, Wolfrum U. Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions. iScience 2021; 24:102283. [PMID: 33851099 PMCID: PMC8024656 DOI: 10.1016/j.isci.2021.102283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
VLGR1 (very large G protein-coupled receptor-1) is by far the largest adhesion G protein-coupled receptor in humans. Homozygous pathologic variants of VLGR1 cause hereditary deaf blindness in Usher syndrome 2C and haploinsufficiency of VLGR1 is associated with epilepsy. However, its molecular function remains elusive. Herein, we used affinity proteomics to identify many components of focal adhesions (FAs) in the VLGR1 interactome. VLGR1 is localized in FAs and assembles in FA protein complexes in situ. Depletion or loss of VLGR1 decreases the number and length of FAs in hTERT-RPE1 cells and in astrocytes of Vlgr1 mutant mice. VLGR1 depletion reduces cell spread and migration kinetics as well as the response to mechanical stretch characterizing VLGR1 as a metabotropic mechanosensor in FAs. Our data reveal a critical role of VLGR1 in the FA function and enlighten potential pathomechanisms in diseases related to VLGR1. VLGR1 is an integral part of focal adhesions and crucial for their assembly Absence of VLGR1 from focal adhesions alters cell spreading and cell migration VLGR1 is a metabotropic mechanosensor in focal adhesions
Collapse
Affiliation(s)
- Deva K Kusuluri
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| | - Nicola Horn
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Gabriela Aust
- Clinic of Visceral, Transplantation, Thoracic and Vascular Surgery & Clinic of Orthopedics, Traumatology and Plastic Surgery, Department of Surgery Research Laboratory, Leipzig University, 04301 Leipzig, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55099 Mainz, Germany
| |
Collapse
|
24
|
Schneider AL, Myers CT, Muir AM, Calvert S, Basinger A, Perry MS, Rodan L, Helbig KL, Chambers C, Gorman KM, King MD, Donkervoort S, Soldatos A, Bönnemann CG, Spataro N, Gabau E, Arellano M, Cappuccio G, Brunetti-Pierri N, Rossignol E, Hamdan FF, Michaud JL, Balak C, Mefford HC, Scheffer IE. FBXO28 causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia 2020; 62:e13-e21. [PMID: 33280099 DOI: 10.1111/epi.16784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Chromosome 1q41-q42 deletion syndrome is a rare cause of intellectual disability, seizures, dysmorphology, and multiple anomalies. Two genes in the 1q41-q42 microdeletion, WDR26 and FBXO28, have been implicated in monogenic disease. Patients with WDR26 encephalopathy overlap clinically with those with 1q41-q42 deletion syndrome, whereas only one patient with FBXO28 encephalopathy has been described. Seizures are a prominent feature of 1q41-q42 deletion syndrome; therefore, we hypothesized that pathogenic FBXO28 variants cause developmental and epileptic encephalopathies (DEEs). We describe nine new patients with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and analyze all 10 known cases to delineate the phenotypic spectrum. All patients had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features, albeit different to those typically seen in 1q41-q42 deletion syndrome and WDR26 encephalopathy. We distinguish FBXO28 encephalopathy from both of these disorders with more severe intellectual impairment, drug-resistant epilepsy, and hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Candace T Myers
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Alison M Muir
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Sophie Calvert
- Department of Neurology, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | | | - M Scott Perry
- Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chelsea Chambers
- Department of Neurosciences, University of Virginia, Charlottesville, VA, USA
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ariane Soldatos
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnostic, Parc Taulí University Hospital, Parc Taulí I3PT Research and Innovation Institute, University of Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí University Hospital, Parc Taulí I3PT Research and Innovation Institute, University of Barcelona, Sabadell, Spain
| | - Montserrat Arellano
- Neuropediatrics Unit, Pediatric Service, MutuaTerrassa University Hospital, Terrassa, Spain
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elsa Rossignol
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Neurosciences and Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Fadi F Hamdan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Jacques L Michaud
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Neurosciences and Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Christopher Balak
- Neurogenomics Division, Centre for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute, Phoenix, AZ, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
26
|
Han JY, Lee HJ, Lee YM, Park J. Identification of Missense ADGRV1 Mutation as a Candidate Genetic Cause of Familial Febrile Seizure 4. CHILDREN (BASEL, SWITZERLAND) 2020; 7:children7090144. [PMID: 32962041 PMCID: PMC7552766 DOI: 10.3390/children7090144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Febrile seizure (FS) is related to a febrile illness (temperature > 38 °C) not caused by an infection of central nervous system, without neurologic deficits in children aged 6–60 months. The family study implied a polygenic model in the families of proband(s) with single FS, however in families with repeated FS, inheritance was matched to autosomal dominance with reduced disease penetrance. A 20 month-old girl showed recurrent FS and afebrile seizures without developmental delay or intellectual disability. The seizures disappeared after 60 months without anti-seizure medication. The 35 year-old proband’s mother also experienced five episodes of simple FS and two episodes of unprovoked seizures before 5 years old. Targeted exome sequencing was conducted along with epilepsy/seizure-associated gene-filtering to identify the candidate causative mutation. As a result, a heterozygous c.2039A>G of the ADGRV1 gene leading to a codon change of aspartic acid to glycine at the position 680 (rs547076322) was identified. This protein’s glycine residue is highly conserved, and its allele frequency is 0.00002827 in the gnomAD population database. ADGRV1 mutation may have an influential role in the occurrence of genetic epilepsies, especially those with febrile and afebrile seizures. Further investigation of ADGRV1 mutations is needed to prove that it is a significant susceptible gene for febrile and/or afebrile seizures in early childhood.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hyun Joo Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Young-Mock Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (Y.-M.L.); (J.P.); Tel.: +82-2-2019-3354 (Y.-M.L.); +82-42-220-9799 (J.P.); Fax: +82-2-3261-9473 (Y.-M.L.); +82-42-220-9915 (J.P.)
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Correspondence: (Y.-M.L.); (J.P.); Tel.: +82-2-2019-3354 (Y.-M.L.); +82-42-220-9799 (J.P.); Fax: +82-2-3261-9473 (Y.-M.L.); +82-42-220-9915 (J.P.)
| |
Collapse
|
27
|
Zolini AM, Block J, Rabaglino MB, Rincon G, Hoelker M, Bromfield JJ, Salilew-Wondim D, Hansen PJ. Genes associated with survival of female bovine blastocysts produced in vivo. Cell Tissue Res 2020; 382:665-678. [PMID: 32710275 DOI: 10.1007/s00441-020-03257-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The objective was to characterize the transcriptome profile of in vivo-derived female embryos competent to establish and maintain gestation. Blastocysts from superovulated heifers were bisected to generate two demi-embryos. One demi-embryo was transferred into a synchronized recipient and the other part was used for RNA-seq analysis. Data on transcript abundance was analyzed for 4 demi-embryos that established and maintained pregnancy to day 60 (designated as PP) and 3 that did not result in a pregnancy at day 30 (designated as NP). Using a false discovery rate of P < 0.10 as cutoff, a total of 155 genes were differentially expressed between PP and NP embryos, of which 73 genes were upregulated and 82 genes were downregulated in the PP group. The functional cluster with the greatest enrichment score for embryos that survived, representing 28 genes (48% of the annotated genes), was related to membrane proteins, particularly those related to olfaction and neural development and function. The functional cluster with the greatest enrichment score for downregulated genes in embryos that survived included terms related to oxidative phosphorylation, mitochondrial function, and transmembrane proteins. In conclusion, competence of in vivo-derived female bovine embryos to survive after transfer is associated with increased expression of genes encoding transmembrane proteins, perhaps indicative of differentiation of the inner cell mass to epiblast, and decreased expression of genes involved in oxidative phosphorylation, perhaps indicative of reduced metabolic activity.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - J Block
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M B Rabaglino
- Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - G Rincon
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - D Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
28
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
29
|
de Lange IM, Mulder F, van 't Slot R, Sonsma ACM, van Kempen MJA, Nijman IJ, Ernst RF, Knoers NVAM, Brilstra EH, Koeleman BPC. Modifier genes in SCN1A-related epilepsy syndromes. Mol Genet Genomic Med 2020; 8:e1103. [PMID: 32032478 PMCID: PMC7196470 DOI: 10.1002/mgg3.1103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS 87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.
Collapse
Affiliation(s)
- Iris M. de Lange
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Flip Mulder
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ruben van 't Slot
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Anja C. M. Sonsma
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marjan J. A. van Kempen
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Isaac J. Nijman
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Robert F. Ernst
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eva H. Brilstra
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bobby P. C. Koeleman
- Department of GeneticsCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
30
|
Dunn PJ, Maher BH, Albury CL, Stuart S, Sutherland HG, Maksemous N, Benton MC, Smith RA, Haupt LM, Griffiths LR. Tiered analysis of whole-exome sequencing for epilepsy diagnosis. Mol Genet Genomics 2020; 295:751-763. [DOI: 10.1007/s00438-020-01657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
31
|
Kang KW, Kim W, Cho YW, Lee SK, Jung KY, Shin W, Kim DW, Kim WJ, Lee HW, Kim W, Kim K, Lee SH, Choi SY, Kim MK. Genetic characteristics of non-familial epilepsy. PeerJ 2019; 7:e8278. [PMID: 31875159 PMCID: PMC6925949 DOI: 10.7717/peerj.8278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background Knowledge of the genetic etiology of epilepsy can provide essential prognostic information and influence decisions regarding treatment and management, leading us into the era of precision medicine. However, the genetic basis underlying epileptogenesis or epilepsy pharmacoresistance is not well-understood, particularly in non-familial epilepsies with heterogeneous phenotypes that last until or start in adulthood. Methods We sought to determine the contribution of known epilepsy-associated genes (EAGs) to the causation of non-familial epilepsies with heterogeneous phenotypes and to the genetic basis underlying epilepsy pharmacoresistance. We performed a multi-center study for whole exome sequencing-based screening of 178 selected EAGs in 243 non-familial adult patients with primarily focal epilepsy (122 drug-resistant and 121 drug-responsive epilepsies). The pathogenicity of each variant was assessed through a customized stringent filtering process and classified according to the American College of Medical Genetics and Genomics guidelines. Results Possible causal genetic variants of epilepsy were uncovered in 13.2% of non-familial patients with primarily focal epilepsy. The diagnostic yield according to the seizure onset age was 25% (2/8) in the neonatal and infantile period, 11.1% (14/126) in childhood and 14.7% (16/109) in adulthood. The higher diagnostic yields were from ion channel-related genes and mTOR pathway-related genes, which does not significantly differ from the results of previous studies on familial or early-onset epilepsies. These potentially pathogenic variants, which were identified in genes that have been mainly associated with early-onset epilepsies with severe phenotypes, were also linked to epilepsies that start in or last until adulthood in this study. This finding suggested the presence of one or more disease-modifying factors that regulate the onset time or severity of epileptogenesis. The target hypothesis of epilepsy pharmacoresistance was not verified in our study. Instead, neurodevelopment-associated epilepsy genes, such as TSC2 or RELN, or structural brain lesions were more strongly associated with epilepsy pharmacoresistance. Conclusions We revealed a fraction of possible causal genetic variants of non-familial epilepsies in which genetic testing is usually overlooked. In this study, we highlight the importance of earlier identification of the genetic etiology of non-familial epilepsies, which leads us to the best treatment options in terms of precision medicine and to future neurobiological research for novel drug development. This should be considered a justification for physicians determining the hidden genetics of non-familial epilepsies that last until or start in adulthood.
Collapse
Affiliation(s)
- Kyung Wook Kang
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Wonkuk Kim
- Department of Applied Statistics, Chung-Ang University, Seoul, South Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Wonchul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, South Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyang Woon Lee
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, South Korea
| | - Woojun Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keuntae Kim
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - So-Hyun Lee
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, South Korea
| | - Seok-Yong Choi
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, South Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
32
|
Yang BZ, Zhou H, Cheng Z, Kranzler HR, Gelernter J. Genomewide Gene-by-Sex Interaction Scans Identify ADGRV1 for Sex Differences in Opioid Dependent African Americans. Sci Rep 2019; 9:18070. [PMID: 31792237 PMCID: PMC6889277 DOI: 10.1038/s41598-019-53560-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Sex differences in opioid dependence (OD) are genetically influenced. We conducted genomewide gene-by-sex interaction scans for the DSM-IV diagnosis of OD in 8,387 African-American (AA) or European-American subjects (43.6% women; 4,715 OD subjects). Among AAs, 9 SNPs were genome-wide significant at ADGRV1 (adhesion G-protein-coupled receptor V1, lead-SNP rs2366929*(C/T), p = 1.5 × 10-9) for sex-different risk of OD, with the rs2366929*C-allele increasing OD risk only for men. The top co-expressions in brain were between ADGRV1 and GRIK2 in substantia nigra and medullary inferior olivary nucleus, and between ADGRV1 and EFHC2 in frontal cortex and putamen. Significant sex-differential ADGRV1 expression from GTEx was detected in breast (Bonferroni-corrected-p < 0.002) and in heart (p < 0.0125), with nominal significance identified in brain, thyroid, lung, and stomach (p < 0.05). ADGRV1 co-expression and disease-enrichment analysis identifying the top 10 diseases showed strikingly sexually dimorphic risks. The enrichment and transcriptome analyses provided convergent support that ADGRV1 exerts a sex-different effect on OD risk. This is the first study to identify genetic variants contributing to sex differences in OD. It shows that ADGRV1 contributes to OD risk only in AA men, a finding that warrants further study.
Collapse
Affiliation(s)
- Bao-Zhu Yang
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, Department of Psychiatry, West Haven, CT, USA
| | - Hang Zhou
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, Department of Psychiatry, West Haven, CT, USA
| | - Zhongshan Cheng
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, Department of Psychiatry, West Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA
- VISN 4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia, PA, USA
| | - Joel Gelernter
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA.
- VA Connecticut Healthcare System, Department of Psychiatry, West Haven, CT, USA.
- Yale University School of Medicine, Departments of Genetics and Neuroscience, New Haven, CT, USA.
| |
Collapse
|
33
|
Elia M. Chromosomal Abnormalities and Cortical Malformations. CLINICAL ELECTROENCEPHALOGRAPHY 2019:547-585. [DOI: 10.1007/978-3-030-04573-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Gauvin DV, Zimmermann ZJ, Yoder J, Harter M, Holdsworth D, Kilgus Q, May J, Dalton J, Baird TJ. A predictive index of biomarkers for ictogenesis from tier I safety pharmacology testing that may warrant tier II EEG studies. J Pharmacol Toxicol Methods 2018; 94:50-63. [PMID: 29751085 DOI: 10.1016/j.vascn.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Three significant contributions to the field of safety pharmacology were recently published detailing the use of electroencephalography (EEG) by telemetry in a critical role in the successful evaluation of a compound during drug development (1] Authier, Delatte, Kallman, Stevens & Markgraf; JPTM 2016; 81:274-285; 2] Accardi, Pugsley, Forster, Troncy, Huang & Authier; JPTM; 81: 47-59; 3] Bassett, Troncy, Pouliot, Paquette, Ascaha, & Authier; JPTM 2016; 70: 230-240). These authors present a convincing case for monitoring neocortical biopotential waveforms (EEG, ECoG, etc) during preclinical toxicology studies as an opportunity for early identification of a central nervous system (CNS) risk during Investigational New Drug (IND) Enabling Studies. This review is about "ictogenesis" not "epileptogenesis". It is intended to characterize overt behavioral and physiological changes suggestive of drug-induced neurotoxicity/ictogenesis in experimental animals during Tier 1 safety pharmacology testing, prior to first dose administration in man. It is the presence of these predictive or comorbid biomarkers expressed during the requisite conduct of daily clinical or cage side observations, and in early ICH S7A Tier I CNS, pulmonary and cardiovascular safety study designs that should initiate an early conversation regarding Tier II inclusion of EEG monitoring. We conclude that there is no single definitive clinical marker for seizure liability but plasma exposures might add to set proper safety margins when clinical convulsions are observed. Even the observation of a study-related full tonic-clonic convulsion does not establish solid ground to require the financial and temporal investment of a full EEG study under the current regulatory standards. PREFATORY NOTE For purposes of this review, we have adopted the FDA term "sponsor" as it refers to any person who takes the responsibility for and initiates a nonclinical investigations of new molecular entities; FDA uses the term "sponsor" primarily in relation to investigational new drug application submissions.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States.
| | - Zachary J Zimmermann
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Joshua Yoder
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Marci Harter
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - David Holdsworth
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Quinn Kilgus
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jonelle May
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jill Dalton
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Theodore J Baird
- Drug Safety Assessment, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| |
Collapse
|