1
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Köksal-Ersöz E, Benquet P, Wendling F. Expansion of epileptogenic networks via neuroplasticity in neural mass models. PLoS Comput Biol 2024; 20:e1012666. [PMID: 39625956 PMCID: PMC11642990 DOI: 10.1371/journal.pcbi.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Neuroplasticity refers to functional and structural changes in brain regions in response to healthy and pathological activity. Activity dependent plasticity induced by epileptic activity can involve healthy brain regions into the epileptogenic network by perturbing their excitation/inhibition balance. In this article, we present a new neural mass model, which accounts for neuroplasticity, for investigating the possible mechanisms underlying the epileptogenic network expansion. Our multiple-timescale model is inspired by physiological calcium-mediated synaptic plasticity and pathological extrasynaptic N-methyl-D-aspartate (NMDA) dependent plasticity dynamics. The model highlights that synaptic plasticity at excitatory connections and structural changes in the inhibitory system can transform a healthy region into a secondary epileptic focus under recurrent seizures and interictal activity occurring in the primary focus. Our results suggest that the latent period of this transformation can provide a window of opportunity to prevent the expansion of epileptogenic networks, formation of an epileptic focus, or other comorbidities associated with epileptic activity.
Collapse
|
3
|
Li S, Adamu A, Ye Y, Gao F, Mi R, Xue G, Wang Z. (+)-Borneol inhibits neuroinflammation and M1 phenotype polarization of microglia in epileptogenesis through the TLR4-NFκB signaling pathway. Front Neurosci 2024; 18:1497102. [PMID: 39605791 PMCID: PMC11599196 DOI: 10.3389/fnins.2024.1497102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objective To investigate the effect of (+)-borneol on neuroinflammation and microglia phenotype polarization in epileptogenesis and its possible mechanism. Methods Based on mouse models of status epilepticus (SE) induced by pilocarpine, and treated with 15 mg/kg (+)-borneol, western-blot was used to detect the expressions of NeuN, Iba-1, TLR4, p65 and p-p65 in the hippocampus. Immunofluorescence was used to detect the expression of apoptosis-related proteins Bax and Bcl-2. To explore the effect of (+)-borneol on microglia in vitro, we used the kainic acid-induced microglia model and the concentration of (+)-borneol was 25 μM according to CCK-8 results. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the supernatant of each group was detected by ELISA. The nitric oxide (NO) content in the supernatant was detected by Griess method. The expressions of Iba-1 and TLR4-NFκB signaling pathway-related proteins (TLR4, p65, p-p65) were detected by Western-Blot. Immunofluorescence was used to detect microglia's M1 and M2 phenotype polarization and the expression of Iba-1 and TLR4. Results (+)-borneol reduced hippocampal neuronal injury, apoptosis, and microglia activation by inhibiting the TLR-NFκB signaling pathway in SE mice. TLR4 agonist LPS partially reversed the neuroprotective effect of (+)-borneol. In the KA-induced microglia model, (+)-borneol inhibited microglia activation, M1 phenotype polarization, and secretion of pro-inflammatory cytokines through the TLR4-NFκB signaling pathway. LPS treatment inhibited the therapeutic effects of (+)-borneol. Conclusion (+)-borneol inhibits microglial neuroinflammation and M1 phenotype polarization through TLR4-NFκB signaling pathway and reduces neuronal damage and apoptosis in SE mice. Therefore, (+)-borneol may be a potential drug for epilepsy modification therapy.
Collapse
Affiliation(s)
- Shuo Li
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Alhamdu Adamu
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Yucai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Fankai Gao
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rulin Mi
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guofang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaojun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte K, Frankel W, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on somatostatin- and parvalbumin-expressing cortical GABAergic neurons. eLife 2024; 13:RP92915. [PMID: 39392867 PMCID: PMC11469685 DOI: 10.7554/elife.92915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
- School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUnited States
| | - Brittany D Spitznagel
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - C David Weaver
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Kyle Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
| | - Wayne Frankel
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
- Department of Neurology, Columbia UniversityNew YorkUnited States
| | - Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, Virginia TechBlacksburgUnited States
| |
Collapse
|
5
|
Romito E, Battistella I, Plakhova V, Paplekaj A, Forastieri C, Toffolo E, Musio C, Conti L, Battaglioli E, Rusconi F. A comprehensive protocol for efficient differentiation of human NPCs into electrically competent neurons. J Neurosci Methods 2024; 410:110225. [PMID: 39053772 DOI: 10.1016/j.jneumeth.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.
Collapse
Affiliation(s)
- Elena Romito
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Ingrid Battistella
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy
| | - Vera Plakhova
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Arteda Paplekaj
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Chiara Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Emanuela Toffolo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy.
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy.
| |
Collapse
|
6
|
Fernández-Torre JL, Kaplan PW, Hernández-Hernández MA. Subacute encephalopathy with seizures in alcoholics (SESA) syndrome: Relevant questions. Epilepsy Behav 2024; 159:109968. [PMID: 39094244 DOI: 10.1016/j.yebeh.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The aim of this article is to answer three relevant issues: i/What epileptic condition is referred to as subacute encephalopathy with seizures in alcoholics (SESA) syndrome; ii/ Why it can be important to distinguish SESA syndrome in clinical practice and iii/ What do we know about its pathophysiology. METHODS We reviewed all cases published in the English language from the initial description of the syndrome to the present. All met the previously established criteria for SESA syndrome were included in our analysis. RESULTS We found 34 patients diagnosed with SESA syndrome Fourteen (41.1%) out of 34 patients were over 60 years of age. In 12 (35.2 %), abstinence, and in 4 (11.7 %) excessive consumption of alcohol, were considered precipitating factors, respectively. Triggering causes were unknown in 18 cases (53.0 %). All cases (100 %) presented with altered mental status. Fourteen (41.1 %) subjects had a history of epileptic seizures in the context of alcohol withdrawal syndrome (AWS). Twenty (58.8 %) patients had focal motor seizures (FMSs), 24 (70.5 %) bilateral tonic-clonic seizures (BTCSs), and 15 (44.1 %) focal impaired awareness seizures (FIASs). In 8 (23.5 %), criteria for focal nonconvulsive status epilepticus (NCSE) were met. Twenty-eight (82.3 %) subjects had transient neurological deficits. In 29 (85.2 %) subjects, lateralized periodic discharges (LPDs) were observed on the EEG. Areas of signal hyperintensities and restricted diffusion in neuroimaging were mentioned in 22 subjects (64.7 %). Transfer to the intensive care unit was necessary in 8 (23.5 %) subjects. Thirteen (38.2 %) had recurrent episodes. Enduring brain damage was mentioned in 9 (26.4 %) cases. The most used anti-seizure medication (ASM) was levetiracetam, followed by phenytoin and lacosamide. CONCLUSIONS SESA syndrome represents a well-defined subtype of focal NCSE in patients with chronic alcoholism. Its prompt recognition can facilitate the initiation of early ASM therapy and help design appropriate video-EEG evaluation and a treatment strategy.
Collapse
Affiliation(s)
- José L Fernández-Torre
- Department of Clinical Neurophysiology, Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain; Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, 39008 Santander, Cantabria, Spain; Biomedical Research Institute (IDIVAL), 39011 Santander, Cantabria, Spain.
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21210, USA
| | - Miguel A Hernández-Hernández
- Biomedical Research Institute (IDIVAL), 39011 Santander, Cantabria, Spain; Department of Intensive Medicine Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain
| |
Collapse
|
7
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte KA, Frankel WN, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on SST- and PV-expressing cortical GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561953. [PMID: 37873369 PMCID: PMC10592778 DOI: 10.1101/2023.10.11.561953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N. Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Matthew C. Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Fernández-Torre JL, Kaplan PW, Cherchi MS, Drake-Pérez M, Marco de Lucas E, Vázquez-Higuera JL, Hernández-Hernández MA. Subacute encephalopathy with seizures in alcoholics (SESA) syndrome. Seizure 2024; 120:194-200. [PMID: 39032348 DOI: 10.1016/j.seizure.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE To describe four patients with subacute encephalopathy with seizures in alcoholics (SESA) syndrome and to review its clinical, electroencephalogram (EEG), neuroimaging and diagnostic criteria. METHODS We conducted a retrospective analysis of a series of prospectively collected patients who met the previously established criteria for SESA syndrome. Subsequently, we reviewed all cases published in the English language from the initial description to the present. RESULTS We found 34 patients diagnosed with SESA syndrome to date, including the four cases of SESA in this report. Fourteen out of 34 (41.1 %) patients were over 60 years of age. Twelve (35.2 %) were abstinent from alcohol and in 4 (11.7 %) there was excessive alcohol consumption. Triggering causes were unknown in 18 cases (53.0 %). All cases (100 %) presented with an altered mental status. Fourteen (41.1 %) subjects had a history of epileptic seizures in the context of acute withdrawal syndrome (AWS). Twenty (58.8 %) patients had focal motor seizures (FMSs), 24 (70.5 %) bilateral tonic-clonic seizures (BTCSs), and 15 (44.1 %) focal impaired awareness seizures (FIASs). In 8 (23.5 %), criteria for focal nonconvulsive status epilepticus (NCSE) were met. Twenty-eight (82.3 %) subjects had transient neurological deficits. In 29 (85.2 %) subjects, lateralized periodic discharges (LPDs) were observed in the EEG. Areas of increased T2/FLAIR signal and restricted diffusion were mentioned in 22 subjects (64.7 %). Transfer to the intensive care unit (ICU) was necessary in 8 (23.5 %) subjects. Thirteen (38.2 %) had recurrent episodes. Enduring cerebral sequelae had been mentioned in 9 (26.4 %) cases. The most used anti-seizure medication (ASM) was levetiracetam, followed by phenytoin and lacosamide. CONCLUSION SESA syndrome represents a well-defined subtype of focal NCSE in patients with chronic alcoholism. Its prompt recognition can facilitate the initiation of early ASM therapy and help implement a video-EEG evaluation and neuroimaging strategy.
Collapse
Affiliation(s)
- José L Fernández-Torre
- Department of Clinical Neurophysiology, Marqués de Valdecilla University Hospital, Santander, Cantabria 39008, Spain; Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Cantabria 39008, Spain; Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain.
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21210, USA
| | - Marina S Cherchi
- Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain; Department of Intensive Medicine, Marqués de Valdecilla University Hospital, Santander, Cantabria 39008, Spain
| | - Marta Drake-Pérez
- Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain; Department of Radiology, Marqués de Valdecilla University Hospital, Santander, Cantabria 39008, Spain
| | - Enrique Marco de Lucas
- Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain; Department of Radiology, Marqués de Valdecilla University Hospital, Santander, Cantabria 39008, Spain; Department of Medical-Surgical Sciences, School of Medicine, University of Cantabria, Santander, Cantabria 39008, Spain
| | - José L Vázquez-Higuera
- Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain; Department of Neurology, Marqués de Valdecilla University Hospital Santander, Cantabria 39008, Spain
| | - Miguel A Hernández-Hernández
- Biomedical Research Institute (IDIVAL), Santander, Cantabria 39011, Spain; Department of Intensive Medicine, Marqués de Valdecilla University Hospital, Santander, Cantabria 39008, Spain
| |
Collapse
|
9
|
Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired Response to Mismatch Novelty in the Li 2+-Pilocarpine Rat Model of TLE: Correlation with Hippocampal Monoaminergic Inputs. Biomedicines 2024; 12:631. [PMID: 38540244 PMCID: PMC10968540 DOI: 10.3390/biomedicines12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-β-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.
Collapse
Affiliation(s)
- Carlos Nascimento
- Unidade de Fisiologia Clínica e Translacional, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vasco Guerreiro-Pinto
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Seweryn Pawlak
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Laia Amat-Garcia
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Ferrero JJ, Hassan AR, Yu Z, Zhao Z, Ma L, Wu C, Shao S, Kawano T, Engel J, Doyle W, Devinsky O, Khodagholy D, Gelinas JN. Closed-loop electrical stimulation to prevent focal epilepsy progression and long-term memory impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579660. [PMID: 38405990 PMCID: PMC10888806 DOI: 10.1101/2024.02.09.579660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Interictal epileptiform discharges (IEDs) are ubiquitously expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes as most therapeutics target seizures. We show in a model of progressive hippocampal epilepsy that IEDs produce pathological oscillatory coupling which is associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expands the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human subjects with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation. One-Sentence Summary Targeted closed-loop electrical stimulation prevents spread of the epileptic network and ameliorates long-term spatial memory deficits.
Collapse
|
11
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Roliz AH, Kothare S. The Relationship Between Sleep, Epilepsy, and Development: a Review. Curr Neurol Neurosci Rep 2023; 23:469-477. [PMID: 37458984 DOI: 10.1007/s11910-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To review the relationship between sleep, neurodevelopment, and epilepsy and potential underlying physiological mechanisms. RECENT FINDINGS Recent studies have advanced our understanding of the role of sleep in early brain development and epilepsy. Epileptogenesis has been proposed to occur when there is a failure of normal adaptive processes of synaptic and homeostatic plasticity. This sleep-dependent transformation may explain the cognitive impairment seen in epilepsy, especially when occurring early in life. The glymphatic system, a recently discovered waste clearance system of the central nervous system, has been described as a potential mechanism underlying the relationship between sleep and seizures and may account for the common association between sleep deprivation and increased seizure risk. Epilepsy and associated sleep disturbances can critically affect brain development and neurocognition. Here we highlight recent findings on this topic and emphasize the importance of screening for sleep concerns in people with epilepsy.
Collapse
Affiliation(s)
- Annie H Roliz
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA.
| |
Collapse
|
14
|
Adhikari Y, Ma CG, Chai Z, Jin X. Preventing development of post-stroke hyperexcitability by optogenetic or pharmacological stimulation of cortical excitatory activity. Neurobiol Dis 2023; 184:106233. [PMID: 37468047 DOI: 10.1016/j.nbd.2023.106233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Stroke is the most common cause of acquired epilepsy, but treatment for preventing the development of post-stroke epilepsy is still unavailable. Since stroke results in neuronal damage and death as well as initial loss of activity in the affected brain region, homeostatic plasticity may be trigged and contribute to an increase in network hyperexcitability that underlies epileptogenesis. Correspondingly, enhancing brain activity may inhibit hyperexcitability from enhanced homeostatic plasticity and prevent post-stroke epileptogenesis. To test these hypotheses, we first used in vivo two-photon and mesoscopic imaging of activity of cortical pyramidal neurons in Thy1-GCaMP6 transgenic mice to determine longitudinal changes in excitatory activity after a photothrombotic ischemic stroke. At 3-days post-stroke, there was a significant loss of neuronal activity in the peri-injury area as indicated by reductions in the frequency of calcium spikes and percentage of active neurons, which recovered to baseline level at day 7, supporting a homeostatic activity regulation of the surviving neurons in the peri-injury area. We further used optogenetic stimulation to specifically stimulate activity of pyramidal neurons in the peri-injury area of Thy-1 channelrhodopsin transgenic mice from day 5 to day 15 after stroke. Using pentylenetetrazole test to evaluate seizure susceptibility, we showed that stroke mice are more susceptible to Racine stage V seizures (time latency 54.3 ± 12.9 min) compared to sham mice (107.1 ± 13.6 min), but optogenetic stimulation reversed the increase in seizure susceptibility (114.0 ± 9.2 min) in mice with stroke. Similarly, administration of D-cycloserine, a partial N-methyl-d-aspartate (NMDA) receptor agonist that can mildly enhance neuronal activity without causing post-stroke seizure, from day 5 to day 15 after a stroke significantly reversed the increase in seizure susceptibility. The treatment also resulted in an increased survival of glutamic acid decarboxylase 67 (GAD67) positive interneurons and a reduced activation of glial fibrillary acidic protein (GFAP) positive reactive astrocytes. Thus, this study supports the involvement of homeostatic activity regulation in the development of post-stroke hyperexcitability and potential application of activity enhancement as a novel strategy to prevent post-stroke late-onset seizure and epilepsy through regulating cortical homeostatic plasticity.
Collapse
Affiliation(s)
- Yadav Adhikari
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation/Neurobiology Research Center, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Zhi Chai
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation/Neurobiology Research Center, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoming Jin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Yang J, Prescott SA. Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Front Cell Neurosci 2023; 17:1184563. [PMID: 37333893 PMCID: PMC10272428 DOI: 10.3389/fncel.2023.1184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Neurons maintain their average firing rate and other properties within narrow bounds despite changing conditions. This homeostatic regulation is achieved using negative feedback to adjust ion channel expression levels. To understand how homeostatic regulation of excitability normally works and how it goes awry, one must consider the various ion channels involved as well as the other regulated properties impacted by adjusting those channels when regulating excitability. This raises issues of degeneracy and pleiotropy. Degeneracy refers to disparate solutions conveying equivalent function (e.g., different channel combinations yielding equivalent excitability). This many-to-one mapping contrasts the one-to-many mapping described by pleiotropy (e.g., one channel affecting multiple properties). Degeneracy facilitates homeostatic regulation by enabling a disturbance to be offset by compensatory changes in any one of several different channels or combinations thereof. Pleiotropy complicates homeostatic regulation because compensatory changes intended to regulate one property may inadvertently disrupt other properties. Co-regulating multiple properties by adjusting pleiotropic channels requires greater degeneracy than regulating one property in isolation and, by extension, can fail for additional reasons such as solutions for each property being incompatible with one another. Problems also arise if a perturbation is too strong and/or negative feedback is too weak, or because the set point is disturbed. Delineating feedback loops and their interactions provides valuable insight into how homeostatic regulation might fail. Insofar as different failure modes require distinct interventions to restore homeostasis, deeper understanding of homeostatic regulation and its pathological disruption may reveal more effective treatments for chronic neurological disorders like neuropathic pain and epilepsy.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Curia G. Hebbian and homeostatic synaptic plasticity of AMPA receptors in epileptogenesis. Cell Rep Med 2023; 4:101047. [PMID: 37196628 DOI: 10.1016/j.xcrm.2023.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
AMPA receptors' synaptic plasticity is involved in epileptogenesis. In this issue, Eiro et al.1 demonstrate that Hebbian plasticity is responsible for increased AMPAR in focal seizures, while homeostatic plasticity induces the reduction of AMPAR in generalized onset seizures.
Collapse
Affiliation(s)
- Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|