1
|
Campos M, Rašić G, Viegas J, Cornel AJ, Pinto J, Lanzaro GC. Patterns of Gene Flow in Anopheles coluzzii Populations From Two African Oceanic Islands. Evol Appl 2024; 17:e70044. [PMID: 39600347 PMCID: PMC11589655 DOI: 10.1111/eva.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The malaria vector Anopheles coluzzii is widespread across West Africa and is the sole vector species on the islands of São Tomé and Príncipe. Our interest in the population genetics of this species on these islands is part of an assessment of their suitability for a field trial involving the release of genetically engineered A. coluzzii. The engineered construct includes two genes that encode anti-Plasmodium peptides, along with a Cas9-based gene drive. We investigated gene flow among A. coluzzii subpopulations on each island to estimate dispersal rates between sites. Sampling covered the known range of A. coluzzii on both islands. Spatial autocorrelation suggests 7 km to be the likely extent of dispersal of this species, whereas estimates based on a convolutional neural network were roughly 3 km. This difference highlights the complexity of dispersal dynamics and the value of using multiple approaches. Our analysis also revealed weak heterogeneity among populations within each island but did identify areas weakly resistant or permissive of gene flow. Overall, A. coluzzii on each of the two islands exist as single Mendelian populations. We expect that a gene construct that includes a low-threshold gene drive and has minimal fitness impact should, once introduced, spread relatively unimpeded across each island.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - João Viegas
- Centro Nacional de Endemias, Ministério da Saúde, Trabalho e Assuntos SociaisSão ToméSao Tome and Principe
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
- Mosquito Control Research Laboratory, Department of Entomology and NematologyUniversity of CaliforniaParlierCaliforniaUSA
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Hancock PA, North A, Leach AW, Winskill P, Ghani AC, Godfray HCJ, Burt A, Mumford JD. The potential of gene drives in malaria vector species to control malaria in African environments. Nat Commun 2024; 15:8976. [PMID: 39419965 PMCID: PMC11486997 DOI: 10.1038/s41467-024-53065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gene drives are a promising means of malaria control with the potential to cause sustained reductions in transmission. In real environments, however, their impacts will depend on local ecological and epidemiological factors. We develop a data-driven model to investigate the impacts of gene drives that causes vector population suppression. We simulate gene drive releases in sixteen ~ 12,000 km2 areas of west Africa that span variation in vector ecology and malaria prevalence, and estimate reductions in vector abundance, malaria prevalence and clinical cases. Average reductions in vector abundance ranged from 71.6-98.4% across areas, while impacts on malaria depended strongly on which vector species were targeted. When other new interventions including RTS,S vaccination and pyrethroid-PBO bednets were in place, at least 60% more clinical cases were averted when gene drives were added, demonstrating the benefits of integrated interventions. Our results show that different strategies for gene drive implementation may be required across different African settings.
Collapse
Affiliation(s)
- Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Ace North
- Department of Biology, University of Oxford, Oxford, UK
| | - Adrian W Leach
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - H Charles J Godfray
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| |
Collapse
|
3
|
Kormos A, Nazaré L, dos Santos AA, Lanzaro GC. Practical Application of a Relationship-Based Model to Engagement for Gene-Drive Vector Control Programs. Am J Trop Med Hyg 2024; 111:341-360. [PMID: 38889708 PMCID: PMC11310621 DOI: 10.4269/ajtmh.23-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Engagement is an important component in the advancement of gene-drive vector control research programs as developers look to transition the technology from the laboratory to the field. As research advances and engagement surrounding this novel technology is put into practice, knowledge can be gained from practical experiences and applications in the field. A relationship-based model (RBM) provides a framework for end-user development of engagement programs and strategies. The model places end users at the center of the engagement decision-making processes rather than as recipients of predetermined strategies, methods, and definitions. Successful RBM application for healthcare delivery has previously been demonstrated, and the University of California Malaria Initiative (UCMI) has applied this model to its gene-drive program in the Democratic Republic of São Tomé and Príncipe. The model emphasizes the importance of local leadership in the planning, development, and implementation of all phases of project engagement. The primary aim of this paper is to translate the model from paper to practice and provide a transparent description, using practical examples, of the UCMI program implementation of RBM at its field site. End-user development of the UCMI engagement program provides a unique approach to the development of ethical, transparent, and effective engagement strategies for malaria control programs. This paper may also serve as a reference and example for projects looking to establish an engagement program model that integrates end-user groups in the decision-making processes surrounding engagement.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, California
| | - Lodney Nazaré
- University of California Malaria Initiative, University of California, Davis, California
| | | | | |
Collapse
|
4
|
Snuzik A. Assessing CRISPR/Cas9 potential in SDG3 attainment: malaria elimination-regulatory and community engagement landscape. Malar J 2024; 23:192. [PMID: 38898518 PMCID: PMC11186152 DOI: 10.1186/s12936-024-04996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/25/2023] [Indexed: 06/21/2024] Open
Abstract
Elimination of malaria has become a United Nations member states target: Target 3.3 of the sustainable development goal no. 3 (SDG3). Despite the measures taken, the attainment of this goal is jeopardized by an alarming trend of increasing malaria case incidence. Globally, there were an estimated 241 million malaria cases in 2020 in 85 malaria-endemic countries, increasing from 227 million in 2019. Malaria case incidence was 59, which means effectively no changes in the numbers occurred, compared with the baseline 2015. Jennifer Doudna-co-inventor of CRISPR/Cas9 technology-claims that CRISPR holds the potential to lessen or even eradicate problems lying in the centre of SDGs. On the same note, CRISPR/Cas9-mediated mosquito-targeting gene drives (MGD) are perceived as a potential means to turn this trend back and put momentum into the malaria elimination effort. This paper assessed two of the critical elements of the World Health Organization Genetically modified mosquitoes (WHO GMM) Critical Pathway framework: the community and stakeholders' engagement (inability to employ widely used frameworks, segmentation of the public, 'bystander' status, and guidelines operationalization) and the regulatory landscape (lex generali, 'goldilocks dilemma', and mode of regulation) concerning mosquito-oriented gene drives (MGD) advances. Based on the assessment findings, the author believes that CRISPR/Cas-9-mediated MGD will not contribute to the attainment of SDG3 (Target 3.3), despite the undisputable technology's potential. This research pertains to the state of knowledge, legal frameworks, and legislature, as of November 2022.
Collapse
|
5
|
Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo F. Considerations for first field trials of low-threshold gene drive for malaria vector control. Malar J 2024; 23:156. [PMID: 38773487 PMCID: PMC11110314 DOI: 10.1186/s12936-024-04952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - George Christophides
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Tibebu Habtewold
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, St. Mary's Campus, Imperial College London, London, UK
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Jonathan K Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | - Alphaxard Manjurano
- Malaria Research Unit and Laboratory Sciences, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrew R McKemey
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - Michael R Santos
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Nikolai Windbichler
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Mondal A, Sánchez C. HM, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. PLoS Comput Biol 2024; 20:e1012133. [PMID: 38805562 PMCID: PMC11161092 DOI: 10.1371/journal.pcbi.1012133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/07/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
7
|
Traoré N, Kientega M, Maïga H, Nebié K, Zida I, Galizi R, Kiendrebeogo E, Sow BBD, Belem AMG, Dabiré RA, Diabaté A. Genetic Diversity and Population Structure of the Invasive Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae) in Burkina Faso. INSECTS 2024; 15:298. [PMID: 38786854 PMCID: PMC11122266 DOI: 10.3390/insects15050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Bactrocera dorsalis Hendel is a highly invasive horticultural pest that is of major economic importance worldwide. In Burkina Faso, it is one of the main insect pests that affects the production and exportation of mangos. Understanding the biology and the genetic dynamics of this insect pest provides crucial information for the development of effective control measures. The aim of this study was to understand the distribution, diversity, and genetic structure of B. dorsalis in Burkina Faso. Male flies were collected transversally in Burkina Faso and analyzed by PCR using 10 microsatellite markers. The results showed an abundance of B. dorsalis varying from 87 to 2986 flies per trap per day at the different sampling sites. The genetic diversity was high at all sites, with an average Shannon's Information Index (I) of 0.72 per site. The gene flow was high between study populations and ranged from 10.62 to 27.53 migrants. Bayesian admixture analysis showed no evidence of structure, while Discriminant Analysis of Principal Components identified three weakly separated clusters in the population of B. dorsalis in Burkina Faso. The results of this study could be used to optimize the effectiveness of current control interventions and to guide the implementation of new, innovative, and sustainable strategies.
Collapse
Affiliation(s)
- Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni (UNB), Bobo-Dioulasso 01 BP 1091, Burkina Faso;
| | - Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni (UNB), Bobo-Dioulasso 01 BP 1091, Burkina Faso;
| | - Hamidou Maïga
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
| | - Karim Nebié
- Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo-Dioulasso 01 BP 910, Burkina Faso; (K.N.); (I.Z.); (R.A.D.)
| | - Issaka Zida
- Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo-Dioulasso 01 BP 910, Burkina Faso; (K.N.); (I.Z.); (R.A.D.)
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Emmanuel Kiendrebeogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
| | - Bazoumana B. D. Sow
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
| | - Adrien M. G. Belem
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni (UNB), Bobo-Dioulasso 01 BP 1091, Burkina Faso;
| | - Remy A. Dabiré
- Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo-Dioulasso 01 BP 910, Burkina Faso; (K.N.); (I.Z.); (R.A.D.)
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso; (M.K.); (H.M.); (E.K.); (B.B.D.S.); (A.D.)
| |
Collapse
|
8
|
Finda MF, Juma EO, Kahamba NF, Mthawanji RS, Sambo M, Emidi B, Wiener S, O'Brochta D, Santos M, James S, Okumu FO. Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey. Malar J 2023; 22:384. [PMID: 38129897 PMCID: PMC10740233 DOI: 10.1186/s12936-023-04787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.
Collapse
Affiliation(s)
- Marceline F Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Elijah O Juma
- Pan-African Mosquito Control Association (PAMCA), Off Mbagathi Road, PO Box 44455-00100, Nairobi, Kenya
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Rhosheen S Mthawanji
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre 3, PO Box 30096, Chichiri, Malawi
| | - Maganga Sambo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Basiliana Emidi
- National Institute for Medical Research, PO Box 1462, Mwanza, Tanzania
| | - Susan Wiener
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - David O'Brochta
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Michael Santos
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Stephanie James
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G128QQ, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamofontein, 2000, South Africa
| |
Collapse
|
9
|
Ditter RE, Campos M, Crepeau MW, Pinto J, Toilibou A, Amina Y, Tantely LM, Girod R, Lee Y, Cornel AJ, Lanzaro GC. Anopheles gambiae on remote islands in the Indian Ocean: origins and prospects for malaria elimination by genetic modification of extant populations. Sci Rep 2023; 13:20830. [PMID: 38012255 PMCID: PMC10682471 DOI: 10.1038/s41598-023-44501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
The mosquito Anopheles gambiae s.s. is a primary malaria vector throughout sub-Saharan Africa including the islands of the Comoros archipelago (Anjouan, Grande Comore, Mayotte and Mohéli). These islands are located at the northern end of the Mozambique Channel in eastern Africa. Previous studies have shown a relatively high degree of genetic isolation between the Comoros islands and mainland populations of A. gambiae, but the origin of the island populations remains unclear. Here, we analyzed phylogenetic relationships among island and mainland populations using complete mitochondrial genome sequences of individual A. gambiae specimens. This work augments earlier studies based on analysis of the nuclear genome. We investigated the source population of A. gambiae for each island, estimated the number of introductions, when they occurred and explored evidence for contemporary gene flow between island and mainland populations. These studies are relevant to understanding historical patterns in the dispersal of this important malaria vector and provide information critical to assessing their potential for the exploration of genetic-based vector control methods to eliminate this disease. Phylogenetic analysis and haplotype networks were constructed from mitogenome sequences of 258 A. gambiae from the four islands. In addition, 112 individuals from seven countries across sub-Saharan Africa and Madagascar were included to identify potential source populations. Our results suggest that introduction events of A. gambiae into the Comoros archipelago were rare and recent events and support earlier claims that gene flow between the mainland and these islands is limited. This study is concordant with earlier work suggesting the suitability of these oceanic islands as appropriate sites for conducting field trial releases of genetically engineered mosquitoes (GEMs).
Collapse
Affiliation(s)
- Robert E Ditter
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Marc W Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene E Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | - Luciano Michaël Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo 101, BP1274, Ambatofotsikely, Madagascar
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo 101, BP1274, Ambatofotsikely, Madagascar
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St SE, Vero Beach, FL, 32962, USA
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Mondal A, C. HMS, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556958. [PMID: 37745458 PMCID: PMC10515759 DOI: 10.1101/2023.09.09.556958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Campos M, Patel N, Marshall C, Gripkey H, Ditter RE, Crepeau MW, Toilibou A, Amina Y, Cornel AJ, Lee Y, Lanzaro GC. Population Genetics of Anopheles pretoriensis in Grande Comore Island. INSECTS 2022; 14:14. [PMID: 36661943 PMCID: PMC9866569 DOI: 10.3390/insects14010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anopheles pretoriensis is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, A. pretoriensis has been found infected with Plasmodium, suggesting that it may be epidemiologically important. In the present study, we sequenced and assembled the complete mitogenome of A. pretoriensis and inferred its phylogenetic relationship among other species in the subgenus Cellia. We also investigated the genetic structure of A. pretoriensis populations on Grande Comore Island, and between this island population and sites in continental Africa, using partial sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Seven haplotypes were found on the island, one of which was ubiquitous. There was no clear divergence between island haplotypes and those found on the continent. The present work contributes knowledge on this understudied, yet abundant, Anopheles species.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Nikita Patel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Carly Marshall
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Robert E. Ditter
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Marc W. Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | | | | | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
- Mosquito Control Research Laboratory, Kearney Research and Extension Center, Department of Entomology and Nematology, University of California, Parlier, CA 93648, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St SE, Vero Beach, FL 32962, USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Ditter RE, Campos M, Pinto J, Cornel AJ, Rompão H, Lanzaro GC. Mitogenome Analyses Reveal Limited Introduction of Anopheles coluzzii Into the Central African Islands of São Tomé and Príncipe. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.855272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Islands possess physical characteristics that make them uniquely well-suited for initial field trials of new genetic-based technologies applied to African malaria vectors. This has led to efforts to characterize the degree of isolation of island mosquito populations. São Tomé and Príncipe (STP) is a country composed of two small islands in the Gulf of Guinea (Central Africa) where Anopheles coluzzii is the primary malaria vector. Several studies have shown a relatively high degree of genetic isolation between A. coluzzii populations in STP and the mainland compared with pairs of mainland populations separated by equivalent distances. Here, we analyzed complete mitochondrial genomes of individual A. coluzzii specimens from STP and neighboring mainland countries. The objectives are to describe the history of A. coluzzii establishment in STP, specifically to address several questions germane to their suitability as sites for a field trial release of genetically engineered mosquitoes (GEMs). These questions include: (i) What are the origins of A. coluzzii populations in STP?; (ii) How many introductions occurred?; (iii) When was A. coluzzii introduced into STP? and (iv) Is there ongoing, contemporary gene flow into STP from mainland populations? Phylogenetic analysis and haplotype networks were constructed from sequences of 345 A. coluzzii from STP, and 107 individuals from 10 countries on or near the west coast of Africa. Analysis of these data suggest that there have been two introductions of A. coluzzii onto the island of São Tomé that occurred roughly 500 years ago and that these originated from mainland West Africa. It appears that A. coluzzii has never been introduced into Príncipe Island directly from mainland Africa, but there have been at least four introductions originating from São Tomé. Our findings provide further support for the notion that contemporary populations of A. coluzzii on São Tomé and Príncipe are genetically isolated from mainland populations of this mosquito species.
Collapse
|
14
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|