1
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
2
|
Hayatgheibi H, Hallingbäck HR, Lundqvist SO, Grahn T, Scheepers G, Nordström P, Chen ZQ, Kärkkäinen K, Wu HX, García-Gil MR. Implications of accounting for marker-based population structure in the quantitative genetic evaluation of genetic parameters related to growth and wood properties in Norway spruce. BMC Genom Data 2024; 25:60. [PMID: 38877416 PMCID: PMC11177499 DOI: 10.1186/s12863-024-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.
Collapse
Affiliation(s)
- Haleh Hayatgheibi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.
| | | | | | | | | | | | - Zhi-Qiang Chen
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding By Molecular Design, Beijing Forestry University, Beijing, China
- Black Mountain Laboratory, CSIRO National Collection Research Australia, Canberra, Australia
| | - M Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
3
|
Erlichman A, Sandell L, Otto SP, Aitken SN, Ronce O. Planting long-lived trees in a warming climate: Theory shows the importance of stage-dependent climatic tolerance. Evol Appl 2024; 17:e13711. [PMID: 38894979 PMCID: PMC11183180 DOI: 10.1111/eva.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
Climate change poses a particular threat to long-lived trees, which may not adapt or migrate fast enough to keep up with rising temperatures. Assisted gene flow could facilitate adaptation of populations to future climates by using managed translocation of seeds from a warmer location (provenance) within the current range of a species. Finding the provenance that will perform best in terms of survival or growth is complicated by a trade-off. Because trees face a rapidly changing climate during their long lives, the alleles that confer optimal performance may vary across their lifespan. For instance, trees from warmer provenances could be well adapted as adults but suffer from colder temperatures while juvenile. Here we use a stage-structured model, using both analytical predictions and numerical simulations, to determine which provenance would maximize the survival of a cohort of long-lived trees in a changing climate. We parameterize our simulations using empirically estimated demographic transition matrices for 20 long-lived tree species. Unable to find reliable quantitative estimates of how climatic tolerance changes across stages in these same species, we varied this parameter to study its effect. Both our mathematical model and simulations predict that the best provenance depends strongly on how fast the climate changes and also how climatic tolerance varies across the lifespan of a tree. We thus call for increased empirical efforts to measure how climate tolerance changes over life in long-lived species, as our model suggests that it should strongly influence the best provenance for assisted gene flow.
Collapse
Affiliation(s)
- Adèle Erlichman
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Linnea Sandell
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Organismal BiologyUppsala UniversityUppsalaSweden
- Department of Urban and Rural DevelopmentSwedish University of AgricultureUppsalaSweden
| | - Sarah P. Otto
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sally N. Aitken
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ophélie Ronce
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Dauphin B, Peter M. Tracking signatures of selection in natural populations of ectomycorrhizal fungi - progress, challenges, and prospects. THE NEW PHYTOLOGIST 2024; 242:384-388. [PMID: 38268341 DOI: 10.1111/nph.19553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
5
|
Capblancq T, Lachmuth S, Fitzpatrick MC, Keller SR. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. THE NEW PHYTOLOGIST 2023; 237:1590-1605. [PMID: 36068997 PMCID: PMC10092705 DOI: 10.1111/nph.18465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 05/12/2023]
Abstract
Local adaptation to climate is common in plant species and has been studied in a range of contexts, from improving crop yields to predicting population maladaptation to future conditions. The genomic era has brought new tools to study this process, which was historically explored through common garden experiments. In this study, we combine genomic methods and common gardens to investigate local adaptation in red spruce and identify environmental gradients and loci involved in climate adaptation. We first use climate transfer functions to estimate the impact of climate change on seedling performance in three common gardens. We then explore the use of multivariate gene-environment association methods to identify genes underlying climate adaptation, with particular attention to the implications of conducting genome scans with and without correction for neutral population structure. This integrative approach uncovered phenotypic evidence of local adaptation to climate and identified a set of putatively adaptive genes, some of which are involved in three main adaptive pathways found in other temperate and boreal coniferous species: drought tolerance, cold hardiness, and phenology. These putatively adaptive genes segregated into two 'modules' associated with different environmental gradients. This study nicely exemplifies the multivariate dimension of adaptation to climate in trees.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| | - Susanne Lachmuth
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Matthew C. Fitzpatrick
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Stephen R. Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| |
Collapse
|
6
|
Tiret M, Olsson L, Grahn T, Karlsson B, Milesi P, Lascoux M, Lundqvist S, García‐Gil MR. Divergent selection predating the Last Glacial Maximum mainly acted on macro-phenotypes in Norway spruce. Evol Appl 2023; 16:163-172. [PMID: 36699125 PMCID: PMC9850012 DOI: 10.1111/eva.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current distribution and population structure of many species were, to a large extent, shaped by cycles of isolation in glacial refugia and subsequent population expansions. Isolation in and postglacial expansion through heterogeneous environments led to either neutral or adaptive divergence. Norway spruce is no exception, and its current distribution is the consequence of a constant interplay between evolutionary and demographic processes. We investigated population differentiation and adaptation of Norway spruce for juvenile growth, diameter of the stem, wood density, and tracheid traits at breast height. Data from 4461 phenotyped and genotyped Norway spruce from 396 half-sib families in two progeny tests were used to test for divergent selection in the framework of Q ST vs. F ST. We show that the macroscopic resultant trait (stem diameter), unlike its microscopic components (tracheid dimensions) and juvenile growth, was under divergent selection that predated the Last Glacial Maximum. Altogether, the current variation in these phenotypic traits in Norway spruce is better explained by local adaptation to ancestral environments than to current ones, where populations were partly preadapted, mainly through growth-related traits.
Collapse
Affiliation(s)
- Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
- IGEPP, INRAE, Institut Agro, Université de RennesDomaine de la MotteLe RheuFrance
| | | | | | | | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | | | - Maria Rosario García‐Gil
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
| |
Collapse
|
7
|
Li L, Milesi P, Tiret M, Chen J, Sendrowski J, Baison J, Chen Z, Zhou L, Karlsson B, Berlin M, Westin J, Garcia‐Gil MR, Wu HX, Lascoux M. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. THE NEW PHYTOLOGIST 2022; 236:1976-1987. [PMID: 36093739 PMCID: PMC9828440 DOI: 10.1111/nph.18480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.
Collapse
Affiliation(s)
- Lili Li
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Jun Chen
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
- College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Janek Sendrowski
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - John Baison
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Zhi‐qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | | | - Mats Berlin
- SkogforskUppsala Science Park751 83UppsalaSweden
| | - Johan Westin
- Unit for Field‐Based Forest ResearchSwedish University of Agricultural SciencesSE‐922 91VindelnSweden
| | - Maria Rosario Garcia‐Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
- CSIRO National Collection Research AustraliaBlack Mountain LaboratoryCanberraACT2601Australia
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| |
Collapse
|
8
|
Heuchel A, Hall D, Zhao W, Gao J, Wennström U, Wang XR. Genetic diversity and background pollen contamination in Norway spruce and Scots pine seed orchard crops. FORESTRY RESEARCH 2022; 2:8. [PMID: 39525423 PMCID: PMC11524256 DOI: 10.48130/fr-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2024]
Abstract
Seed orchards are the key link between tree breeding and production forest for conifer trees. In Sweden, Scots pine and Norway spruce seed orchards currently supply ca. 85% of seedlings used in annual reforestation. The functionality of these seed orchards is thus crucial for supporting long-term production gain and sustainable diversity. We conducted a large-scale genetic investigation of pine and spruce orchards across Sweden using genotyping-by-sequencing. We genotyped 3,300 seedlings/trees from six orchards and 10 natural stands to gain an overview of mating structure and genetic diversity in orchard crops. We found clear differences in observed heterozygosity (H O) and background pollen contamination (BPC) rates between species, with pine orchard crops showing higher H O and BPC than spruce. BPC in pine crops varied from 87% at young orchard age to 12% at mature age, wherease this rate ranged between 27%-4% in spruce crops. Substantial variance in parental contribution was observed in all orchards with 30%-50% parents contibuting to 80% of the progeny. Selfing was low (2%-6%) in all seed crops. Compared to natural stands, orchard crops had slightly lower H O but no strong signal of inbreeding. Our results provide valuable references for orchard management.
Collapse
Affiliation(s)
- Alisa Heuchel
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, Yunnan, China
| | - Ulfstand Wennström
- The Forestry Research Institute of Sweden (Skogforsk), Sävar SE-918 21, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå SE-90187, Sweden
| |
Collapse
|
9
|
Heritable and Climatic Sources of Variation in Juvenile Tree Growth in an Austrian Common Garden Experiment of Central European Norway Spruce Populations. FORESTS 2022. [DOI: 10.3390/f13050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We leveraged publicly available data on juvenile tree height of 299 Central European Norway spruce populations grown in a common garden experiment across 24 diverse trial locations in Austria and weather data from the trial locations and population provenances to parse the heritable and climatic components of juvenile tree height variation. Principal component analysis of geospatial and weather variables demonstrated high interannual variation among trial environments, largely driven by differences in precipitation, and separation of population provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and modeling the covariance between populations and trial environments based on climatic data led to more stable estimation of heritability and population × environment variance. Climatic similarity among population provenances was highly predictive of population × environment estimates for tree height.
Collapse
|
10
|
Redondo MA, Oliva J, Elfstrand M, Boberg J, Capador-Barreto HD, Karlsson B, Berlin A. Host genotype interacts with aerial spore communities and influences the needle mycobiome of Norway spruce. Environ Microbiol 2022; 24:3640-3654. [PMID: 35315253 PMCID: PMC9544151 DOI: 10.1111/1462-2920.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high‐throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.
Collapse
Affiliation(s)
- Miguel A Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Jonàs Oliva
- Department of Crop and Forest Sciences, University of Lleida, Alcalde Rovira Roure 191, Lleida, 25198, Spain.,Joint Research Unit CTFC-AGROTECNIO, Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Johanna Boberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Hernán D Capador-Barreto
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Bo Karlsson
- Skogforsk, Svalöv, Ekebo 2250, 268 90, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| |
Collapse
|
11
|
Feng L, Du FK. Landscape Genomics in Tree Conservation Under a Changing Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:822217. [PMID: 35283901 PMCID: PMC8908315 DOI: 10.3389/fpls.2022.822217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
Understanding the genetic basis of how species respond to changing environments is essential to the conservation of species. However, the molecular mechanisms of adaptation remain largely unknown for long-lived tree species which always have large population sizes, long generation time, and extensive gene flow. Recent advances in landscape genomics can reveal the signals of adaptive selection linking genetic variations and landscape characteristics and therefore have created novel insights into tree conservation strategies. In this review article, we first summarized the methods of landscape genomics used in tree conservation and elucidated the advantages and disadvantages of these methods. We then highlighted the newly developed method "Risk of Non-adaptedness," which can predict the genetic offset or genomic vulnerability of species via allele frequency change under multiple scenarios of climate change. Finally, we provided prospects concerning how our introduced approaches of landscape genomics can assist policymaking and improve the existing conservation strategies for tree species under the ongoing global changes.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fang K. Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Fang K. Du,
| |
Collapse
|
12
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
13
|
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep 2021; 11:23119. [PMID: 34848793 PMCID: PMC8632914 DOI: 10.1038/s41598-021-02545-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.
Collapse
|
14
|
Kjønaas OJ, Bárcena TG, Hylen G, Nordbakken J, Økland T. Boreal tree species change as a climate mitigation strategy: impact on ecosystem C and N stocks and soil nutrient levels. Ecosphere 2021. [DOI: 10.1002/ecs2.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- O. Janne Kjønaas
- Norwegian Institute of Bioeconomy Research P. O. Box 115 NO‐1431 Ås Norway
| | - Teresa G. Bárcena
- Norwegian Institute of Bioeconomy Research P. O. Box 115 NO‐1431 Ås Norway
| | - Gro Hylen
- Norwegian Institute of Bioeconomy Research P. O. Box 115 NO‐1431 Ås Norway
| | | | - Tonje Økland
- Norwegian Institute of Bioeconomy Research P. O. Box 115 NO‐1431 Ås Norway
| |
Collapse
|
15
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Chen ZQ, Zan Y, Milesi P, Zhou L, Chen J, Li L, Cui B, Niu S, Westin J, Karlsson B, García-Gil MR, Lascoux M, Wu HX. Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biol 2021; 22:179. [PMID: 34120648 PMCID: PMC8201819 DOI: 10.1186/s13059-021-02392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) identify loci underlying the variation of complex traits. One of the main limitations of GWAS is the availability of reliable phenotypic data, particularly for long-lived tree species. Although an extensive amount of phenotypic data already exists in breeding programs, accounting for its high heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to standardize the heterogeneous data from 120 field experiments of 483,424 progenies of Norway spruce to implement the largest reported GWAS for trees using 134 605 SNPs from exome sequencing of 5056 parental trees. RESULTS We identify 55 novel quantitative trait loci (QTLs) that are associated with phenotypic variation. The largest number of QTLs is associated with the budburst stage, followed by diameter at breast height, wood quality, and frost damage. Two QTLs with the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter and are associated with MAP3K genes. Genotype data called from exome capture, recently developed SNP array and gene expression data indirectly support this discovery. CONCLUSION Several important QTLs associated with growth and frost damage have been verified in several southern and northern progeny plantations, indicating that these loci can be used in QTL-assisted genomic selection. Our study also demonstrates that existing heterogeneous phenotypic data from breeding programs, collected over several decades, is an important source for GWAS and that such integration into GWAS should be a major area of inquiry in the future.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Yanjun Zan
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Jun Chen
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
- College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Lili Li
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - BinBin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, 071000, Hebei, China
| | - Shihui Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Johan Westin
- Skogforsk, Box 3, SE-91821, Sävar, Sweden
- Unit for Field-Based Forest Research, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo, 2250, SE-26890, Svalöv, Sweden
| | - Maria Rosario García-Gil
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
- CSIRO National Collection Research Australia, Black Mountain Laboratory, Canberra, ACT, 2601, Australia.
| |
Collapse
|
17
|
Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, Zaiats A, Caughlin TT. Integrating genomics in population models to forecast translocation success. Restor Ecol 2021. [DOI: 10.1111/rec.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID U.S.A
| | | | - Tyler M. Breech
- Department of Biological Sciences Idaho State University Pocatello ID U.S.A
| | - Molly J. Garrett
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Andrii Zaiats
- Biological Sciences Boise State University Boise ID U.S.A
| | | |
Collapse
|
18
|
Hall D, Olsson J, Zhao W, Kroon J, Wennström U, Wang XR. Divergent patterns between phenotypic and genetic variation in Scots pine. PLANT COMMUNICATIONS 2021; 2:100139. [PMID: 33511348 PMCID: PMC7816077 DOI: 10.1016/j.xplc.2020.100139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 05/06/2023]
Abstract
In boreal forests, autumn frost tolerance in seedlings is a critical fitness component because it determines survival rates during regeneration. To understand the forces that drive local adaptation in this trait, we conducted freezing tests in a common garden setting for 54 Pinus sylvestris (Scots pine) populations (>5000 seedlings) collected across Scandinavia into western Russia, and genotyped 24 of these populations (>900 seedlings) at >10 000 SNPs. Variation in cold hardiness among populations, as measured by QST , was above 80% and followed a distinct cline along latitude and longitude, demonstrating significant adaptation to climate at origin. In contrast, the genetic differentiation was very weak (mean FST 0.37%). Despite even allele frequency distribution in the vast majority of SNPs among all populations, a few rare alleles appeared at very high or at fixation in marginal populations restricted to northwestern Fennoscandia. Genotype-environment associations showed that climate variables explained 2.9% of the genetic differentiation, while genotype-phenotype associations revealed a high marker-estimated heritability of frost hardiness of 0.56, but identified no major loci. Very extensive gene flow, strong local adaptation, and signals of complex demographic history across markers are interesting topics of forthcoming studies on this species to better clarify signatures of selection and demography.
Collapse
Affiliation(s)
- David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Jenny Olsson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
- Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Johan Kroon
- The Forestry Research Institute of Sweden (Skogforsk), Uppsala Sweden
| | | | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
- Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Corresponding author
| |
Collapse
|
19
|
Dorado-Liñán I, Valbuena-Carabaña M, Cañellas I, Gil L, Gea-Izquierdo G. Climate Change Synchronizes Growth and iWUE Across Species in a Temperate-Submediterranean Mixed Oak Forest. FRONTIERS IN PLANT SCIENCE 2020; 11:706. [PMID: 32595660 PMCID: PMC7300280 DOI: 10.3389/fpls.2020.00706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tree species have good tolerance to a range of environmental conditions, though their ability to respond and persist to environmental changes is dramatically reduced at the rear-edge distribution limits. At those edges, gene flow conferring adaptation is impaired due to lack of populations at lower latitudes. Thus, trees mainly rely on phenotypic changes to buffer against long-term environmental changes. Interspecific hybridization may offer an alternative mechanism in the generation of novel genetic recombinants that could be particularly valuable to ensure persistence in geographically isolated forests. In this paper, we take advantage of the longevity of a temperate-submediterranean mixed-oak forest to explore the long-term impact of environmental changes on two different oak species and their hybrid. Individual trees were genetically characterized and classified into three groups: pure Quercus petraea (Matt.), Liebl, pure Q. pyrenaica Willd, and hybrids. We calculated basal area increment and intrinsic water-use efficiency (iWUE) from tree-ring width and δ13C per genetic group, respectively. Tree-growth drivers were assessed using correlation analyses and generalized linear mixed models for two contrasting climatic periods: (1880-1915, colder with [CO2] < 303 ppm; and 1980-2015, warmer with [CO2] > 338 ppm). The three genetic groups have increased radial growth and iWUE during the last decades, being the least drought-tolerant QuPe the most sensitive species to water stress. However, no significant differences were found among genetic groups neither in mean growth rate nor in mean iWUE. Furthermore, little differences were found in the response to climate among groups. Genetic groups only differed in the relationship between δ13C and temperature and precipitation during the earlier period, but such a difference disappeared during the recent decades. Climate change may have promoted species-level convergence as a response to environment-induced growth limitations, which translated in synchronized growth and response to climate as well as a tighter stomatal control and increased iWUE across coexisting oak species.
Collapse
Affiliation(s)
- Isabel Dorado-Liñán
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Valbuena-Carabaña
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Cañellas
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Gea-Izquierdo
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
| |
Collapse
|