1
|
Chevin LM, Bridle J. Impacts of limits to adaptation on population and community persistence in a changing environment. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230322. [PMID: 39780591 PMCID: PMC11712278 DOI: 10.1098/rstb.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/11/2025] Open
Abstract
A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution. However, the amount and rate of evolution are limited by genetic architectures, developmental systems (including phenotypic plasticity) and the legacies of recent evolutionary history. Here, we summarize adaptive limits and their ecological consequences in time (evolutionary rescue) and space (species' range limits), relating theoretical predictions to empirical tests. We then highlight key avenues for future research in this area, from better connections between evolution and demography to analysing the genomic architecture of adaptation, the dynamics of plasticity and interactions between the biotic and abiotic environment. Progress on these questions will help us understand when and where evolution and phenotypic plasticity will allow species and communities to persist in the face of rapid environmental change.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
2
|
Malusare SP, Zilio G, Fronhofer EA. Evolution of thermal performance curves: A meta-analysis of selection experiments. J Evol Biol 2023; 36:15-28. [PMID: 36129955 PMCID: PMC10087336 DOI: 10.1111/jeb.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Temperatures are increasing due to global changes, putting biodiversity at risk. Organisms are faced with a limited set of options to cope with this situation: adapt, disperse or die. We here focus on the first possibility, more specifically, on evolutionary adaptations to temperature. Ectotherms are usually characterized by a hump-shaped relationship between fitness and temperature, a non-linear reaction norm that is referred to as thermal performance curve (TPC). To understand and predict impacts of global change, we need to know whether and how such TPCs evolve. Therefore, we performed a systematic literature search and a statistical meta-analysis focusing on experimental evolution and artificial selection studies. This focus allows us to directly quantify relative fitness responses to temperature selection by calculating fitness differences between TPCs from ancestral and derived populations after thermal selection. Out of 7561 publications screened, we found 47 studies corresponding to our search criteria representing taxa across the tree of life, from bacteria, to plants and vertebrates. We show that, independently of species identity, the studies we found report a positive response to temperature selection. Considering entire TPC shapes, adaptation to higher temperatures traded off with fitness at lower temperatures, leading to niche shifts. Effects were generally stronger in unicellular organisms. By contrast, we do not find statistical support for the often discussed "Hotter is better" hypothesis. While our meta-analysis provides evidence for adaptive potential of TPCs across organisms, it also highlights that more experimental work is needed, especially for under-represented taxa, such as plants and non-model systems.
Collapse
Affiliation(s)
- Sarthak P Malusare
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Giacomo Zilio
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
3
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
4
|
Tseng M, Di Filippo CM, Fung M, Kim JO, Forster IP, Zhou Y. Cascading effects of algal warming in a freshwater community. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle Tseng
- Departments of Botany and Zoology University of British Columbia Vancouver BC Canada
| | | | - Madeline Fung
- Departments of Botany and Zoology University of British Columbia Vancouver BC Canada
| | - Jihyun O. Kim
- Departments of Botany and Zoology University of British Columbia Vancouver BC Canada
| | | | - Yilin Zhou
- Departments of Botany and Zoology University of British Columbia Vancouver BC Canada
| |
Collapse
|
5
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
6
|
Diamond SE, Martin RA. Evolution is a double-edged sword, not a silver bullet, to confront global change. Ann N Y Acad Sci 2020; 1469:38-51. [PMID: 32500534 DOI: 10.1111/nyas.14410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Although there is considerable optimism surrounding adaptive evolutionary responses to global change, relatively little attention has been paid to maladaptation in this context. In this review, we consider how global change might lead populations to become maladapted. We further consider how populations can evolve to new optima, fail to evolve and therefore remain maladapted, or become further maladapted through trait-driven or eco-evo-driven mechanisms after being displaced from their fitness optima. Our goal is to stimulate thinking about evolution as a "double-edged sword" that comprises both adaptive and maladaptive responses, rather than as a "silver bullet" or a purely adaptive mechanism to combat global change. We conclude by discussing how a better appreciation of environmentally driven maladaptation and maladaptive responses might improve our current understanding of population responses to global change and our ability to forecast future responses.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc Biol Sci 2020; 287:20200608. [PMID: 32486974 PMCID: PMC7341922 DOI: 10.1098/rspb.2020.0608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish (Gambusia affinis) recently established (less than 100 years) from a common source across a strong thermal gradient (19–33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature–size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world.
Collapse
Affiliation(s)
- David C Fryxell
- School of Environment, University of Auckland, Auckland 1010, New Zealand.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Alexander N Hoover
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Daniel A Alvarez
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Finn J Arnesen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | | | - Emma R Moffett
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - Kevin S Simon
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| |
Collapse
|
8
|
Uiterwaal SF, Lagerstrom IT, Luhring TM, Salsbery ME, DeLong JP. Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol Evol 2020; 10:1368-1377. [PMID: 32076520 PMCID: PMC7029080 DOI: 10.1002/ece3.5990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023] Open
Abstract
The effects of climate change-such as increased temperature variability and novel predators-rarely happen in isolation, but it is unclear how organisms cope with multiple stressors simultaneously. To explore this, we grew replicate Paramecium caudatum populations in either constant or variable temperatures and exposed half to predation. We then fit thermal performance curves (TPCs) of intrinsic growth rate (r max) for each replicate population (N = 12) across seven temperatures (10°C-38°C). TPCs of P. caudatum exposed to both temperature variability and predation responded only to one or the other (but not both), resulting in unpredictable outcomes. These changes in TPCs were accompanied by changes in cell morphology. Although cell volume was conserved across treatments, cells became narrower in response to temperature variability and rounder in response to predation. Our findings suggest that predation and temperature variability produce conflicting pressures on both thermal performance and cell morphology. Lastly, we found a strong correlation between changes in cell morphology and TPC parameters in response to predation, suggesting that responses to opposing selective pressures could be constrained by trade-offs. Our results shed new light on how environmental and ecological pressures interact to elicit changes in characteristics at both the individual and population levels. We further suggest that morphological responses to interactive environmental forces may modulate population-level responses, making prediction of long-term responses to environmental change challenging.
Collapse
Affiliation(s)
| | - Ian T. Lagerstrom
- School of Biological SciencesUniversity of Nebraska ‐ LincolnLincolnNEUSA
| | - Thomas M. Luhring
- School of Biological SciencesUniversity of Nebraska ‐ LincolnLincolnNEUSA
| | | | - John P. DeLong
- School of Biological SciencesUniversity of Nebraska ‐ LincolnLincolnNEUSA
| |
Collapse
|
9
|
Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. ISME JOURNAL 2019; 14:389-398. [PMID: 31628440 DOI: 10.1038/s41396-019-0526-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Thermal performance curves (TPCs) are used to predict changes in species interactions, and hence, range shifts, disease dynamics and community composition, under forecasted climate change. Species interactions might in turn affect TPCs. Here, we investigate how temperature-dependent changes in a microbial host-parasite interaction (the bacterium Pseudomonas fluorescens, and its lytic bacteriophage, SBW[Formula: see text]) changes the host TPC and the ecological and evolutionary mechanisms underlying these changes. The bacteriophage had a narrower thermal tolerance for infection, with their critical thermal maximum ~6 °C lower than those at which the bacteria still had high growth. Consequently, in the presence of phage, the host TPC changed, resulting in a lower maximum growth rate. These changes were not just driven by differences in thermal tolerance, with temperature-dependent costs of evolved resistance also playing a major role: the largest cost of resistance occurred at the temperature at which bacteria grew best in the absence of phage. Our work highlights how ecological and evolutionary mechanisms can alter the effect of a parasite on host thermal performance, even over very short timescales.
Collapse
Affiliation(s)
- Daniel Padfield
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK.
| | - Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| |
Collapse
|
10
|
Lau JA, terHorst CP. Evolutionary responses to global change in species‐rich communities. Ann N Y Acad Sci 2019; 1476:43-58. [DOI: 10.1111/nyas.14221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jennifer A. Lau
- Department of Biology, Environmental Resilience Institute Indiana University Bloomington Indiana
| | - Casey P. terHorst
- Biology Department California State University Northridge California
| |
Collapse
|
11
|
Brady SP, Bolnick DI, Angert AL, Gonzalez A, Barrett RD, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Guichard F, Lamy T, McAdam AG, Newman AE, Paccard A, Rolshausen G, Simons AM, Hendry AP. Causes of maladaptation. Evol Appl 2019; 12:1229-1242. [PMID: 31417611 PMCID: PMC6691215 DOI: 10.1111/eva.12844] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts - where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenCTUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutMansfieldCTUSA
| | - Amy L. Angert
- Departments of Botany and ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Andrew Gonzalez
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Rowan D.H. Barrett
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNYUSA
| | - Alison M. Derry
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Département des sciences biologiquesUniversité du Québec à MontréalMontréalQCCanada
| | | | | | - Gregor F. Fussmann
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Frederic Guichard
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
| | - Thomas Lamy
- Département de sciences biologiquesUniversité de MontréalMontréalQCCanada
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| | - Andrew G. McAdam
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Amy E.M. Newman
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | | | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | | | - Andrew P. Hendry
- Department of BiologyMcGill UniversityMontréalQCCanada
- Quebec Centre for Biodiversity Science, Stewart BiologyMcGill UniversityMontréalQCCanada
- Redpath MuseumMcGill UniversityMontréalQCCanada
| |
Collapse
|