1
|
Dong X, Stokes MF, Hendry AP, Larsen LG, Dolby GA. Geo-evolutionary feedbacks: integrating rapid evolution and landscape change. Trends Ecol Evol 2024; 39:863-876. [PMID: 38862356 DOI: 10.1016/j.tree.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
We develop a conceptual framework for geo-evolutionary feedbacks which describes the mutual interplay between landscape change and the evolution of traits of organisms residing on the landscape, with an emphasis on contemporary timeframes. Geo-evolutionary feedbacks can be realized via the direct evolution of geomorphic engineering traits or can be mediated by the evolution of trait variation that affects the population size and distribution of the specific geomorphic engineering organisms involved. Organisms that modify their local environments provide the basis for patch-scale geo-evolutionary feedbacks, whereas spatial self-organization provides a mechanism for geo-evolutionary feedbacks at the landscape scale. Understanding these likely prevalent geo-evolutionary feedbacks, that occur at timescales similar to anthropogenic climate change, will be essential to better predict landscape adaptive capacity and change.
Collapse
Affiliation(s)
- Xiaoli Dong
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.
| | - Maya F Stokes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Laurel G Larsen
- Department of Geography and Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Greer A Dolby
- Department of Biology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
2
|
Vahsen ML, Kleiner HS, Kodak H, Summers JL, Vahsen WL, Blum MJ, Megonigal JP, McLachlan JS. Complex eco-evolutionary responses of a foundational coastal marsh plant to global change. THE NEW PHYTOLOGIST 2023; 240:2121-2136. [PMID: 37452486 DOI: 10.1111/nph.19117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity. Here, we assessed the relative magnitude of eco-evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32 Schoenoplectus americanus genotypes 'resurrected' from century-long, soil-stored seed banks to ambient or elevated CO2 , varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities. Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9-31% of trait variation. Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.
Collapse
Affiliation(s)
- Megan L Vahsen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Helena S Kleiner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Haley Kodak
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jennifer L Summers
- Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Wendy L Vahsen
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Michael J Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | | | - Jason S McLachlan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
3
|
Christie K, Pierson NR, Holeski LM, Lowry DB. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual. AMERICAN JOURNAL OF BOTANY 2023; 110:e16265. [PMID: 38102863 DOI: 10.1002/ajb2.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
PREMISE Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Natalie R Pierson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA
- Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
4
|
Tomowski M, Lozada-Gobilard S, Jeltsch F, Tiedemann R. Recruitment and migration patterns reveal a key role for seed banks in the meta-population dynamics of an aquatic plant. Sci Rep 2023; 13:11269. [PMID: 37438408 DOI: 10.1038/s41598-023-37974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity.
Collapse
Affiliation(s)
- Maxi Tomowski
- Unit of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Vahsen ML, Blum MJ, Megonigal JP, Emrich SJ, Holmquist JR, Stiller B, Todd-Brown KEO, McLachlan JS. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 2023; 379:393-398. [PMID: 36701449 DOI: 10.1126/science.abq0595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rapid evolution remains a largely unrecognized factor in models that forecast the fate of ecosystems under scenarios of global change. In this work, we quantified the roles of heritable variation in plant traits and of trait evolution in explaining variability in forecasts of the state of coastal wetland ecosystems. A common garden study of genotypes of the dominant sedge Schoenoplectus americanus, "resurrected" from time-stratified seed banks, revealed that heritable variation and evolution explained key ecosystem attributes such as the allocation and distribution of belowground biomass. Incorporating heritable trait variation and evolution into an ecosystem model altered predictions of carbon accumulation and soil surface accretion (a determinant of marsh resilience to sea level rise), demonstrating the importance of accounting for evolutionary processes when forecasting ecosystem dynamics.
Collapse
Affiliation(s)
- M L Vahsen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - M J Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - J P Megonigal
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - S J Emrich
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - J R Holmquist
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - B Stiller
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - K E O Todd-Brown
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - J S McLachlan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
6
|
Lumibao CY, Torres Martínez L, Megonigal JP, Van Bael SA, Blum MJ. Microbial mediation of salinity stress response varies by plant genotype and provenance over time. Mol Ecol 2022; 31:4571-4585. [DOI: 10.1111/mec.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Candice Y. Lumibao
- University of Tennessee Department of Ecology & Evolutionary Biology Knoxville TN USA
- Texas A&M University – Corpus Christi, Department of Life Sciences Corpus Christi Texas USA
| | | | | | - Sunshine A. Van Bael
- Tulane University Department of Ecology & Evolutionary Biology New Orleans LA USA
| | - Michael J. Blum
- University of Tennessee Department of Ecology & Evolutionary Biology Knoxville TN USA
| |
Collapse
|
7
|
Rauschkolb R, Li Z, Godefroid S, Dixon L, Durka W, Májeková M, Bossdorf O, Ensslin A, Scheepens JF. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. THE NEW PHYTOLOGIST 2022; 235:773-785. [PMID: 35357713 DOI: 10.1111/nph.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ongoing global warming, coupled with increased drought frequencies, together with other biotic drivers may have resulted in complex evolutionary adaptation. The resurrection approach, comparing ancestors raised from stored seeds with their contemporary descendants under common conditions, is a powerful method to test for recent evolution in plant populations. We used 21-26-yr-old seeds of four European plant species - Matthiola tricuspidata, Plantago crassifolia, Clinopodium vulgare and Leontodon hispidus - stored in seed banks together with re-collected seeds from their wild populations. To test for evolutionary changes, we conducted a glasshouse experiment that quantified heritable changes in plant responses to drought and simulated insect herbivory. In three out of the four studied species, we found evidence that descendants had evolved shorter life cycles through faster growth and flowering. Shifts in the osmotic potential and leaf dry matter content indicated that descendants also evolved increased drought tolerance. A comparison of quantitative genetic differentiation (QST ) vs neutral molecular differentiation (FST ) values, using double digest restriction-site associated DNA (ddRAD) genotyping data, suggested that directional selection, and therefore adaptive evolution, was underlying some of the observed phenotypic changes. In summary, our study revealed evolutionary changes in plant populations over the last decades that are consistent with adaptation of drought escape and tolerance as well as herbivory avoidance.
Collapse
Affiliation(s)
- Robert Rauschkolb
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Germany, Philosophenweg 16, 07743, Jena, Germany
| | - Zixin Li
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | | | - Lara Dixon
- Conservatoire Botanique National Méditerranéen de Porquerolles, 34 avenue Gambetta, 83400, Hyères, France
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Maria Májeková
- Plant Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Andreas Ensslin
- Conservatory and Botanic Garden of the City of Geneva, 1296, Chambésy, Geneva, Switzerland
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Vahsen ML, Gentile RM, Summers JL, Kleiner HS, Foster B, McCormack RM, James EW, Koch RA, Metts DL, Saunders C, Megonigal JP, Blum MJ, McLachlan JS. Accounting for variability when resurrecting dormant propagules substantiates their use in eco-evolutionary studies. Evol Appl 2021; 14:2831-2847. [PMID: 34950232 PMCID: PMC8674891 DOI: 10.1111/eva.13316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies.
Collapse
Affiliation(s)
- Megan L. Vahsen
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel M. Gentile
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Jennifer L. Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Helena S. Kleiner
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Benjamin Foster
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Regina M. McCormack
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Evan W. James
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel A. Koch
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Dailee L. Metts
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Colin Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFloridaUSA
| | | | - Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
9
|
Blum MJ, Saunders CJ, McLachlan JS, Summers J, Craft C, Herrick JD. A century-long record of plant evolution reconstructed from a coastal marsh seed bank. Evol Lett 2021; 5:422-431. [PMID: 34367666 PMCID: PMC8327947 DOI: 10.1002/evl3.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
Evidence is mounting that climate-driven shifts in environmental conditions can elicit organismal evolution, yet there are sparingly few long-term records that document the tempo and progression of responses, particularly for plants capable of transforming ecosystems. In this study, we "resurrected" cohorts of a foundational coastal marsh sedge (Schoenoplectus americanus) from a time-stratified seed bank to reconstruct a century-long record of heritable variation in response to salinity exposure. Common-garden experiments revealed that S. americanus exhibits heritable variation in phenotypic traits and biomass-based measures of salinity tolerance. We found that responses to salinity exposure differed among the revived cohorts, with plants from the early 20th century exhibiting greater salinity tolerance than those from the mid to late 20th century. Fluctuations in salinity tolerance could reflect stochastic variation but a congruent record of genotypic variation points to the alternative possibility that the loss and gain in functionality are driven by selection, with comparisons to historical rainfall and paleosalinity records suggesting that selective pressures vary according to shifting estuarine conditions. Because salinity tolerance in S. americanus is tightly coupled to primary productivity and other vital ecosystem attributes, these findings indicate that organismal evolution merits further consideration as a factor shaping coastal marsh responses to climate change.
Collapse
Affiliation(s)
- Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Colin J. Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFlorida33199
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameSouth BendIndiana46556
| | - Jennifer Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Christopher Craft
- School of Public and Environmental AffairsIndiana UniversityBloomingtonIndiana47405
| | - Jeffrey D. Herrick
- U.S Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNorth Carolina27711
| |
Collapse
|
10
|
Mozdzer TJ, Watson EB, Orem WH, Swarzenski CM, Turner RE. Unraveling the Gordian Knot: Eight testable hypotheses on the effects of nutrient enrichment on tidal wetland sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140420. [PMID: 32758808 DOI: 10.1016/j.scitotenv.2020.140420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The position of tidal wetlands at the land-sea interface makes them especially vulnerable to the effects of nutrient discharges and sea level rise (SLR). Experimental studies of coastal wetland nutrient additions report conflicting results among and within habitats, highlighting the importance of site-specific factors, and how spatial and temporal scaling modulates responses. This suite of influences as SLR accelerates creates a "Gordian Knot" that may compromise coastal habitat integrity. We present eight testable hypotheses here to loosen this knot by identifying critical modulators about nutrient form, soil type and porosity, physiochemical gradients, and eco-evolutionary responses that may control the impacts of nutrient enrichment on coastal wetland sustainability: (1) the delivery and form of the nutrient shapes the ecosystem response; (2) soil type mediates the effects of nutrient enrichment on marshes; (3) belowground responses cannot be solely explained by phenotypic responses; (4) shifting zones of redox and salinity gradients modulate nutrient enrichment impacts; (5) eco-evolutionary processes can drive responses to nutrient availability; (6) nutrient enrichment leads to multiple changed ecosystem states; (7) biogeography trumps a plant's plastic responses to nutrient enrichment; and, (8) nutrient-enhanced wetlands are more susceptible to additional (and anticipated) anthropogenic changes. They provide a framework to investigate and integrate the urgently needed research to understand how excess nutrients threaten the sustainability of coastal wetlands, and wetlands in general. While there is no single 'right way' to test these hypotheses, including a combination of complex and simple, highly-replicated experiments is essential.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Department of Biology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA 19010, USA.
| | - Elizabeth Burke Watson
- Department of Biodiversity, Earth & Environmental Sciences, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
| | - William H Orem
- U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, Reston, VA 20192-0002, USA.
| | - Christopher M Swarzenski
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 3535 S. Sherwood Forest Blvd., Baton Rouge, LA 70816, USA.
| | - R Eugene Turner
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|