1
|
Kakkar P, Kakkar T, Nampi PP, Jose G, Saha S. Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke. Biosens Bioelectron 2025; 275:117227. [PMID: 39923527 DOI: 10.1016/j.bios.2025.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/28/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Over 17 million people experience a stroke episode annually, with 5.9 million deaths. Stroke is diagnosed by physical tests and neuroimaging which need to be performed quickly to determine if the stroke is caused by ischaemia or haemorrhage. Neuroimaging can reliably confirm bleeding, but many patients with suspected ischaemic stroke (up to 40%) are subsequently confirmed to have alternative pathologies e.g., migraine or seizures (stroke mimics) delaying the transfer of stroke patients to an acute stroke unit for early intervention and treatment. Thus, a simple complimentary blood biomarker test to differentiate stroke patients from non-stroke patients with similar clinical symptoms is essential in prehospital and emergency settings for efficient stroke management and prompt treatment. The current 'Gold Standard' technique for detecting protein biomarkers is complex, time-consuming, and requires automated equipment. In this study, we have developed a proof-of-concept of lanthanide-doped upconversion nanoparticle (UCNP)-based optical biosensor platform for detecting glial fibrillary acidic protein (GFAP), a potential stroke biomarker, in human blood serum. The results show a linear response in photoluminescence quenching of UCNP conjugated GFAP antibody with the increasing concentration of GFAP biomarker in human blood serum. This approach can be used in the ambulance and Emergency Department to quickly diagnose a stroke. In the longer term, such techniques can be integrated into a self-assessment kit to monitor those patients who are at risk after strokes.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Tarun Kakkar
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Padmaja Parameswaran Nampi
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Gin Jose
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
2
|
Jiang H, Zhang Y, Zhang L, Liu L, Wang H, Wang Y, Chen M. Comprehensive Serum Analysis via an AI-Assisted Magnetically Driven SERS Platform for the Diagnosis and Etiological Differentiation of Childhood Epilepsy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11731-11741. [PMID: 39960063 DOI: 10.1021/acsami.4c19603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Timely and accurate diagnosis of childhood epilepsy and identification of its etiology are crucial for early interventional treatment, yet still, effective detection methods are lacking. Blood analysis is a promising strategy for disease diagnosis. However, due to the complex composition and lack of definite childhood epilepsy diagnostic markers in serum, comprehensively profiling serum molecular signals to accurately reveal diagnostic information is still challenging. Herein, we developed a novel magnetically driven SERS platform, which utilized specially designed branched Au nanostructure-embedded magnetic microspheres to achieve simultaneous detection of small molecules and biomacromolecules in serum, thus providing comprehensive serum molecular SERS signals. By using this platform, the SERS data sets of serum samples from 90 healthy controls and 585 epileptic patients were collected to train a self-built lightweight convolutional neural network (MLS-CNN) model, which successfully identified the serum epileptic diagnostic and etiological differentiation information, including causes of autoimmune encephalitis, febrile infection, developmental disability, structural brain lesions, and unknown etiology. The MLS-CNN model exhibits excellent diagnostic accuracy (100%) and etiological differentiation accuracy (>89%) for epilepsy. This AI-assisted magnetically driven SERS platform for comprehensively profiling the molecular information on serum might provide a novel strategy for childhood epilepsy diagnosis and etiological identification.
Collapse
Affiliation(s)
- Hanyu Jiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Zhang
- Department of Clinical Laboratory, Hunan Children's Hospital, Changsha, 410007, China
| | - Lixin Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ying Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Gao L, Xie R, Yang X, Liu Y, Lin R, Yao Z, Wang Y, Dou B, Meng J, Hu X, Song L, Cheng J, Shi Z, Huo H, Sui F, Song Q. Banxia Baizhu Tianma Decoction alleviates pentylenetetrazol-induced epileptic seizures in rats by preventing neuronal cell damage and apoptosis and altering serum and urine metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119112. [PMID: 39551285 DOI: 10.1016/j.jep.2024.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy (EP) is one of the most prevalent chronic neurological disorders in children, characterised by a prolonged course and a propensity for recurrence. Banxia Baizhu Tianma Decoction (BBTD), a traditional Chinese medicine formula, is commonly employed in the clinical management of EP and has demonstrated satisfactory therapeutic effects. AIM OF THE STUDY This study aimed to evaluate the anti-epileptic effects of BBTD and to explore its molecular mechanisms. MATERIALS AND METHODS EP rat model was induced by pentylenetetrazol (PTZ) and treated with BBTD. Parameters such as seizure grade and duration were recorded to evaluate the improvement of BBTD on epileptic behavior. Nissl staining was used to observe the pathological changes in the cerebral motor cortex. The expression levels of the Bax and Bcl-2 in the motor cortex were measured by western blot analysis to assess neuronal damage and apoptosis. The therapeutic action of BBTD was evaluated by examining the levels of neurotransmitters γ-aminobutyric acid (GABA) and glutamate (Glu) in the brain tissue of EP rats, along with assessments of neuronal damage and apoptosis. Non-targeted metabolomics techniques were employed to conduct a comprehensive analysis of serum and urine metabolites, and network analysis of metabolite-related targets was performed to enhance understanding of the anti-epileptic effects and mechanisms of BBTD. RESULTS After BBTD treatment, the EP model rats exhibited reduced seizure severity and shortened seizure duration. Moreover, BBTD mitigated PTZ-induced neuronal damage, as evidenced by a significant increase in the number of Nissl bodies in the motor cortex following treatment. At the same time, BBTD inhibited neuronal apoptosis, as demonstrated by the up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax in the brain tissue of treated rats. In addition, BBTD reversed the decreased levels of GABA and the increased levels of Glu in the brain tissue of the model group. Metabolomics analyses suggested that BBTD treatment for EP may be closely associated with alterations in urinary metabolites related to vitamin B6 and pyrimidine metabolism, as well as serum metabolites involved in purine metabolism, glycerophospholipid metabolism and vitamin B6 metabolism. Finally, network analysis of metabolite targets indicated that dopamine and alpha-linolenic acid metabolites may play significant roles in the therapeutic effects of BBTD on EP. CONCLUSION BBTD demonstrated anti-epileptic effects in PTZ-induced seizure rats by regulating neurotransmitter balance, reducing neuronal damage and inhibiting apoptosis, suggesting its potential for the development of novel AEDs. This is the first time that UHPLC-MS-based urine and serum metabolomics have been used to elucidate the anti-epileptic mechanism of BBTD, providing insights into the underlying mechanisms of BBTD's action.
Collapse
Affiliation(s)
- Lv Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China; Shanxi Integrated Traditional Chinese and Western Medicine Hospital, Taiyuan, 030013, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiujuan Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rong Lin
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Zhengyu Yao
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China
| | - Yingxuan Wang
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China
| | - Baokai Dou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinlai Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenggang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qi Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, China.
| |
Collapse
|
4
|
Khaosuwan T, Leetanaporn K, Choochuen P, Navakanitworakul R, Kaewborisutsakul A, Tunthanatip T, Sangkhathat S, Chiangjong W, Phabphal K. Comparative proteomic analysis of astrocytoma tissues from patients with and without seizures. Sci Rep 2025; 15:3020. [PMID: 39849075 PMCID: PMC11757708 DOI: 10.1038/s41598-025-87525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques. We detected 131 differentially expressed proteins (42 upregulated and 89 downregulated). Proteins upregulated in patients with seizures were mostly related to an increase in energy metabolism. Moreover, glial fibrillary acidic protein, which is involved in maintaining normal axonal structures, was abnormally highly expressed in patients with seizures. Proteins downregulated in patients with seizures included those involved in trans-synaptic signalling and gamma-aminobutyric acid synaptic transmission. Interestingly, comparison of protein expression profiles from our cohort with those from a previous study of patients with epilepsy due to other causes showed that the collapsin response mediator protein family of axonal growth regulators was highly expressed only in patients with seizures due to astrocytomas. Further studies of the proteins identified here are required to determine their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thanakorn Khaosuwan
- Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Anukoon Kaewborisutsakul
- Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanatip
- Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanitpong Phabphal
- Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
5
|
Li M, Zhang Q, Wang X, Tan B, Liu Q. Clinical characteristics and prognosis analysis of acute symptomatic seizures secondary to autoimmune encephalitis. Front Neurol 2024; 15:1474888. [PMID: 39539648 PMCID: PMC11557311 DOI: 10.3389/fneur.2024.1474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study aimed to analyze the clinical characteristics and prognosis of patients with autoimmune encephalitis (PWAE) who experienced seizures during the acute phase. Methods Clinical data were collected from 84 patients diagnosed with AE at the General Hospital of Ningxia Medical University between January 2015 and January 2023. Patients were divided into seizure and non-seizure groups. Clinical characteristics of both groups were compared, including differences between anti-NMDAR and anti-LGI1 encephalitis within the seizure group. Due to the limited sample size and to avoid overfitting, we focused on univariate logistic regression analysis to identify individual prognostic factors. Results A total of 84 patients were enrolled, with 76.19% (64/84) in the seizure group and 23.81% (20/84) in the non-seizure group. The seizure group had a longer hospital stay (p = 0.013), higher rates of impaired consciousness (p = 0.001), and more frequent intensive care unit (ICU) admission (p = 0.011). They also had higher peripheral blood neutrophil-to-lymphocyte ratio (NLR), leukocyte count, and uric acid levels (p = 0.038, p = 0.006, p = 0.020), and were more likely to show slow-wave rhythms on electroencephalography (EEG) (p = 0.031). At 2-year follow-up, there was no significant difference in prognosis between the seizure and non-seizure groups (p = 0.653), with 35.94% (23/64) of the seizure group having a poor prognosis. Status epilepticus (SE), complications, endotracheal intubation, mRS score at discharge, APE2, and RITE2 scores increased the risk of poor prognosis (OR > 1), while intensive care and albumin reduced the risk (OR < 1). Conclusion Seizures are common in the early stages of AE, with faciobrachial dystonic seizures (FBDS) characteristic of anti-LGI1 encephalitis and SE and super-refractory status epilepticus (Sup-RSE) frequently observed in anti-NMDAR encephalitis. Seizure semiology across AE subtypes lacks specificity, and no symptoms clearly distinguish immune-mediated from non-immune causes. While seizures are linked to AE severity, particularly in anti-NMDAR encephalitis, they do not appear to impact overall prognosis. SE, complications, endotracheal intubation, modified Rankin Scale (mRS) score at discharge, Antibody-Prevalence in Epilepsy and Encephalopathy (APE2) score, Response to Immunotherapy in Epilepsy and Encephalopathy (RITE2) score, intensive care, and albumin were identified as significant prognostic factors.
Collapse
Affiliation(s)
- Mengyun Li
- First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Qing Zhang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Wang
- First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bofei Tan
- First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Li Y, Tang F, Luo Y. The cellular distribution of P2X7, P2Y6, and P2Y12 during or after pilocarpine-induced status epilepticus and literature review. Brain Circ 2024; 10:343-353. [PMID: 40012593 PMCID: PMC11850937 DOI: 10.4103/bc.bc_27_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND When a seizure occurs, the distribution of purine receptors in different cell types at various time points remains poorly understood. Our literature review revealed that P2X7, P2Y6, and P2Y12 are expressed in different cells during epilepsy pathogenesis. Therefore, we studied the protein expression patterns of the purinergic receptors P2X7, P2Y6, and P2Y12 in the normal mice hippocampus, as well as during or after pilocarpine-induced status epilepticus (DPISE or APISE). MATERIALS AND METHODS Immunohistochemical staining and double-labeling immunofluorescence staining were used to study the cellular distribution of various purinergic receptors across several groups: control, 2-hour DPISE, 1-day APISE, 2-day APISE, 3-day APISE, and 1-week APISE. RESULTS In the normal mouse brain, P2X7, P2Y6, and P2Y12 were predominantly expressed in the neurons. Microglia and astrocytes were found to express these receptors at the onset of seizures. Immunofluorescence analysis showed that P2X7 and P2Y12 are expressed in microglia, whereas P2Y6 is mainly expressed in astrocytes. CONCLUSION Different purinergic receptors are expressed in neurons, microglia, and astrocytes, mediate their interactions, and are involved in epileptogenesis.
Collapse
Affiliation(s)
- Yue Li
- Department of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Anatomy, National University of Singapore, Singapore
| | - Fengru Tang
- Department of Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Yumin Luo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lian X, Liu Z, Liu S, Jin L, Wu T, Chen Y, Li S, Kang W, Lian Y, Jiang Y, Ren Z. Alterations in serum metabolomics during the first seizure and after effective control of epilepsy. Sci Rep 2024; 14:19180. [PMID: 39160238 PMCID: PMC11333619 DOI: 10.1038/s41598-024-68966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The existing diagnostic methods of epilepsy have great limitations, and more reliable and less difficult diagnostic methods are needed. We collected serum samples of adult patients with first-diagnosed epilepsy (EPs) and seizure control patients (EPRs) for non-targeted metabolomics detection and found that they were both significantly altered, with increased expression of nicotine addiction, linoleic acid metabolism, purine metabolism, and other metabolic pathways. The diagnostic model based on 4 differential metabolites achieved a diagnostic efficiency of 99.4% in the training cohort and 100% in the validation cohort. In addition, the association analysis of oral flora, serum metabolism, and clinical indicators also provided a new angle to analyze the mechanism of epilepsy. In conclusion, this study characterized the serum metabolic characteristics of EPs and EPRs and the changes before and after epilepsy control based on a large cohort, demonstrating the potential of metabolites as non-invasive diagnostic tools for epilepsy.
Collapse
Affiliation(s)
- Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenguo Liu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shanshuo Liu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Limin Jin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Shuang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Wenzhong Kang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Zhigang Ren
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China.
- Gene Hospital of Henan Province; Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
AlAseeri AA, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Bahaa MM, Alruwaili M, Batiha GES. The compelling role of allopurinol in hyperuricemia-induced epilepsy: Unrecognized like tears in rain. Brain Res Bull 2024; 213:110973. [PMID: 38723694 DOI: 10.1016/j.brainresbull.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.
Collapse
Affiliation(s)
- Ali Abdullah AlAseeri
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens 11741, Greece; Department of Research & Development, AFNP Med, Wien 1030, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
9
|
Baltos JA, Casillas-Espinosa PM, Rollo B, Gregory KJ, White PJ, Christopoulos A, Kwan P, O'Brien TJ, May LT. The role of the adenosine system in epilepsy and its comorbidities. Br J Pharmacol 2024; 181:2143-2157. [PMID: 37076128 DOI: 10.1111/bph.16094] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
von Mücke-Heim IA, Pape JC, Grandi NC, Erhardt A, Deussing JM, Binder EB. Multiomics and blood-based biomarkers of electroconvulsive therapy in severe and treatment-resistant depression: study protocol of the DetECT study. Eur Arch Psychiatry Clin Neurosci 2024; 274:673-684. [PMID: 37644215 PMCID: PMC10995021 DOI: 10.1007/s00406-023-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
Electroconvulsive therapy (ECT) is commonly used to treat treatment-resistant depression (TRD). However, our knowledge of the ECT-induced molecular mechanisms causing clinical improvement is limited. To address this issue, we developed the single-center, prospective observational DetECT study ("Multimodal Biomarkers of ECT in TRD"; registered 18/07/2022, www.clinicalTrials.gov , NCT05463562). Its objective is to identify molecular, psychological, socioeconomic, and clinical biomarkers of ECT response in TRD. We aim to recruit n = 134 patients in 3 years. Over the course of 12 biweekly ECT sessions (± 7 weeks), participant blood is collected before and 1 h after the first and seventh ECT and within 1 week after the twelfth session. In pilot subjects (first n = 10), additional blood draws are performed 3 and 6 h after the first ECT session to determine the optimal post-ECT blood draw interval. In blood samples, multiomic analyses are performed focusing on genotyping, epigenetics, RNA sequencing, neuron-derived exosomes, purines, and immunometabolics. To determine clinical response and side effects, participants are asked weekly to complete four standardized self-rating questionnaires on depressive and somatic symptoms. Additionally, clinician ratings are obtained three times (weeks 1, 4, and 7) within structured clinical interviews. Medical and sociodemographic data are extracted from patient records. The multimodal data collected are used to perform the conventional statistics as well as mixed linear modeling to identify clusters that link biobehavioural measures to ECT response. The DetECT study can provide important insight into the complex mechanisms of ECT in TRD and a step toward biologically informed and data-driven-based ECT biomarkers.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Julius C Pape
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Norma C Grandi
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Angelika Erhardt
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| |
Collapse
|
11
|
Hanin A, Chollet C, Demeret S, Di Meglio L, Castelli F, Navarro V. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia 2024; 65:929-943. [PMID: 38339978 DOI: 10.1111/epi.17899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Aurélie Hanin
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Céline Chollet
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Sophie Demeret
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucas Di Meglio
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Florence Castelli
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
- Center of Reference for Rare Epilepsies, Epicare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Rastin C, Schenkel LC, Sadikovic B. Complexity in Genetic Epilepsies: A Comprehensive Review. Int J Mol Sci 2023; 24:14606. [PMID: 37834053 PMCID: PMC10572646 DOI: 10.3390/ijms241914606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.
Collapse
Affiliation(s)
- Cassandra Rastin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Laila C. Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
13
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
The P2X7 Receptor as a Mechanistic Biomarker for Epilepsy. Int J Mol Sci 2023; 24:ijms24065410. [PMID: 36982485 PMCID: PMC10049244 DOI: 10.3390/ijms24065410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy, characterized by recurrent spontaneous seizures, is a heterogeneous group of brain diseases affecting over 70 million people worldwide. Major challenges in the management of epilepsy include its diagnosis and treatment. To date, video electroencephalogram (EEG) monitoring is the gold-standard diagnostic method, with no molecular biomarker in routine clinical use. Moreover, treatment based on anti-seizure medications (ASMs) remains ineffective in 30% of patients, and, even if seizure-suppressive, lacks disease-modifying potential. Current epilepsy research is, therefore, mainly focussed on the identification of new drugs with a different mechanism of action effective in patients not responding to current ASMs. The vast heterogeneity of epilepsy syndromes, including differences in underlying pathology, comorbidities and disease progression, represents, however, a particular challenge in drug discovery. Optimal treatment most likely requires the identification of new drug targets combined with diagnostic methods to identify patients in need of a specific treatment. Purinergic signalling via extracellularly released ATP is increasingly recognized to contribute to brain hyperexcitability and, consequently, drugs targeting this signalling system have been proposed as a new therapeutic strategy for epilepsy. Among the purinergic ATP receptors, the P2X7 receptor (P2X7R) has attracted particular attention as a novel target for epilepsy treatment, with P2X7Rs contributing to unresponsiveness to ASMs and drugs targeting the P2X7R modulating acute seizure severity and suppressing seizures during epilepsy. In addition, P2X7R expression has been reported to be altered in the brain and circulation in experimental models of epilepsy and patients, making it both a potential therapeutic and diagnostic target. The present review provides an update on the newest findings regarding P2X7R-based treatments for epilepsy and discusses the potential of P2X7R as a mechanistic biomarker.
Collapse
|
15
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
16
|
Chougale A, Vedante S, Kulkarni G, Patnawar S. Recent Progress on Biosensors for the Early Detection of Neurological Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202203155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amit Chougale
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Shruti Vedante
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Guruprasad Kulkarni
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India 416234
| | - Sneha Patnawar
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India. 416234
| |
Collapse
|
17
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
18
|
Kristóf Z, Baranyi M, Tod P, Mut-Arbona P, Demeter K, Bitter I, Sperlágh B. Elevated Serum Purine Levels in Schizophrenia: A Reverse Translational Study to Identify Novel Inflammatory Biomarkers. Int J Neuropsychopharmacol 2022; 25:645-659. [PMID: 35443035 PMCID: PMC9380717 DOI: 10.1093/ijnp/pyac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Immunological markers and related signaling molecules in the blood are altered in schizophrenia mouse models, in acutely relapsed patients with schizophrenia, and in persons at a clinically high risk for subsequently developing psychosis, highlighting their potential as prognostic and theranostic biomarkers. Therefore, we herein aimed to identify novel potential biomarkers in the serum that are associated with purinergic signaling. METHODS To our knowledge, this is the first study to assess the correlations among the levels of human serum adenine nucleotides (ATP, ADP), adenosine, P2X7 receptor, and disease activity in patients hospitalized due to an acute relapse of schizophrenia (n = 53) and healthy controls (n = 47). In addition, to validate these findings using a reverse translational approach, we examined the same parameters in an acute phencyclidine-induced schizophrenia mouse model. RESULTS We found consistently elevated levels of ATP, ADP, interleukin (IL)-6, and IL-10 in both schizophrenia groups compared with the controls. The levels of adenosine, IL-1β, IL-12, and C-reactive protein were also increased in the human patient samples. Moreover, ATP and ADP were significantly positively correlated with the Positive and Negative Symptom Scale item "lack of judgment and insight"; IL-1β, IL-12, and tumour necrosis factor alpha were significantly positively correlated with "tension" and "depression"; and "disorientation" and "poor attention" were correlated significantly with IL-6 and IL-8. CONCLUSIONS Our study suggests the promising potential of blood purines and inflammatory markers as future prognostic tools.
Collapse
Affiliation(s)
- Zsüliet Kristóf
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary,Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary,János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary
| | - Kornél Demeter
- Behavior Unit, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Beáta Sperlágh
- Correspondence: Beáta Sperlágh, MD, PhD, 1083 Budapest, Szigony 43, Hungary ()
| |
Collapse
|
19
|
Molecular Self-Assembly of an Unusual Dinuclear Ruthenium(III) Complex Based on the Nucleobase Guanine. CRYSTALS 2022. [DOI: 10.3390/cryst12040448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study of crystal structures based on complexes containing purine nucleobases is a significant research subject, mainly regarding the diagnosis and treatment of some diseases and the investigation of genetic mutations and biochemical structures in life sciences. We have obtained and characterized a new dinuclear ruthenium(III) complex based on guanine with the formula [{Ru(µ-Cl)(µ-gua)}2Cl4]·2H2O (1) (gua = guanine). 1 was characterized by means of Fourier transform infrared spectroscopy (FT–IR), scanning electron microscopy and energy dispersive X-ray analysis (SEM–EDX), single-crystal X-ray diffraction (XRD), Hirshfeld surface analysis and cyclic voltammetry (CV). The study of its electrochemical properties allowed us to investigate the presence of guanine molecules when linked to the ruthenium(III) ion in 1. The well-resolved voltammetric response together with the reliability and stability achieved through 1 could provide a step forward to developing new ruthenium-based platforms, devices and modified electrodes adequate to study this purine nucleobase.
Collapse
|
20
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
21
|
Russo E. The gut microbiota as a biomarker in epilepsy. Neurobiol Dis 2021; 163:105598. [PMID: 34942335 DOI: 10.1016/j.nbd.2021.105598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are defined as objectively measurable variables of a biologic process, either physiologic or pathologic, that provide reliable information on the status of that specific process in a specific moment. Validated biomarkers in epilepsy research represent an urgent unmet need being essential to improve research quality; as an example, biomarkers in epileptogenesis identifying these subjects at risk to develop epilepsy after an initial insult definitively would lead to an improvement in clinical studies to find antiepileptogenic drugs. The gut microbiota (GM) has recently encountered the interest of neuroscience which confirmed its clear involvement in several neurological disorders. GM's role in epilepsy has only recently been studied, however, interesting results are already available. Besides the interest in GM as a suitable therapeutic target and a few preclinical and clinical studies indicating the potential antiseizure effects of GM manipulation, microbiota composition has been found altered in patients with epilepsy as well as some animal models. Only few studies have tried to analyse GM composition as a suitable biomarker and, despite very promising, several drawbacks limit our understanding. On the other hand, GM composition may be useful in discriminating drug-resistant from drug-responsive patients at any stage or patients at risk of developing epilepsy after an insult. The main limitation in the area is the lack of large studies in homogeneous patients and standardization is a must for a proper understanding. Finally, considering the number of variables coming both from epilepsy and GM, big data analysis as in the case of genetics should be considered.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Via T. Campanella, 115, 88100 Catanzaro, Italy.
| |
Collapse
|
22
|
Beamer E, O’Dea MI, Garvey AA, Smith J, Menéndez-Méndez A, Kelly L, Pavel A, Quinlan S, Alves M, Jimenez-Mateos EM, Tian F, Dempsey E, Dale N, Murray DM, Boylan GB, Molloy EJ, Engel T. Novel Point-of-Care Diagnostic Method for Neonatal Encephalopathy Using Purine Nucleosides. Front Mol Neurosci 2021; 14:732199. [PMID: 34566578 PMCID: PMC8458851 DOI: 10.3389/fnmol.2021.732199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Evidence suggests that earlier diagnosis and initiation of treatment immediately after birth is critical for improved neurodevelopmental outcomes following neonatal encephalopathy (NE). Current diagnostic tests are, however, mainly restricted to clinical diagnosis with no molecular tests available. Purines including adenosine are released during brain injury such as hypoxia and are also present in biofluids. Whether blood purine changes can be used to diagnose NE has not been investigated to date. Methods: Blood purines were measured in a mouse model of neonatal hypoxia and infants with NE using a novel point-of-care diagnostic technology (SMARTChip) based on the summated electrochemical detection of adenosine and adenosine metabolites in the blood. Results: Blood purine concentrations were ∼2-3-fold elevated following hypoxia in mice [2.77 ± 0.48 μM (Control) vs. 7.57 ± 1.41 μM (post-hypoxia), p = 0.029]. Data in infants with NE had a 2-3-fold elevation when compared to healthy controls [1.63 ± 0.47 μM (Control, N = 5) vs. 4.87 ± 0.92 μM (NE, N = 21), p = 0.0155]. ROC curve analysis demonstrates a high sensitivity (81%) and specificity (80%) for our approach to identify infants with NE. Moreover, blood purine concentrations were higher in infants with NE and seizures [8.13 ± 3.23 μM (with seizures, N = 5) vs. 3.86 ± 0.56 μM (without seizures, N = 16), p = 0.044]. Conclusion: Our data provides the proof-of-concept that measurement of blood purine concentrations via SMARTChip technology may offer a low-volume bedside test to support a rapid diagnosis of NE.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mary Isabel O’Dea
- Coombe Women and Infants University Hospital, Dublin, Ireland
- National Children’s Research Centre, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Aisling A. Garvey
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aida Menéndez-Méndez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lynne Kelly
- Coombe Women and Infants University Hospital, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
| | - Andreea Pavel
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Sean Quinlan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Faming Tian
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eugene Dempsey
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Eleanor J. Molloy
- Coombe Women and Infants University Hospital, Dublin, Ireland
- National Children’s Research Centre, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
23
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
24
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
25
|
Eyal S. Guardians of the Frequency: Neuronal Regulation by Microglia. Epilepsy Curr 2021; 21:15357597211004568. [PMID: 33820468 PMCID: PMC8609585 DOI: 10.1177/15357597211004568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
[Box: see text].
Collapse
|
26
|
Blood purine levels as a biomarker in epilepsy. Nat Rev Neurol 2021; 17:194. [PMID: 33750933 DOI: 10.1038/s41582-021-00480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|