1
|
Shearwin-Whyatt L, Fenelon J, Yu H, Major A, Qu Z, Zhou Y, Shearwin K, Galbraith J, Stuart A, Adelson D, Zhang G, Pyne M, Johnston S, Smith C, Renfree M, Grützner F. AMHY and sex determination in egg-laying mammals. Genome Biol 2025; 26:144. [PMID: 40426235 PMCID: PMC12117775 DOI: 10.1186/s13059-025-03546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/17/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Egg-laying mammals (monotremes) evolved multiple sex chromosomes independently of therian mammals and lack the sex-determining gene SRY. The Y-localized anti-Müllerian hormone gene (AMHY) is the candidate sex-determination gene in monotremes. Here, we describe the evolution of monotreme AMHX and AMHY gametologues and for the first time, investigate their expression during gonad sexual differentiation in a monotreme. RESULTS Monotreme AMHX and AMHY have significant sequence divergence at the promoter, gene, and protein level, likely following an original allele inversion in the early stages of monotreme sex chromosome differentiation but retaining the conserved features of TGF-β molecules. We show that the expression of sexual differentiation genes in the echidna fetal gonad, including DMRT1 and SOX9, is significantly different from that of therian mammals. Importantly, AMHY is expressed exclusively in the male gonad during sexual differentiation consistent with a role as the primary sex-determination gene whereas AMHX is expressed in both sexes. Experimental ectopic expression of platypus AMHX or AMHY in the chicken embryo did not masculinize the female urogenital system, as does chicken AMH, a possible result of mammalian-specific changes to AMH proteins preventing function in the chicken. CONCLUSIONS Our results provide insight into the early steps of monotreme sex chromosome evolution and sex determination with developmental expression data strongly supporting AMHY as the primary male sex-determination gene of platypus and echidna.
Collapse
Affiliation(s)
- Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jane Fenelon
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Hongshi Yu
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3068, Australia
| | - Zhipeng Qu
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yang Zhou
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | - Keith Shearwin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James Galbraith
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Stuart
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - David Adelson
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Guojie Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Stephen Johnston
- School of Environment, The University of Queensland, Gatton, QLD, 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Craig Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3068, Australia
| | - Marilyn Renfree
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Xiao Y, Liao G, Luo W, Xia Y, Zeng X. Homology in Sex Determination in Two Distant Spiny Frogs, Nanorana quadranus and Quasipaa yei. Animals (Basel) 2024; 14:1849. [PMID: 38997961 PMCID: PMC11240834 DOI: 10.3390/ani14131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sex determination is remarkably diverse, with frequent transitions between sex chromosomes, in amphibians. Under these transitions, some chromosomes are more likely to be recurrently co-opted as sex chromosomes, as they are often observed across deeply divergent taxa. However, little is known about the pattern of sex chromosome evolution among closely related groups. Here, we examined sex chromosome and sex determination in two spiny frogs, Nanorana quadranus and Quasipaa yei. We conducted an analysis of genotyping-by-sequencing (GBS) data from a total of 34 individuals to identify sex-specific makers, with the results verified by PCR. The results suggest that chromosome 1 is a homologous sex chromosome with an XY pattern in both species. This chromosome has been evolutionarily conserved across these closely related groups within a period of time. The DMRT1 gene is proposed to be implicated in homology across two distantly related spiny frog species as a putative candidate sex-determining gene. Harboring the DMRT1 gene, chromosome 1 would have been independently co-opted for sex determination in deeply divergent groups of anurans.
Collapse
Affiliation(s)
- Yu Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjiong Liao
- Xiaozhaizigou National Nature Reserve, Beichuan, Mianyang 622750, China;
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China;
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| |
Collapse
|
3
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
4
|
Uno Y, Matsubara K. Unleashing diversity through flexibility: The evolutionary journey of sex chromosomes in amphibians and reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:230-241. [PMID: 38155517 DOI: 10.1002/jez.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Sex determination systems have greatly diversified between amphibians and reptiles, with such as the different sex chromosome compositions within a single species and transition between temperature-dependent sex determination (TSD) and genetic sex determination (GSD). In most sex chromosome studies on amphibians and reptiles, the whole-genome sequence of Xenopous tropicalis and chicken have been used as references to compare the chromosome homology of sex chromosomes among each of these taxonomic groups, respectively. In the present study, we reviewed existing reports on sex chromosomes, including karyotypes, in amphibians and reptiles. Furthermore, we compared the identified genetic linkages of sex chromosomes in amphibians and reptiles with the chicken genome as a reference, which is believed to resemble the ancestral tetrapod karyotype. Our findings revealed that sex chromosomes in amphibians are derived from genetic linkages homologous to various chicken chromosomes, even among several frogs within single families, such as Ranidae and Pipidae. In contrast, sex chromosomes in reptiles exhibit conserved genetic linkages with chicken chromosomes, not only across most species within a single family, but also within closely related families. The diversity of sex chromosomes in amphibians and reptiles may be attributed to the flexibility of their sex determination systems, including the ease of sex reversal in these animals.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Matsubara
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
5
|
Bertola LV, Hoskin CJ, Jones DB, Zenger KR, McKnight DT, Higgie M. The first linkage map for Australo-Papuan Treefrogs (family: Pelodryadidae) reveals the sex-determination system of the Green-eyed Treefrog (Litoria serrata). Heredity (Edinb) 2023; 131:263-272. [PMID: 37542195 PMCID: PMC10539516 DOI: 10.1038/s41437-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
Amphibians represent a useful taxon to study the evolution of sex determination because of their highly variable sex-determination systems. However, the sex-determination system for many amphibian families remains unknown, in part because of a lack of genomic resources. Here, using an F1 family of Green-eyed Treefrogs (Litoria serrata), we produce the first genetic linkage map for any Australo-Papuan Treefrogs (family: Pelodryadidae). The resulting linkage map contains 8662 SNPs across 13 linkage groups. Using an independent set of sexed adults, we identify a small region in linkage group 6 matching an XY sex-determination system. These results suggest Litoria serrata possesses a male heterogametic system, with a candidate sex-determination locus on linkage group 6. Furthermore, this linkage map represents the first genomic resource for Australo-Papuan Treefrogs, an ecologically diverse family of over 220 species.
Collapse
Affiliation(s)
- Lorenzo V Bertola
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - David B Jones
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Kyall R Zenger
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Donald T McKnight
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, West Wodonga, La Trobe University, Melbourne, VIC, 3690, Australia
| | - Megan Higgie
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
6
|
Heterogeneous Evolution of Sex Chromosomes in the Torrent Frog Genus Amolops. Int J Mol Sci 2022; 23:ijms231911146. [PMID: 36232446 PMCID: PMC9570394 DOI: 10.3390/ijms231911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
In sharp contrast to birds and mammals, in numerous cold-blooded vertebrates, sex chromosomes have been described as homomorphic. This sex chromosome homomorphy has been suggested to result from the high turnovers often observed across deeply diverged clades. However, little is known about the tempo and mode of sex chromosome evolution among the most closely related species. Here, we examined the evolution of sex chromosome among nine species of the torrent frog genus Amolops. We analyzed male and female GBS and RAD-seq from 182 individuals and performed PCR verification for 176 individuals. We identified signatures of sex chromosomes involving two pairs of chromosomes. We found that sex-chromosome homomorphy results from both turnover and X–Y recombination in the Amolops species, which simultaneously exhibits heterogeneous evolution on homologous and non-homologous sex chromosomes. A low turnover rate of non-homologous sex chromosomes exists in these torrent frogs. The ongoing X–Y recombination in homologous sex chromosomes will act as an indispensable force in preventing sex chromosomes from differentiating.
Collapse
|
7
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
8
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Using Sex-Linked Markers via Genotyping-by-Sequencing to Identify XX/XY Sex Chromosomes in the Spiny Frog (Quasipaa boulengeri). Genes (Basel) 2022; 13:genes13040575. [PMID: 35456381 PMCID: PMC9027009 DOI: 10.3390/genes13040575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
We used genotyping-by-sequencing (GBS) to identify sex-linked markers in 43 wild-collected spiny frog (Quasipaa boulengeri) adults from a single site. We identified a total of 1049 putatively sex-linked GBS-tags, 98% of which indicated an XX/XY system, and finally confirmed 574 XY-type sex-linked loci. The sex specificity of five markers was further validated by PCR amplification using a large number of additional individuals from 26 populations of this species. A total of 27 sex linkage markers matched with the Dmrt1 gene, showing a conserved role in sex determination and differentiation in different organisms from flies and nematodes to mammals. Chromosome 1, which harbors Dmrt1, was considered as the most likely candidate sex chromosome in anurans. Five sex-linked SNP makers indicated sex reversals, which are sparsely present in wild amphibian populations, in three out of the one-hundred and thirty-three explored individuals. The variety of sex-linked markers identified could be used in population genetics analyses requiring information on individual sex or in investigations aimed at drawing inferences about sex determination and sex chromosome evolution.
Collapse
|
10
|
Majtyka T, Borczyk B, Ogielska M, Stöck M. Morphometry of two cryptic tree frog species at their hybrid zone reveals neither intermediate nor transgressive morphotypes. Ecol Evol 2022; 12:e8527. [PMID: 35127036 PMCID: PMC8794711 DOI: 10.1002/ece3.8527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Under incomplete reproductive isolation, secondary contact of diverged allopatric lineages may lead to the formation of hybrid zones that allow to study recombinants over several generations as excellent systems of genomic interactions resulting from the evolutionary forces acting on certain genes and phenotypes. Hybrid phenotypes may either exhibit intermediacy or, alternatively, transgressive traits, which exceed the extremes of their parents due to epistasis and segregation of complementary alleles. While transgressive morphotypes have been examined in fish, reptiles, birds, and mammals, studies in amphibians are rare. Here, we associate microsatellite-based genotypes with morphometrics-based morphotypes of two tree frog species of the Hyla arborea group, sampled across a hybrid zone in Poland, to understand whether the genetically differentiated parental species also differ in morphology between each other and their hybrids and whether secondary contact leads to the evolution of intermediate or transgressive morphotypes. Using univariate approaches, explorative multivariate methods (principal component analyses) as well as techniques with prior grouping (discriminant function analyses), we find that morphotypes of both parental species and hybrids differ from each other. Importantly, hybrid morphotypes are neither intermediate nor transgressive but found to be more similar to H. orientalis than to H. arborea.
Collapse
Affiliation(s)
- Tomasz Majtyka
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Matthias Stöck
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
11
|
Nürnberger B, Baird SJE, Čížková D, Bryjová A, Mudd AB, Blaxter ML, Szymura JM. A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridizing fire-bellied toads (Bombina bombina and Bombina variegata). G3 (BETHESDA, MD.) 2021; 11:6353606. [PMID: 34849761 PMCID: PMC8664441 DOI: 10.1093/g3journal/jkab286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7–10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.
Collapse
Affiliation(s)
- Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Dagmar Čížková
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Anna Bryjová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 94720 CA, USA
| | - Mark L Blaxter
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jacek M Szymura
- Department of Comparative Anatomy, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
13
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
14
|
Xu Y, DU Z, Liu J, Su H, Ning F, Cui S, Wang L, Liu J, Ren C, DI S, Bai X. Male heterogametic sex determination in Rana dybowskii based on sex-linked molecular markers. Integr Zool 2021; 17:105-114. [PMID: 34254736 PMCID: PMC9290989 DOI: 10.1111/1749-4877.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the mechanism for sex determination in amphibians is challenging. Very little is known about sex determination mechanisms of Rana dybowskii, a species of importance to evolutionary and conservation biology. We screened for sex‐linked molecular markers in R. dybowskii in China using target region amplification polymorphism with 2 fixed primers against the sequences of Dmrt1. We found 2 male‐linked molecular markers in R. dybowskii, which were 222 bp and 261 bp long. The detection rates of 222 bp marker in males form Xinglong, Huadian, and Dandong were 93.79%, 69.64%, and 13.64%, respectively, while the rate in females from Huadian was 27.50%. Besides, the detection rates of 261 bp marker in the above 3 regions were only observed in males at the rate of 93.79%, 87.50%, and 32.73%, respectively. The inheritance patterns of sex‐linked molecular markers showed that the 2 sex‐linked molecular markers were heterozygous. Compared to the XY‐male parent, progeny from XX‐pseudo‐male parent possessed lower sex reversal ratio at the same rearing temperature, and the proportion of female froglets from an XX‐pseudo‐male parent was more than 95% at low rearing temperature (15°C). Our findings suggest that R. dybowskii displays male heterogamety, and the 2 sex‐linked molecular markers may have a guiding significance for the protection and utilization of R. dybowskii.
Collapse
Affiliation(s)
- Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhiheng DU
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiayu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hang Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijuan Wang
- College of Agricultural, Eastern Liaoning University, Dandong, China
| | - Jianming Liu
- Yili Animal Science Research Institute, Yining, China
| | - Chuanshuai Ren
- Animal Husbandry Administration of Huadian, Huadian, China
| | - Shengwei DI
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujuan Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Ma WJ, Veltsos P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes (Basel) 2021; 12:483. [PMID: 33810524 PMCID: PMC8067296 DOI: 10.3390/genes12040483] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Paris Veltsos
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
16
|
Turtle Insights into the Evolution of the Reptilian Karyotype and the Genomic Architecture of Sex Determination. Genes (Basel) 2020; 11:genes11040416. [PMID: 32290488 PMCID: PMC7231036 DOI: 10.3390/genes11040416] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages. Here we focus on turtles, an emerging model group with growing genomic resources. We review karyotypic changes that accompanied the evolution of chromosomal systems of genotypic sex determination (GSD) in chelonians from systems under the control of environmental temperature (TSD). These transitions gave rise to 31 GSD species identified thus far (out of 101 turtles with known sex determination), 27 with a characterized sex chromosome system (13 of those karyotypically). These sex chromosomes are varied in terms of the ancestral autosome they co-opted and thus in their homology, as well as in their size (some are macro-, some are micro-chromosomes), heterogamety (some are XX/XY, some ZZ/ZW), dimorphism (some are virtually homomorphic, some heteromorphic with larger-X, larger W, or smaller-Y), age (the oldest system could be ~195 My old and the youngest < 25 My old). Combined, all data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others. Finally, although the study of dosage compensation and molecular divergence of turtle sex chromosomes has lagged behind research on other aspects of their evolution, this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.
Collapse
|
17
|
Sigeman H, Ponnikas S, Hansson B. Whole-genome analysis across 10 songbird families within Sylvioidea reveals a novel autosome-sex chromosome fusion. Biol Lett 2020; 16:20200082. [PMID: 32315592 PMCID: PMC7211462 DOI: 10.1098/rsbl.2020.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Sex chromosomes in birds have long been considered to be extremely stable. However, this notion has lately been challenged by findings of independent autosome-sex chromosome fusions within songbirds, several of which occur within a single clade, the superfamily Sylvioidea. To understand what ecological and evolutionary processes drive changes in sex chromosome systems, we need complete descriptions of sex chromosome diversity across taxonomic groups. Here, we characterize the sex chromosome systems across Sylvioidea using whole-genome data of species representatives of 10 different families, including two published and eight new genomes. We describe a novel fusion in the family Cisticolidae (represented by Cisticola juncidis) involving a part of chromosome 4. We also confirm the previously identified fusion between chromosome Z and a part of chromosome 4A in all 10 families and show that fusions involving parts of chromosomes 3 and 5 are not found outside the families where they were first discovered (Alaudidae and Panuridae). These findings add to the complexity of the sex chromosome system in Sylvioidea, where four independent autosome-sex chromosome fusions have now been identified.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
18
|
Browne RK, Silla AJ, Upton R, Della-Togna G, Marcec-Greaves R, Shishova NV, Uteshev VK, Proaño B, Pérez OD, Mansour N, Kaurova SA, Gakhova EN, Cosson J, Dyzuba B, Kramarova LI, McGinnity D, Gonzalez M, Clulow J, Clulow S. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 2020; 133:187-200. [PMID: 31155034 DOI: 10.1016/j.theriogenology.2019.03.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Current rates of biodiversity loss pose an unprecedented challenge to the conservation community, particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing number of environmental challenges, including habitat loss, pathogens, and global warming, demand a global response toward the sustainable management of ecosystems and their biodiversity. Conservation Breeding Programs (CBPs) are needed for the sustainable management of amphibian species threatened with extinction. CBPs support species survival while increasing public awareness and political influence. Current CBPs only cater for 10% of the almost 500 amphibian species in need. However, the use of sperm storage to increase efficiency and reliability, along with an increased number of CBPs, offer the potential to significantly reduce species loss. The establishment and refinement of techniques over the last two decades, for the collection and storage of amphibian spermatozoa, gives confidence for their use in CBPs and other biotechnical applications. Cryopreserved spermatozoa has produced breeding pairs of frogs and salamanders and the stage is set for Lifecycle Proof of Concept Programs that use cryopreserved sperm in CBPs along with repopulation, supplementation, and translocation programs. The application of cryopreserved sperm in CBPs, is complimentary to but separate from archival gene banking and general cell and tissue storage. However, where appropriate amphibian sperm banking should be integrated into other global biobanking projects, especially those for fish, and those that include the use of cryopreserved material for genomics and other research. Research over a broader range of amphibian species, and more uniformity in experimental methodology, is needed to inform both theory and application. Genomics is revolutionising our understanding of biological processes and increasingly guiding species conservation through the identification of evolutionary significant units as the conservation focus, and through revealing the intimate relationship between evolutionary history and sperm physiology that ultimately affects the amenability of sperm to refrigerated or frozen storage. In the present review we provide a nascent phylogenetic framework for integration with other research lines to further the potential of amphibian sperm banking.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize.
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, 2522, Australia
| | - Rose Upton
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Gina Della-Togna
- Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama City, Panama; Universidad Interamericana de Panamá, Dirección de Investigación, Sede Central, Panama
| | - Ruth Marcec-Greaves
- National Amphibian Conservation Center Detroit Zoological Society, Detroit, USA
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Belin Proaño
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica Del Ecuador, Ecuador
| | - Oscar D Pérez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica Del Ecuador, Ecuador
| | - Nabil Mansour
- Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Jacky Cosson
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 38925, Vodnany, Czech Republic
| | - Borys Dyzuba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 38925, Vodnany, Czech Republic
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | - Manuel Gonzalez
- Departamento de Producción Animal, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - John Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
19
|
Cauret CMS, Gansauge MT, Tupper AS, Furman BLS, Knytl M, Song XY, Greenbaum E, Meyer M, Evans BJ. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol Biol Evol 2019; 37:799-810. [DOI: 10.1093/molbev/msz268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractPhenotypic invariance—the outcome of purifying selection—is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype—the development of sexually differentiated individuals—is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.
Collapse
Affiliation(s)
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada
| | - Benjamin L S Furman
- Biology Department, McMaster University, Hamilton, Canada
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Martin Knytl
- Biology Department, McMaster University, Hamilton, Canada
- Department of Cell Biology, Charles University, Prague 2, Czech Republic
| | - Xue-Ying Song
- Biology Department, McMaster University, Hamilton, Canada
| | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben J Evans
- Biology Department, McMaster University, Hamilton, Canada
| |
Collapse
|
20
|
Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes. G3-GENES GENOMES GENETICS 2019; 9:3467-3476. [PMID: 31439718 PMCID: PMC6778777 DOI: 10.1534/g3.119.400556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systems of genetic sex determination and the homology of sex chromosomes in different taxa vary greatly across vertebrates. Much progress remains to be made in understanding systems of genetic sex determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large genomes. We used reduced representation genome sequencing to investigate genetic sex determination systems in the salamander family Cryptobranchidae (genera Cryptobranchus and Andrias), which typifies both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for sex diagnosis in Cryptobranchus and Andrias which may have great utility for conservation efforts with these endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera provides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages. These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but suggest that comparative data from other salamander families are needed. Our results further demonstrate that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the resulting data can be highly informative about sex determination systems in taxa with homomorphic sex chromosomes.
Collapse
|
21
|
Toups MA, Rodrigues N, Perrin N, Kirkpatrick M. A reciprocal translocation radically reshapes sex-linked inheritance in the common frog. Mol Ecol 2019; 28:1877-1889. [PMID: 30576024 DOI: 10.1111/mec.14990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
X and Y chromosomes can diverge when rearrangements block recombination between them. Here we present the first genomic view of a reciprocal translocation that causes two physically unconnected pairs of chromosomes to be coinherited as sex chromosomes. In a population of the common frog (Rana temporaria), both pairs of X and Y chromosomes show extensive sequence differentiation, but not degeneration of the Y chromosomes. A new method based on gene trees shows both chromosomes are sex-linked. Furthermore, the gene trees from the two Y chromosomes have identical topologies, showing they have been coinherited since the reciprocal translocation occurred. Reciprocal translocations can thus reshape sex linkage on a much greater scale compared with inversions, the type of rearrangement that is much better known in sex chromosome evolution, and they can greatly amplify the power of sexually antagonistic selection to drive genomic rearrangement. Two more populations show evidence of other rearrangements, suggesting that this species has unprecedented structural polymorphism in its sex chromosomes.
Collapse
Affiliation(s)
- Melissa A Toups
- Department of Integrative Biology, University of Texas, Austin, Texas.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, Texas
| |
Collapse
|
22
|
Balounova V, Gogela R, Cegan R, Cangren P, Zluvova J, Safar J, Kovacova V, Bergero R, Hobza R, Vyskot B, Oxelman B, Charlesworth D, Janousek B. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci Rep 2019; 9:1045. [PMID: 30705300 PMCID: PMC6355844 DOI: 10.1038/s41598-018-37412-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022] Open
Abstract
Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.
Collapse
Affiliation(s)
- Veronika Balounova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Roman Gogela
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, Cologne, Germany
| | - Roberta Bergero
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
23
|
Palomar G, Vasemägi A, Ahmad F, Nicieza AG, Cano JM. Mapping of quantitative trait loci for life history traits segregating within common frog populations. Heredity (Edinb) 2019; 122:800-808. [PMID: 30631147 DOI: 10.1038/s41437-018-0175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
The evolution of complex traits is often shaped by adaptive divergence. However, very little is known about the number, effect size, and location of the genomic regions influencing the variation of these traits in natural populations. Based on a dense linkage map of the common frog, Rana temporaria, we have localized, for the first time in amphibians, three significant and nine suggestive quantitative trait loci (QTLs) for metabolic rate, growth rate, development time, and weight at metamorphosis, explaining 5.6-18.9% of the overall phenotypic variation in each trait. We also found a potential pleiotropic QTL between development time and size at metamorphosis that, if confirmed, might underlie the previously reported genetic correlation between these traits. Furthermore, we demonstrate that the genetic variation linked to fitness-related larval traits segregates within Rana temporaria populations. This study provides the first insight into the genomic regions that affect larval life history traits in anurans, providing a valuable resource to delve further into the genomic basis of evolutionary change in amphibians.
Collapse
Affiliation(s)
- Gemma Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain. .,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain. .,Molecular and Behavioral Ecology Group, Institute of Environmental Sciences, Jagiellonian University, 30-387, Krakow, Poland.
| | - Anti Vasemägi
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51006, Tartu, Estonia.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Alfredo G Nicieza
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - José Manuel Cano
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
24
|
Gerchen JF, Dufresnes C, Stöck M. Introgression across Hybrid Zones Is Not Mediated by Large X-Effects in Green Toads with Undifferentiated Sex Chromosomes. Am Nat 2018; 192:E178-E188. [DOI: 10.1086/699162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Genet Genomics 2018; 294:287-299. [PMID: 30377773 DOI: 10.1007/s00438-018-1508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The Chinese giant salamander Andrias davidianus is a protected amphibian with high nutritional and economic value. Understanding its sex determination mechanism is important for improving culture techniques and sex control in breeding. However, little information on the characterization of critical genes involved in sex is available. Herein, sequencing of ovary and test produced 40,783,222 and 46,128,902 raw reads, respectively, which were jointly assembled into 80,497 unigenes. Of these, 36,609 unigenes were annotated, of which 8907 were female-biased and 10,385 were male-biased. Several sex-related pathways were observed, including the Wnt signaling pathway. After elevated temperature and estrogen exposure, neomale and neofemale specimens were identified by a female-specific marker for the first time. RT-qPCR analysis showed the expression profile of ten selected sex-biased genes to be exhibited consistently in male and neomale and in female and neofemale, with the exception of the Amh and TfIIIa genes. Results suggested that these genes may play important roles in A. davidianus sex determination and gonad development. This provides a basis for further investigation of the molecular mechanisms of sex determination in amphibians.
Collapse
|
26
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat Commun 2018; 9:4088. [PMID: 30291233 PMCID: PMC6173717 DOI: 10.1038/s41467-018-06517-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/29/2018] [Indexed: 11/24/2022] Open
Abstract
The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the ‘hot-potato’ model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length. The evolutionary forces that favour transitions in sex chromosomes are not well understood. Here, Jeffries and colleagues show a very high rate of sex chromosome turnover in true frogs, which may be driven by rapid mutation-load accumulation due to the low recombination rate in males.
Collapse
|
28
|
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol 2018; 16:e2006062. [PMID: 30148831 PMCID: PMC6128632 DOI: 10.1371/journal.pbio.2006062] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/07/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
Turnovers of sex-determining systems represent important diversifying forces across eukaryotes. Shifts in sex chromosomes—but conservation of the master sex-determining genes—characterize distantly related animal lineages. Yet in plants, in which separate sexes have evolved repeatedly and sex chromosomes are typically homomorphic, we do not know whether such translocations drive sex-chromosome turnovers within closely related taxonomic groups. This phenomenon can only be demonstrated by identifying sex-associated nucleotide sequences, still largely unknown in plants. The wild North American octoploid strawberries (Fragaria) exhibit separate sexes (dioecy) with homomorphic, female heterogametic (ZW) inheritance, yet sex maps to three different chromosomes in different taxa. To characterize these turnovers, we identified sequences unique to females and assembled their reads into contigs. For most octoploid Fragaria taxa, a short (13 kb) sequence was observed in all females and never in males, implicating it as the sex-determining region (SDR). This female-specific “SDR cassette” contains both a gene with a known role in fruit and pollen production and a novel retrogene absent on Z and autosomal chromosomes. Phylogenetic comparison of SDR cassettes revealed three clades and a history of repeated translocation. Remarkably, the translocations can be ordered temporally due to the capture of adjacent sequence with each successive move. The accumulation of the “souvenir” sequence—and the resultant expansion of the hemizygous SDR over time—could have been adaptive by locking genes into linkage with sex. Terminal inverted repeats at the insertion borders suggest a means of movement. To our knowledge, this is the first plant SDR shown to be translocated, and it suggests a new mechanism (“move-lock-grow”) for expansion and diversification of incipient sex chromosomes. Sex chromosomes frequently restructure themselves during organismal evolution, often becoming highly differentiated. This dynamic process is poorly understood for most taxa, especially during the early stages typical of many dioecious flowering plants. We show that in wild strawberries, a female-specific region of DNA is associated with sex and has repeatedly changed its genomic location, each time increasing the size of the hemizygous female-specific sequence on the W sex chromosome. This observation shows, for the first time to our knowledge, that plant sex regions can “jump” and suggests that this phenomenon may be adaptive by gathering and locking new genes into linkage with sex. This conserved and presumed causal sex-determining sequence, which varies in both genomic location and degree of differentiation, will facilitate future studies to understand how sex chromosomes first begin to differentiate.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shannon C. K. Straub
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
31
|
Comparative High-Density Linkage Mapping Reveals Conserved Genome Structure but Variation in Levels of Heterochiasmy and Location of Recombination Cold Spots in the Common Frog. G3-GENES GENOMES GENETICS 2017; 7:637-645. [PMID: 28040782 PMCID: PMC5295608 DOI: 10.1534/g3.116.036459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By combining 7077 SNPs and 61 microsatellites, we present the first linkage map for some of the early diverged lineages of the common frog, Rana temporaria, and the densest linkage map to date for this species. We found high homology with the published linkage maps of the Eastern and Western lineages but with differences in the order of some markers. Homology was also strong with the genome of the Tibetan frog Nanorana parkeri and we found high synteny with the clawed frog Xenopus tropicalis. We confirmed marked heterochiasmy between sexes and detected nonrecombining regions in several groups of the male linkage map. Contrary to the expectations set by the male heterogamety of the common frog, we did not find male heterozygosity excess in the chromosome previously shown to be linked to sex determination. Finally, we found blocks of loci showing strong transmission ratio distortion. These distorted genomic regions might be related to genetic incompatibilities between the parental populations, and are promising candidates for further investigation into the genetic basis of speciation and adaptation in the common frog.
Collapse
|
32
|
Do dams also stop frogs? Assessing population connectivity of coastal tailed frogs (Ascaphus truei) in the North Cascades National Park Service Complex. CONSERV GENET 2017. [DOI: 10.1007/s10592-016-0919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Brelsford A, Lavanchy G, Sermier R, Rausch A, Perrin N. Identifying homomorphic sex chromosomes from wild-caught adults with limited genomic resources. Mol Ecol Resour 2016; 17:752-759. [PMID: 27790846 DOI: 10.1111/1755-0998.12624] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022]
Abstract
We demonstrate a genotyping-by-sequencing approach to identify homomorphic sex chromosomes and their homolog in a distantly related reference genome, based on noninvasive sampling of wild-caught individuals, in the moor frog Rana arvalis. Double-digest RADseq libraries were generated using buccal swabs from 30 males and 21 females from the same population. Search for sex-limited markers from the unfiltered data set (411 446 RAD tags) was more successful than searches from a filtered data set (33 073 RAD tags) for markers showing sex differences in heterozygosity or in allele frequencies. Altogether, we obtained 292 putatively sex-linked RAD loci, 98% of which point to male heterogamety. We could map 15 of them to the Xenopus tropicalis genome, all but one on chromosome pair 1, which seems regularly co-opted for sex determination among amphibians. The most efficient mapping strategy was a three-step hierarchical approach, where R. arvalis reads were first mapped to a low-coverage genome of Rana temporaria (17 My divergence), then the R. temporaria scaffolds to the Nanorana parkeri genome (90 My divergence), and finally the N. parkeri scaffolds to the X. tropicalis genome (210 My). We validated our conclusions with PCR primers amplifying part of Dmrt1, a candidate sex determination gene mapping to chromosome 1: a sex-diagnostic allele was present in all 30 males but in none of the 21 females. Our approach is likely to be productive in many situations where biological samples and/or genomic resources are limited.
Collapse
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Guillaume Lavanchy
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Anna Rausch
- Department of Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Nicolas Perrin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Sequential Turnovers of Sex Chromosomes in African Clawed Frogs ( Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination. G3-GENES GENOMES GENETICS 2016; 6:3625-3633. [PMID: 27605520 PMCID: PMC5100861 DOI: 10.1534/g3.116.033423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles.
Collapse
|
35
|
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:883. [PMID: 27821061 PMCID: PMC5100337 DOI: 10.1186/s12864-016-3178-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Sex chromosomes change more frequently in fish than in mammals or birds. However, certain chromosomes or genes are repeatedly used as sex determinants in different members of the teleostean lineage. East African cichlids are an enigmatic model system in evolutionary biology representing some of the most diverse extant vertebrate adaptive radiations. How sex is determined and if different sex-determining mechanisms contribute to speciation is unknown for almost all of the over 1,500 cichlid species of the Great Lakes. Here, we investigated the genetic basis of sex determination in a cichlid from Lake Tanganyika, Astatotilapia burtoni, a member of the most species-rich cichlid lineage, the haplochromines. Results We used RAD-sequencing of crosses for two populations of A. burtoni, a lab strain and fish caught at the south of Lake Tanganyika. Using association mapping and comparative genomics, we confirmed male heterogamety in A. burtoni and identified different sex chromosomes (LG5 and LG18) in the two populations of the same species. LG5, the sex chromosome of the lab strain, is a fusion chromosome in A. burtoni. Wnt4 is located on this chromosome, representing the best candidate identified so far for the master sex-determining gene in our lab strain of A. burtoni. Conclusions Cichlids exemplify the high turnover rate of sex chromosomes in fish with two different chromosomes, LG5 and LG18, containing major sex-determining loci in the two populations of A. burtoni examined here. However, they also illustrate that particular chromosomes are more likely to be used as sex chromosomes. Chromosome 5 is such a chromosome, which has evolved several times as a sex chromosome, both in haplochromine cichlids from all Great Lakes and also in other teleost fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3178-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
36
|
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics 2016; 17:844. [PMID: 27793086 PMCID: PMC5084323 DOI: 10.1186/s12864-016-3209-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which sex reversal is associated with transitions in sex determining systems (XX-XY, ZZ-ZW, etc.) or abnormal sexual differentiation is predominantly unexplored in amphibians. This is in large part because most amphibian taxa have homomorphic sex chromosomes, which has traditionally made it challenging to identify discordance between phenotypic and genetic sex in amphibians, despite all amphibians having a genetic component to sex determination. Recent advances in molecular techniques such as genome complexity reduction and high throughput sequencing present a valuable avenue for furthering our understanding of sex determination in amphibians and other taxa with homomorphic sex chromosomes like many fish and reptiles. RESULTS We use DArTseq as a novel approach to identify sex-linked markers in the North American green frog (Rana clamitans melanota) using lab-reared tadpoles as well as wild-caught adults from seven ponds either in undeveloped, forested habitats or suburban ponds known to be subject to contamination by anthropogenic chemicals. The DArTseq methodology identified 13 sex-linked SNP loci and eight presence-absence loci associated with males, indicating an XX-XY system. Both alleles from a single locus show partial high sequence homology to Dmrt1, a gene linked to sex determination and differentiation throughout Metazoa. Two other loci have sequence similarities to regions of the chimpanzee and human X-chromosome as well as the chicken Z-chromosome. Several loci also show geographic variation in sex-linkage, possibly indicating sex chromosome recombination. While all loci are statistically sex-linked, they show varying degrees of female heterozygosity and male homozygosity, providing further evidence that some markers are on regions of the sex chromosomes undergoing higher rates of recombination and therefore further apart from the putative sex determining locus. CONCLUSION The ease of the DArTseq platform provides a useful avenue for future research on sex reversal and sex chromosome evolution in vertebrates, particularly for non-model species with homomorphic or cryptic or nascent sex chromosomes.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA.
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
37
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
38
|
Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes. Cytogenet Genome Res 2016; 148:292-304. [DOI: 10.1159/000447478] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.
Collapse
|
39
|
Vizán-Rico HI, Gómez-Zurita J. Testis-specific RNA-Seq of Calligrapha (Chrysomelidae) as a transcriptomic resource for male-biased gene inquiry in Coleoptera. Mol Ecol Resour 2016; 17:533-545. [PMID: 27288908 DOI: 10.1111/1755-0998.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
We report the architecture of testis transcriptomes of four closely related species of Calligrapha (Chrysomelidae) beetles, which diverged during the last 3 million years. Five cDNA libraries were sequenced using Illumina HiSeq technology, retrieving 102 884-176 514 assembled contigs, of which ~33-45% of these longer than 499 nt were functionally annotated. Annotation and sequence similarity comparisons of these libraries revealed high homogeneity in gene composition and the presence of several functional candidates related to reproduction or reproductive processes (0.72-1.08% of annotated sequences). Stringent sequence similarity analyses of these transcriptomes against empirically demonstrated male-biased genes in Drosophila melanogaster and Tribolium castaneum allowed the identification of 77 homologues in Calligrapha, possible candidates of male-biased expression. Some of these genes - including CG9313, Tektin-A or tomboy40 - were confirmed as orthologs of these male-biased genes using phylogenetic inference and available model insect data, increasing our confidence that they represent functional homologues too. Our transcriptomes are a valuable transcriptomic resource for the analysis of male-biased genes in Calligrapha, which has the added interest of including several female-only species. But it simultaneously represents a landmark for similar studies in Coleoptera, broadening the taxonomic diversity currently represented by the model species T. castaneum, and incipient genomic data in other herbivorous lineages, including weevils, longhorn beetles and leaf beetles.
Collapse
Affiliation(s)
- Helena I Vizán-Rico
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Spain
| | - Jesús Gómez-Zurita
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Spain
| |
Collapse
|
40
|
Ma WJ, Rodrigues N, Sermier R, Brelsford A, Perrin N. Dmrt1 polymorphism covaries with sex-determination patterns in Rana temporaria. Ecol Evol 2016; 6:5107-17. [PMID: 27551369 PMCID: PMC4891206 DOI: 10.1002/ece3.2209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Patterns of sex-chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern-boreal population of Ammarnäs displayed well-differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y-specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female-biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co-option of small genomic regions that harbor key genes from the sex-determination pathway.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Alan Brelsford
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland; Present address: Department of Biology University of California at Riverside California 92521
| | - Nicolas Perrin
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| |
Collapse
|
41
|
Gerchen JF, Reichert SJ, Röhr JT, Dieterich C, Kloas W, Stöck M. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers. PLoS One 2016; 11:e0156419. [PMID: 27232626 PMCID: PMC4883742 DOI: 10.1371/journal.pone.0156419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.
Collapse
Affiliation(s)
- Jörn F Gerchen
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Samuel J Reichert
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Johannes T Röhr
- Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
42
|
Rodrigues N, Vuille Y, Brelsford A, Merilä J, Perrin N. The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity (Edinb) 2016; 117:25-32. [PMID: 27071845 DOI: 10.1038/hdy.2016.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/18/2023] Open
Abstract
The patterns of sex determination and sex differentiation have been shown to differ among geographic populations of common frogs. Notably, the association between phenotypic sex and linkage group 2 (LG2) has been found to be perfect in a northern Swedish population, but weak and variable among families in a southern one. By analyzing these populations with markers from other linkage groups, we bring two new insights: (1) the variance in phenotypic sex not accounted for by LG2 in the southern population could not be assigned to genetic factors on other linkage groups, suggesting an epigenetic component to sex determination; (2) a second linkage group (LG7) was found to co-segregate with sex and LG2 in the northern population. Given the very short timeframe since post-glacial colonization (in the order of 1000 generations) and its seemingly localized distribution, this neo-sex chromosome system might be the youngest one described so far. It does not result from a fusion, but more likely from a reciprocal translocation between the original Y chromosome (LG2) and an autosome (LG7), causing their co-segregation during male meiosis. By generating a strict linkage between several important genes from the sex-determination cascade (Dmrt1, Amh and Amhr2), this neo-sex chromosome possibly contributes to the 'differentiated sex race' syndrome (strictly genetic sex determination and early gonadal development) that characterizes this northern population.
Collapse
Affiliation(s)
- N Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Y Vuille
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - J Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Kloas W, Stöck M. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci Rep 2016; 6:23825. [PMID: 27029458 PMCID: PMC4814869 DOI: 10.1038/srep23825] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/15/2016] [Indexed: 01/17/2023] Open
Abstract
Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect species-specific vulnerabilities to EDCs in amphibians.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Andreas Lehmann
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409 Heraklion, Crete, Greece
| | - Frauke Hoffmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| |
Collapse
|
44
|
Brelsford A, Dufresnes C, Perrin N. Trans-species variation in Dmrt1 is associated with sex determination in four European tree-frog species. Evolution 2016; 70:840-7. [PMID: 26920488 DOI: 10.1111/evo.12891] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Empirical studies on the relative roles of occasional XY recombination versus sex-chromosome turnover in preventing sex-chromosome differentiation may shed light on the evolutionary forces acting on sex-determination systems. Signatures of XY recombination are difficult to distinguish from those of homologous transitions (i.e., transitions in sex-determination systems that keep sex-chromosome identity): both models predict X and Y alleles at sex-linked genes to cluster by species. However, the XY-recombination model specifically predicts the reverse pattern (clustering by gametologs) for those genes that are directly involved in sex determination. Hence, the latter model can only be validated by identification of an ancestral sex-determining region (SDR) with trans-species polymorphism associated to sex. Here we combine a candidate-gene approach with a genome scan to identify a small SDR shared by four species of a monophyletic clade of European tree frogs. This SDR encompasses at least the N-terminal part of Dmrt1 and immediate upstream sequences. Our findings provide definitive evidence that sex-chromosome homomorphy in this clade results only from XY recombination, and take an important step toward the identification of the sex-determining locus. Moreover, the sex-diagnostic markers we identify will enable research on environmental sex reversal in a wider range of frog species.
Collapse
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland. .,Biology Department, University of California, Riverside, California, 92521.
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
45
|
Brelsford A, Rodrigues N, Perrin N. High-density linkage maps fail to detect any genetic component to sex determination in a Rana temporaria family. J Evol Biol 2015; 29:220-5. [PMID: 26404414 DOI: 10.1111/jeb.12747] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.
Collapse
Affiliation(s)
- A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity (Edinb) 2015; 116:177-81. [PMID: 26374238 DOI: 10.1038/hdy.2015.83] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023] Open
Abstract
Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.
Collapse
Affiliation(s)
- A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - C Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Dufresnes C, Borzée A, Horn A, Stöck M, Ostini M, Sermier R, Wassef J, Litvinchuck SN, Kosch TA, Waldman B, Jang Y, Brelsford A, Perrin N. Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X-Y Recombination. Mol Biol Evol 2015; 32:2328-37. [PMID: 25957317 DOI: 10.1093/molbev/msv113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼ 5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Amaël Borzée
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Agnès Horn
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB, Berlin, Germany
| | - Massimo Ostini
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | | | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Alan Brelsford
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
49
|
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity (Edinb) 2015; 114:300-8. [PMID: 25370211 PMCID: PMC4815583 DOI: 10.1038/hdy.2014.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Collapse
Affiliation(s)
- C Betto-Colliard
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - R Sermier
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - S Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - N Perrin
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - M Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
50
|
Dufresnes C, Brelsford A, Perrin N. First-generation linkage map for the European tree frog (Hyla arborea) with utility in congeneric species. BMC Res Notes 2014; 7:850. [PMID: 25430653 PMCID: PMC4258042 DOI: 10.1186/1756-0500-7-850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Western Palearctic tree frogs (Hyla arborea group) represent a strong potential for evolutionary and conservation genetic research, so far underexploited due to limited molecular resources. New microsatellite markers have recently been developed for Hyla arborea, with high cross-species utility across the entire circum-Mediterranean radiation. Here we conduct sibship analyses to map available markers for use in future population genetic applications. Findings We characterized eight linkage groups, including one sex-linked, all showing drastically reduced recombination in males compared to females, as previously documented in this species. Mapping of the new 15 markers to the ~200 My diverged Xenopus tropicalis genome suggests a generally conserved synteny with only one confirmed major chromosome rearrangement. Conclusions The new microsatellites are representative of several chromosomes of H. arborea that are likely to be conserved across closely-related species. Our linkage map provides an important resource for genetic research in European Hylids, notably for studies of speciation, genome evolution and conservation. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-850) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology and Evolution, Biophore building, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|