1
|
Ebdon S, Laetsch DR, Vila R, Baird SJE, Lohse K. Genomic regions of current low hybridisation mark long-term barriers to gene flow in scarce swallowtail butterflies. PLoS Genet 2025; 21:e1011655. [PMID: 40209170 PMCID: PMC12040345 DOI: 10.1371/journal.pgen.1011655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 04/29/2025] [Accepted: 03/14/2025] [Indexed: 04/12/2025] Open
Abstract
Many closely related species continue to hybridise after millions of generations of divergence. However, the extent to which current patterning in hybrid zones connects back to the speciation process remains unclear: does evidence for current multilocus barriers support the hypothesis of speciation due to multilocus divergence? We analyse whole-genome sequencing data to investigate the speciation history of the scarce swallowtails Iphiclidespodalirius and I . feisthamelii, which abut at a narrow ( ∼ 25 km) contact zone north of the Pyrenees. We first quantify the heterogeneity of effective migration rate under a model of isolation with migration, using genomes sampled across the range to identify long-term barriers to gene flow. Secondly, we investigate the recent ancestry of individuals from the hybrid zone using genome polarisation and estimate the coupling coefficient under a model of a multilocus barrier. We infer a low rate of long-term gene flow from I . feisthamelii into I . podalirius - the direction of which matches the admixture across the hybrid zone - and complete reproductive isolation across ≈ 33% of the genome. Our contrast of recent and long-term gene flow shows that regions of low recent hybridisation are indeed enriched for long-term barriers which maintain divergence between these hybridising sister species. This finding paves the way for future analysis of the evolution of reproductive isolation along the speciation continuum.
Collapse
Affiliation(s)
- Sam Ebdon
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R. Laetsch
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Konrad Lohse
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Wait DR, Peñalba JV. Suture zones, speciation, and evolution. Evolution 2025; 79:329-341. [PMID: 39708295 DOI: 10.1093/evolut/qpae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
In the more than 50 years since the initial conceptualization of the suture zone, little work has been done to take full advantage of the comparative capability of these geographic regions. During this time, great advances have been made in hybrid zone research that have provided invaluable insight into speciation and evolution. Hybrid zones have long been recognized to be "windows to the evolutionary process." If a single hybrid zone provides a window, then multiple hybrid zones in a suture zone can provide a panoramic view of the evolutionary process. Here, we hope to redirect attention to suture zones, bring the advances from hybrid zone research to a comparative framework, and further expand our understanding of speciation and evolution. In this review, we recount the historical discussions surrounding suture zones, briefly review what we can learn from hybrid zones, and review the comparative studies done on suture zones thus far. We also highlight the opportunities and challenges of performing research in suture zones to help guide researchers hoping to start a research project in these regions. Lastly, we propose future directions and questions for comparative research that can be done in suture zones.
Collapse
Affiliation(s)
- Daniel R Wait
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California at Berkeley, 3101 Valley Life Sciences Buildings, Berkeley, CA 94720, United States
| | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin 10115, Germany
| |
Collapse
|
3
|
Farnitano MC, Karoly K, Sweigart AL. Fluctuating reproductive isolation and stable ancestry structure in a fine-scaled mosaic of hybridizing Mimulus monkeyflowers. PLoS Genet 2025; 21:e1011624. [PMID: 40163522 PMCID: PMC11978108 DOI: 10.1371/journal.pgen.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025] Open
Abstract
Hybridization among taxa impacts a variety of evolutionary processes from adaptation to extinction. We seek to understand both patterns of hybridization across taxa and the evolutionary and ecological forces driving those patterns. To this end, we use whole-genome low-coverage sequencing of 458 wild-grown and 1565 offspring individuals to characterize the structure, stability, and mating dynamics of admixed populations of Mimulus guttatus and Mimulus nasutus across a decade of sampling. In three streams, admixed genomes are common and a M. nasutus organellar haplotype is fixed in M. guttatus, but new hybridization events are rare. Admixture is strongly unidirectional, but each stream has a unique distribution of ancestry proportions. In one stream, three distinct cohorts of admixed ancestry are spatially structured at ~20-50m resolution and stable across years. Mating system provides almost complete isolation of M. nasutus from both M. guttatus and admixed cohorts, and is a partial barrier between admixed and M. guttatus cohorts. Isolation due to phenology is near-complete between M. guttatus and M. nasutus. Phenological isolation is a strong barrier in some years between admixed and M. guttatus cohorts, but a much weaker barrier in other years, providing a potential bridge for gene flow. These fluctuations are associated with differences in water availability across years, supporting a role for climate in mediating the strength of reproductive isolation. Together, mating system and phenology accurately predict fluctuations in assortative mating across years, which we estimate directly using paired maternal and offspring genotypes. Climate-driven fluctuations in reproductive isolation may promote the longer-term stability of a complex mosaic of hybrid ancestry, preventing either complete isolation or complete collapse of species barriers.
Collapse
Affiliation(s)
- Matthew C. Farnitano
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Keith Karoly
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Andrea L. Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Gompert Z, DeRaad DA, Buerkle CA. A Next Generation of Hierarchical Bayesian Analyses of Hybrid Zones Enables Model-Based Quantification of Variation in Introgression in R. Ecol Evol 2024; 14:e70548. [PMID: 39583044 PMCID: PMC11582016 DOI: 10.1002/ece3.70548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Hybrid zones, where genetically distinct groups of organisms meet and interbreed, offer valuable insights into the nature of species and speciation. Here, we present a new R package, bgchm, for population genomic analyses of hybrid zones. This R package extends and updates the existing bgc software and combines Bayesian analyses of hierarchical genomic clines with Bayesian methods for estimating hybrid indexes, interpopulation ancestry proportions, and geographic clines. Compared to existing software, bgchm offers enhanced efficiency through Hamiltonian Monte Carlo sampling and the ability to work with genotype likelihoods combined with a hierarchical Bayesian approach, enabling inference for diverse types of genetic data sets. The package also facilitates the quantification of introgression patterns across genomes, which is crucial for understanding reproductive isolation and speciation genetics. We first describe the models underlying bgchm and then provide an overview of the R package and illustrate its use through the analysis of simulated and empirical data sets. We show that bgchm generates accurate estimates of model parameters under a variety of conditions, especially when the genetic loci analyzed are highly ancestry informative. This includes relatively robust estimates of genome-wide variability in clines, which has not been the focus of previous models and methods. We also illustrate how both selection and genetic drift contribute to variability in introgression among loci and how additional information can be used to help distinguish these contributions. We conclude by describing the promises and limitations of bgchm, comparing bgchm to other software for genomic cline analyses, and identifying areas for fruitful future development.
Collapse
Affiliation(s)
| | - Devon A. DeRaad
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | |
Collapse
|
5
|
Baptista L, Curto M, Waeschenbach A, Berning B, Santos AM, Ávila SP, Meimberg H. Population genetic structure and ecological differentiation in the bryozoan genus Reteporella across the Azores Archipelago (central North Atlantic). Heliyon 2024; 10:e38765. [PMID: 39430515 PMCID: PMC11489315 DOI: 10.1016/j.heliyon.2024.e38765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
The processes shaping population dynamics of benthic marine invertebrates with non-planktotrophic larvae are still poorly understood but have seen a renewed interest in applying integrative taxonomic approaches. We used mitochondrial and microsatellite (SSR-GBAS) data to estimate connectivity across islands and seamounts in the central North Atlantic Azores Archipelago in five species of the bryozoan genus Reteporella Busk, 1884. Discordant patterns were inferred between datasets, which might be due to methodological constraints related to the application of multilocus approaches based on amplification to multiple species or due to interspecific introgression in deep waters. A divergent cryptic ecotype of Reteporella atlantica (Busk, 1884) was found in shallow waters, likely resulting from ecologically-driven incipient speciation, posing new questions regarding the role of bathymetrical zonation as a promoter of differentiation. The occurrence of ecologically-driven differentiation and potential interspecific introgression in other bryozoans should be considered, both with potentially important evolutionary and biogeographical consequences. The discovery of incipient species, prompted by ecological factors, calls for the need to consider marine invertebrates when developing conservation strategies in oceanic insular ecosystems.
Collapse
Affiliation(s)
- Lara Baptista
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Institute for Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33, 1180, Wien, Austria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
| | - Manuel Curto
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
| | - Andrea Waeschenbach
- Science, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| | - Björn Berning
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
| | - António M. Santos
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Sérgio P. Ávila
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
- UNESCO Chair – Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9501-801, Ponta Delgada, Portugal
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33, 1180, Wien, Austria
| |
Collapse
|
6
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
van Riemsdijk I, Arntzen JW, Bucciarelli GM, McCartney-Melstad E, Rafajlović M, Scott PA, Toffelmier E, Shaffer HB, Wielstra B. Two transects reveal remarkable variation in gene flow on opposite ends of a European toad hybrid zone. Heredity (Edinb) 2023; 131:15-24. [PMID: 37106116 PMCID: PMC10313803 DOI: 10.1038/s41437-023-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Speciation entails a reduction in gene flow between lineages. The rates at which genomic regions become isolated varies across space and time. Barrier markers are linked to putative genes involved in (processes of) reproductive isolation, and, when observed over two transects, indicate species-wide processes. In contrast, transect-specific putative barrier markers suggest local processes. We studied two widely separated transects along the 900 km hybrid zone between Bufo bufo and B. spinosus, in northern and southern France, for ~1200 RADseq markers. We used genomic and geographic cline analyses to identify barrier markers based on their restricted introgression, and found that some markers are transect-specific, while others are shared between transects. Twenty-six barrier markers were shared across both transects, of which some are clustered in the same chromosomal region, suggesting that their associated genes are involved in reduced gene flow across the entire hybrid zone. Transect-specific barrier markers were twice as numerous in the southern than in the northern transect, suggesting that the overall barrier effect is weaker in northern France. We hypothesize that this is consistent with a longer period of secondary contact in southern France. The smaller number of introgressed genes in the northern transect shows considerably more gene flow towards the southern (B. spinosus) than the northern species (B. bufo). We hypothesize that hybrid zone movement in northern France and hybrid zone stability in southern France explain this pattern. The Bufo hybrid zone provides an excellent opportunity to separate a general barrier effect from localized gene flow-reducing conditions.
Collapse
Affiliation(s)
- I van Riemsdijk
- Naturalis Biodiversity Center, Leiden, the Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
- Institute for Evolution and Ecology, Plant Evolutionary Ecology, Tübingen University, Tübingen, Germany.
| | - J W Arntzen
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - G M Bucciarelli
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
- Institute of the Environment, UC Davis, Davis, CA, USA
- Department of Wildlife, Fish, and Conservation Biology, UC Davis, Davis, CA, USA
| | - E McCartney-Melstad
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - M Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - P A Scott
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Natural Sciences Collegium, Eckerd College, 4200 54 Ave S, St Petersburg, FL, 33711, USA
| | - E Toffelmier
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - B Wielstra
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
8
|
Linnen CR, Brandvain Y, Unckless RL. Theme: Recent work in speciation research by women authors. Evolution 2022; 76:1100-1103. [PMID: 35122428 DOI: 10.1111/evo.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota
| | - Robert L Unckless
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, Lawrence, Kansas
| |
Collapse
|
9
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
10
|
Hill T, Rosales-Stephens HL, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 (BETHESDA, MD.) 2021; 11:jkab050. [PMID: 33599779 PMCID: PMC8759818 DOI: 10.1093/g3journal/jkab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Proteins involved in post-copulatory interactions between males and females are among the fastest evolving genes in many species, usually attributed to their involvement in reproductive conflict. As a result, these proteins are thought to often be involved in the formation of postmating-prezygotic incompatibilities between species. The Drosophila dunni subgroup consists of a dozen recently diverged species found across the Caribbean islands with varying levels of hybrid incompatibility. We performed experimental crosses between species in the dunni group and see some evidence of hybrid incompatibilities. We also find evidence of reduced survival following hybrid mating, likely due to postmating-prezygotic incompatibilities. We assessed rates of evolution between these species genomes and find evidence of rapid evolution and divergence of some reproductive proteins, specifically the seminal fluid proteins. This work suggests the rapid evolution of seminal fluid proteins may be associated with postmating-prezygotic isolation, which acts as a barrier for gene flow between even the most closely related species.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Robert L Unckless
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
Semenov GA, Linck E, Enbody ED, Harris RB, Khaydarov DR, Alström P, Andersson L, Taylor SA. Asymmetric introgression reveals the genetic architecture of a plumage trait. Nat Commun 2021; 12:1019. [PMID: 33589637 PMCID: PMC7884433 DOI: 10.1038/s41467-021-21340-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression. Hybrid zones are windows into the evolutionary process. Semenov et al. find that the head plumage differences between white wagtail subspecies have a simple genetic basis involving two small genetic regions, in which partially dominant and epistatic interactions help to explain how this sexual signal has become decoupled from other plumage traits.
Collapse
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Ethan Linck
- UNM Biology, University of New Mexico, Albuquerque, NM, Mexico
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Scott A Taylor
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
12
|
Rowe M, Whittington E, Borziak K, Ravinet M, Eroukhmanoff F, Sætre GP, Dorus S. Molecular Diversification of the Seminal Fluid Proteome in a Recently Diverged Passerine Species Pair. Mol Biol Evol 2020; 37:488-506. [PMID: 31665510 PMCID: PMC6993853 DOI: 10.1093/molbev/msz235] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) mediate an array of postmating reproductive processes that influence fertilization and fertility. As such, it is widely held that SFPs may contribute to postmating, prezygotic reproductive barriers between closely related taxa. We investigated seminal fluid (SF) diversification in a recently diverged passerine species pair (Passer domesticus and Passer hispaniolensis) using a combination of proteomic and comparative evolutionary genomic approaches. First, we characterized and compared the SF proteome of the two species, revealing consistencies with known aspects of SFP biology and function in other taxa, including the presence and diversification of proteins involved in immunity and sperm maturation. Second, using whole-genome resequencing data, we assessed patterns of genomic differentiation between house and Spanish sparrows. These analyses detected divergent selection on immunity-related SF genes and positive selective sweeps in regions containing a number of SF genes that also exhibited protein abundance diversification between species. Finally, we analyzed the molecular evolution of SFPs across 11 passerine species and found a significantly higher rate of positive selection in SFPs compared with the rest of the genome, as well as significant enrichments for functional pathways related to immunity in the set of positively selected SF genes. Our results suggest that selection on immunity pathways is an important determinant of passerine SF composition and evolution. Assessing the role of immunity genes in speciation in other recently diverged taxa should be prioritized given the potential role for immunity-related proteins in reproductive incompatibilities in Passer sparrows.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
13
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Stewart KA, Taylor SA. Leveraging eDNA to expand the study of hybrid zones. Mol Ecol 2020; 29:2768-2776. [PMID: 32557920 PMCID: PMC7496085 DOI: 10.1111/mec.15514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/18/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Hybrid zones are important windows into ecological and evolutionary processes. Our understanding of the significance and prevalence of hybridization in nature has expanded with the generation and analysis of genome‐spanning data sets. That said, most hybridization research still has restricted temporal and spatial resolution, which limits our ability to draw broad conclusions about evolutionary and conservation related outcomes. Here, we argue that rapidly advancing environmental DNA (eDNA) methodology could be adopted for studies of hybrid zones to increase temporal sampling (contemporary and historical), refine and geographically expand sampling density, and collect data for taxa that are difficult to directly sample. Genomic data in the environment offer the potential for near real‐time biological tracking of hybrid zones, and eDNA provides broad, but as yet untapped, potential to address eco‐evolutionary questions.
Collapse
Affiliation(s)
- Kathryn A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Scott A Taylor
- Department Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
15
|
Gauthier J, de Silva DL, Gompert Z, Whibley A, Houssin C, Le Poul Y, McClure M, Lemaitre C, Legeai F, Mallet J, Elias M. Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Mol Ecol 2020; 29:1328-1343. [PMID: 32145112 DOI: 10.1111/mec.15403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022]
Abstract
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.
Collapse
Affiliation(s)
- Jérémy Gauthier
- Inria, CNRS, IRISA, University Rennes, Rennes, France.,Geneva Natural History Museum, Geneva, Switzerland
| | - Donna Lisa de Silva
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | | | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Céline Houssin
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | - Yann Le Poul
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France.,Fakultat für Biologie, Biozentrum, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Melanie McClure
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | | | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité, CNRS, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| |
Collapse
|
16
|
van Riemsdijk I, Butlin RK, Wielstra B, Arntzen JW. Testing an hypothesis of hybrid zone movement for toads in France. Mol Ecol 2019; 28:1070-1083. [PMID: 30609055 DOI: 10.1111/mec.15005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Hybrid zone movement may result in substantial unidirectional introgression of selectively neutral material from the local to the advancing species, leaving a genetic footprint. This genetic footprint is represented by a trail of asymmetric tails and displaced cline centres in the wake of the moving hybrid zone. A peak of admixture linkage disequilibrium is predicted to exist ahead of the centre of the moving hybrid zone. We test these predictions of the movement hypothesis in a hybrid zone between common (Bufo bufo) and spined toads (B. spinosus), using 31 nuclear and one mtDNA SNPs along a transect in the northwest of France. Average effective selection in Bufo hybrids is low and clines vary in shape and centre. A weak pattern of asymmetric introgression is inferred from cline discordance of seven nuclear markers. The dominant direction of gene flow is from B. spinosus to B. bufo and is in support of southward movement of the hybrid zone. Conversely, a peak of admixture linkage disequilibrium north of the hybrid zone suggests northward movement. These contrasting results can be explained by reproductive isolation of the B. spinosus and B. bufo gene pools at the southern (B. spinosus) side of the hybrid zone. The joint occurrence of asymmetric introgression and admixture linkage disequilibrium can also be explained by the combination of low dispersal and random genetic drift due to low effective population sizes.
Collapse
Affiliation(s)
- Isolde van Riemsdijk
- Taxonomy and Systematics, Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Ben Wielstra
- Taxonomy and Systematics, Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| | - Jan W Arntzen
- Taxonomy and Systematics, Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Rifkin JL, Castillo AS, Liao IT, Rausher MD. Gene flow, divergent selection and resistance to introgression in two species of morning glories (Ipomoea). Mol Ecol 2019; 28:1709-1729. [PMID: 30451335 DOI: 10.1111/mec.14945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 02/03/2023]
Abstract
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Biology, Duke University, Durham, North Carolina
| | | | - Irene T Liao
- Department of Biology, Duke University, Durham, North Carolina
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, Otero-Ferrer F, Aublanc P, Béduneau V, Briard O, El Ayari T, Hochscheid S, Belkhir K, Arnaud-Haond S, Gagnaire PA, Bierne N. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 2019; 73:817-835. [PMID: 30854632 DOI: 10.1111/evo.13696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Diverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry-i.e., in the same geographical zone-with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not map to lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts-i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Cathy Liautard-Haag
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Lucy Woodall
- Department of Zoology, University of Oxford, Wytham, OX2 8QJ, United Kingdom.,Natural History Museum, London, SW7 5BD, United Kingdom
| | - Carmen Bouza
- Department of Genetics, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrick Louisy
- ECOMERS Laboratory, University of Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, Nice, France.,Association Peau-Bleue, 46 rue des Escais, Agde, France
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Philippe Aublanc
- Institut océanographique Paul Ricard, Ile des Embiez, Six-Fours-les-Plages, France
| | - Vickie Béduneau
- Océarium du Croisic, Avenue de Saint Goustan, Le Croisic, France
| | - Olivier Briard
- Aquarium de Biarritz, Biarritz Océan, Plateau de l'Atalaye, Biarritz, France
| | - Tahani El Ayari
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sandra Hochscheid
- Stazione Zoologica Anton Dohrn, Department Research Infrastructures for Marine Biological Resources, Aquarium Unit, Napoli, Italy
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sophie Arnaud-Haond
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,Ifremer-MARine Biodiversity, Exploitation and Conservation, UMR 9190 IRD-IFREMER-UM-CNRS, Sète, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| |
Collapse
|
19
|
Pulido-Santacruz P, Aleixo A, Weir JT. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proc Biol Sci 2019. [PMID: 29514967 DOI: 10.1098/rspb.2017.2081] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.
Collapse
Affiliation(s)
| | - Alexandre Aleixo
- Department of Zoology, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Jason T Weir
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada .,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
20
|
Gainey DP, Kim JY, Maroja LS. Mapping reduced introgression loci to the X chromosome of the hybridizing field crickets, Gryllus firmus and G. pennsylvanicus. PLoS One 2018; 13:e0208498. [PMID: 30566487 PMCID: PMC6300192 DOI: 10.1371/journal.pone.0208498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/18/2018] [Indexed: 11/19/2022] Open
Abstract
The genomic architecture of barriers to gene exchange during the speciation process is poorly understood. The genomic islands model suggests that loci associated with barriers to gene exchange prevent introgression of nearby genomic regions via linkage disequilibrium. But few analyses of the actual genomic location of non-introgressing loci in closely related species exist. In a previous study Maroja et al. showed that in the hybridizing field crickets, Gryllus firmus and G. pennsylvanicus, 50 non-introgressing loci are localized on two autosomal regions and the X chromosome, but they were not able to map the loci along the X chromosome because they used a male informative cross. Here, we localize the introgressing and non-introgressing loci on the X chromosome, and reveal that all X-linked non-introgressing loci are restricted to a 50-cM region with 10 of these loci mapped to a single location. We discuss the implications of this finding to speciation.
Collapse
Affiliation(s)
- D. Patrick Gainey
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Jeremiah Y. Kim
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Luana S. Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Role of sexual imprinting in assortative mating and premating isolation in Darwin's finches. Proc Natl Acad Sci U S A 2018; 115:E10879-E10887. [PMID: 30348758 DOI: 10.1073/pnas.1813662115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Global biodiversity is being degraded at an unprecedented rate, so it is important to preserve the potential for future speciation. Providing for the future requires understanding speciation as a contemporary ecological process. Phylogenetically young adaptive radiations are a good choice for detailed study because diversification is ongoing. A key question is how incipient species become reproductively isolated from each other. Barriers to gene exchange have been investigated experimentally in the laboratory and in the field, but little information exists from the quantitative study of mating patterns in nature. Although the degree to which genetic variation underlying mate-preference learning is unknown, we provide evidence that two species of Darwin's finches imprint on morphological cues of their parents and mate assortatively. Statistical evidence of presumed imprinting is stronger for sons than for daughters and is stronger for imprinting on fathers than on mothers. In combination, morphology and species-specific song learned from the father constitute a barrier to interbreeding. The barrier becomes stronger the more the species diverge morphologically and ecologically. It occasionally breaks down, and the species hybridize. Hybridization is most likely to happen when species are similar to each other in adaptive morphological traits, e.g., body size and beak size and shape. Hybridization can lead to the formation of a new species reproductively isolated from the parental species as a result of sexual imprinting. Conservation of sufficiently diverse natural habitat is needed to sustain a large sample of extant biota and preserve the potential for future speciation.
Collapse
|
22
|
Cortés-Ortiz L, Baiz MD, Hermida-Lagunes J, García-Orduña F, Rangel-Negrín A, Kitchen DM, Bergman TJ, Dias PAD, Canales-Espinosa D. Reduced Introgression of Sex Chromosome Markers in the Mexican Howler Monkey ( Alouatta palliata × A. pigra) Hybrid Zone. INT J PRIMATOL 2018; 40:114-131. [PMID: 30880850 PMCID: PMC6394575 DOI: 10.1007/s10764-018-0056-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/07/2018] [Indexed: 01/12/2023]
Abstract
Interspecific hybridization allows the introgression or movement of alleles from one genome to another. While some genomic regions freely exchange alleles during hybridization, loci associated with reproductive isolation do not intermix. In many model organisms, the X chromosome displays limited introgression compared to autosomes owing to the presence of multiple loci associated with hybrid sterility or inviability (the "large X-effect"). Similarly, if hybrids are produced, the heterogametic sex is usually inviable or sterile, a pattern known as Haldane's rule. We analyzed the patterns of introgression of genetic markers located in the mitochondrial (control region) and nuclear (autosomal microsatellites and sex chromosome genes) genomes of two howler monkey species (Alouatta palliata and A. pigra) that form a natural hybrid zone in southern Mexico, to evaluate whether the large X-effect and Haldane's rule affect the outcomes of hybridization between these sister species. To identify the level of admixture of each individual in the hybrid zone (N = 254) we analyzed individuals sampled outside the hybrid zone (109 A. pigra and 39 A. palliata) to determine allele frequencies of parental species and estimated a hybrid index based on nuclear markers. We then performed a cline analysis using individuals in the hybrid zone to determine patterns of introgression for each locus. Our analyses show that although the hybrid zone is bimodal (with no known F1 s and few recent generation hybrids) and quite narrow, there has been extensive introgression in both directions, and there is a large array of admixed individuals in the hybrid zone. Mitochondrial and most autosomal markers showed bidirectional introgression, but some had biased introgression toward one species or the other. All markers on the sex chromosomes and a few autosomal markers showed highly restricted introgression. This pattern is consistent with the hypothesis that the sex chromosomes make a disproportionate contribution to reproductive isolation, and our results broaden the taxonomic representation of these patterns across animal taxa.
Collapse
Affiliation(s)
- Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA
| | - Marcella D. Baiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA
| | | | | | | | - Dawn M. Kitchen
- Department of Anthropology, The Ohio State University, Columbus, OH 43210 USA
| | - Thore J. Bergman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Pedro A. D. Dias
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
23
|
Leitwein M, Gagnaire PA, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol Ecol 2018; 27:3466-3483. [PMID: 30054960 DOI: 10.1111/mec.14816] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary consequences of human-mediated introductions of domesticated strains into the wild and their subsequent admixture with natural populations is of major concern in conservation biology. However, the genomic impacts of stocking from distinct sources (locally derived vs. divergent) on the genetic integrity of wild populations remain poorly understood. We designed an approach based on estimating local ancestry along individual chromosomes to provide a detailed picture of genomic admixture in supplemented populations. We used this approach to document admixture consequences in the brown trout Salmo trutta, for which decades of stocking practices have profoundly impacted the genetic make-up of wild populations. In southern France, small local Mediterranean populations have been subject to successive introductions of domestic strains derived from the Atlantic and Mediterranean lineages. To address the impact of stocking, we evaluate the extent of admixture from both domestic strains within populations, using 75,684 mapped SNPs obtained from double-digested restriction site-associated DNA sequencing. Then, the chromosomal ancestry profiles of admixed individuals reveal a wider diversity of hybrid and introgressed genotypes than estimated using classical methods for inferring ancestry and hybrid pedigrees. In addition, the length distribution of introgressed tracts retained different timings of introgression between the two domestic strains. We finally reveal opposite consequences of admixture on the level of polymorphism of the recipient populations between domestic strains. Our study illustrates the potential of using the information contained in the genomic mosaic of ancestry tracts in combination with classical methods based on allele frequencies for analysing multiple-way admixture with population genomic data.
Collapse
Affiliation(s)
- Maeva Leitwein
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | - Erick Desmarais
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Patrick Berrebi
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Département Biologie-Ecologie, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
24
|
Dissection by genomic and plumage variation of a geographically complex hybrid zone between two Australian non-sister parrot species, Platycercus adscitus and Platycercus eximius. Heredity (Edinb) 2018; 122:402-416. [PMID: 30082918 PMCID: PMC6460760 DOI: 10.1038/s41437-018-0127-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023] Open
Abstract
The study of hybrid zones advances understanding of the speciation process, and approaches incorporating genomic data are increasingly used to draw significant conclusions about the impact of hybridisation. Despite the progress made, the complex interplay of factors that can lead to substantially variable hybridisation outcomes are still not well understood, and many systems and/or groups remain comparatively poorly studied. Our study aims to broaden the literature on avian hybrid zones, investigating a potentially geographically and temporally complex putative hybrid zone between two native Australian non-sister parrot species, the pale-headed and eastern rosellas (Platycercus adscitus and Platycercus eximius, respectively). We analysed six plumage traits and >1400 RADseq loci and detected hybrid individuals and an unexpectedly complex geographic structure. The hybrid zone is larger than previously described due to either observer bias or its movement over recent decades. It comprises different subregions where genetic and plumage signals of admixture vary markedly in their concordance. Evidence of contemporary hybridisation (later generation and backcrossed individuals) both within and beyond the previously defined zone, when coupled with a lack of F1 hybrids and differential patterns of introgression among potentially diagnostic loci, indicates a lack of post-zygotic barriers to gene flow between species. Despite ongoing gene flow, species boundaries are likely maintained largely by strong pre-mating barriers. These findings are discussed in detail and future avenues for research into this system are proposed, which would be of benefit to the speciation and hybrid zone literature.
Collapse
|
25
|
Souissi A, Bonhomme F, Manchado M, Bahri-Sfar L, Gagnaire PA. Genomic and geographic footprints of differential introgression between two divergent fish species (Solea spp.). Heredity (Edinb) 2018; 121:579-593. [PMID: 29713088 DOI: 10.1038/s41437-018-0079-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/10/2018] [Indexed: 11/09/2022] Open
Abstract
Investigating gene flow between closely related species and its variation across the genome is important to understand how reproductive barriers shape genome divergence before speciation is complete. An efficient way to characterize differential gene flow is to study how the genetic interactions that take place in hybrid zones selectively filter gene exchange between species, leading to heterogeneous genome divergence. In the present study, genome-wide divergence and introgression patterns were investigated between two sole species, Solea senegalensis and Solea aegyptiaca, using restriction-associated DNA sequencing (RAD-Seq) to analyze samples taken from a transect spanning the hybrid zone. An integrative approach combining geographic and genomic clines methods with an analysis of individual locus introgression accounting for the demographic history of divergence was conducted. Our results showed that the two sole species have come into secondary contact postglacially, after experiencing a prolonged period (ca. 1.1 to 1.8 Myrs) of allopatric separation. Secondary contact resulted in the formation of a tension zone characterized by strong reproductive isolation, which only allowed introgression in a limited fraction of the genome. We found multiple evidence for a preferential direction of introgression in the S. aegyptiaca genetic background, indicating a possible recent or ongoing movement of the hybrid zone. Deviant introgression signals found in the opposite direction suggested that S. senegalensis could have possibly undergone adaptive introgression that has not yet spread throughout the entire species range. Our study thus illustrates the varied outcomes of genetic interactions between divergent gene pools that recently met after a long history of divergence.
Collapse
Affiliation(s)
- Ahmed Souissi
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France. .,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France. .,Faculté des Sciences de Tunis UR11ES08 Biologie intégrative et écologie évolutive et fonctionnelle des milieux aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - François Bonhomme
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Lilia Bahri-Sfar
- Faculté des Sciences de Tunis UR11ES08 Biologie intégrative et écologie évolutive et fonctionnelle des milieux aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Pierre-Alexandre Gagnaire
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France
| |
Collapse
|
26
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
27
|
Gompert Z, Mandeville EG, Buerkle CA. Analysis of Population Genomic Data from Hybrid Zones. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022652] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322
| | - Elizabeth G. Mandeville
- Department of Botany and Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming 82071
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
28
|
Fouet C, Kamdem C, Gamez S, White BJ. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl 2017; 10:897-906. [PMID: 29151881 PMCID: PMC5680430 DOI: 10.1111/eva.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023] Open
Abstract
Ongoing speciation in the most important African malaria vectors gives rise to cryptic populations, which differ remarkably in their behavior, ecology, and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is crucial for effective disease control because heterogeneity within vector species contributes to variability in malaria cases and allow fractions of populations to escape control efforts. To examine population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the Anopheles nili group-a large taxonomic group that diverged ~3 Myr ago. Using 4,343 single nucleotide polymorphisms (SNPs), we detected strong population structure characterized by high-FST values between multiple divergent populations adapted to different habitats within the Central African rainforest. Delineating the cryptic species within the Anopheles nili group is challenging due to incongruence between morphology, ribosomal DNA, and SNP markers consistent with incomplete lineage sorting and/or interspecific gene flow. A very high proportion of loci are fixed (FST = 1) within the genome of putative species, which suggests that ecological and/or reproductive barriers are maintained by strong selection on a substantial number of genes.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Colince Kamdem
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Stephanie Gamez
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Bradley J. White
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
- Center for Disease Vector ResearchInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
29
|
Mao X, Tsagkogeorga G, Bailey SE, Rossiter SJ. Genomics of introgression in the Chinese horseshoe bat (Rhinolophus sinicus) revealed by transcriptome sequencing. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sebastian E. Bailey
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
30
|
Kingston SE, Parchman TL, Gompert Z, Buerkle CA, Braun MJ. Heterogeneity and concordance in locus‐specific differentiation and introgression between species of towhees. J Evol Biol 2017; 30:474-485. [DOI: 10.1111/jeb.13033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/13/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022]
Affiliation(s)
- S. E. Kingston
- Program in Behavior, Ecology, Evolution, and Systematics University of Maryland College Park MD USA
- National Museum of Natural History Vertebrate Zoology Smithsonian Institution Washington DC USA
- Department of Biology and Coastal Studies Center Bowdoin College Brunswick ME USA
| | | | - Z. Gompert
- Department of Biology Utah State University Logan UT USA
| | - C. A. Buerkle
- Department of Botany University of Wyoming Laramie WY USA
| | - M. J. Braun
- Program in Behavior, Ecology, Evolution, and Systematics University of Maryland College Park MD USA
- National Museum of Natural History Vertebrate Zoology Smithsonian Institution Washington DC USA
| |
Collapse
|
31
|
Bouchemousse S, Liautard-Haag C, Bierne N, Viard F. Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol 2016; 25:5527-5542. [PMID: 27662427 DOI: 10.1111/mec.13854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Biological introductions bring into contact species that can still hybridize. The evolutionary outcomes of such secondary contacts may be diverse (e.g. adaptive introgression from or into the introduced species) but are not yet well examined in the wild. The recent secondary contact between the non-native sea squirt Ciona robusta (formerly known as C. intestinalis type A) and its native congener C. intestinalis (formerly known as C. intestinalis type B), in the Western English Channel, provides an excellent case study to examine. To examine contemporary hybridization between the two species, we developed a panel of 310 ancestry-informative SNPs from a population transcriptomic study. Hybridization rates were examined on 449 individuals sampled in eight sites from the sympatric range and five sites from allopatric ranges. The results clearly showed an almost complete absence of contemporary hybridization between the two species in syntopic localities, with only one-first-generation hybrid and no other genotype compatible with recent backcrosses. Despite the almost lack of contemporary hybridization, shared polymorphisms were observed in sympatric and allopatric populations of both species. Furthermore, one allopatric population from SE Pacific exhibited a higher rate of shared polymorphisms compared to all other C. robusta populations. Altogether, these results indicate that the observed level of shared polymorphism is more probably the outcome of ancient gene flow spread afterwards at a worldwide scale. They also emphasize efficient reproductive barriers preventing hybridization between introduced and native species, which suggests hybridization should not impede too much the expansion and the establishment of the non-native species in its introduction range.
Collapse
Affiliation(s)
- Sarah Bouchemousse
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Cathy Liautard-Haag
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nicolas Bierne
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Frédérique Viard
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|
32
|
Kenney AM, Sweigart AL. Reproductive isolation and introgression between sympatric
Mimulus
species. Mol Ecol 2016; 25:2499-517. [DOI: 10.1111/mec.13630] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda M. Kenney
- Department of Genetics University of Georgia Athens GA 30602 USA
- Department of Biological Sciences St. Edward's University Austin TX 78704 USA
| | | |
Collapse
|
33
|
Schumer M, Cui R, Powell DL, Rosenthal GG, Andolfatto P. Ancient hybridization and genomic stabilization in a swordtail fish. Mol Ecol 2016; 25:2661-79. [DOI: 10.1111/mec.13602] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Molly Schumer
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544 USA
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca” 16 de Septiembre 392 Calnali Hidalgo 43230 Mexico
| | - Rongfeng Cui
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca” 16 de Septiembre 392 Calnali Hidalgo 43230 Mexico
- Department of Biology Texas A&M University TAMU College Station TX 77843 USA
- Max Planck Institute for the Biology of Aging D‐50931 Cologne Germany
| | - Daniel L. Powell
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca” 16 de Septiembre 392 Calnali Hidalgo 43230 Mexico
- Department of Biology Texas A&M University TAMU College Station TX 77843 USA
| | - Gil G. Rosenthal
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca” 16 de Septiembre 392 Calnali Hidalgo 43230 Mexico
- Department of Biology Texas A&M University TAMU College Station TX 77843 USA
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544 USA
- Lewis‐Sigler Institute for Integrative Genomics Princeton University Princeton NJ 08544 USA
| |
Collapse
|
34
|
Harrison RG, Larson EL. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol Ecol 2016; 25:2454-66. [PMID: 26857437 DOI: 10.1111/mec.13582] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Hybrid zones have been promoted as windows on the evolutionary process and as laboratories for studying divergence and speciation. Patterns of divergence between hybridizing species can now be characterized on a genomewide scale, and recent genome scans have focused on the presence of 'islands' of divergence. Patterns of heterogeneous genomic divergence may reflect differential introgression following secondary contact and provide insights into which genome regions contribute to local adaptation, hybrid unfitness and positive assortative mating. However, heterogeneous genome divergence can also arise in the absence of any gene flow, as a result of variation in selection and recombination across the genome. We suggest that to understand hybrid zone origins and dynamics, it is essential to distinguish between genome regions that are divergent between pure parental populations and regions that show restricted introgression where these populations interact in hybrid zones. The latter, more so than the former, reveal the likely genetic architecture of reproductive isolation. Mosaic hybrid zones, because of their complex structure and multiple contacts, are particularly good subjects for distinguishing primary intergradation from secondary contact. Comparisons among independent hybrid zones or transects that involve the 'same' species pair can also help to distinguish between divergence with gene flow and secondary contact. However, data from replicate hybrid zones or replicate transects do not reveal consistent patterns; in a few cases, patterns of introgression are similar across independent transects, but for many taxa, there is distinct lack of concordance, presumably due to variation in environmental context and/or variation in the genetics of the interacting populations.
Collapse
Affiliation(s)
- Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
35
|
Mao X, Zhang S, Rossiter SJ. Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson's horseshoe bat Rhinolophus pearsoni. Curr Zool 2016; 62:405-412. [PMID: 29491929 PMCID: PMC5829442 DOI: 10.1093/cz/zow017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Observations that rates of introgression between taxa can vary across loci are
increasingly common. Here, we test for differential locus-wise introgression in 2
parapatric subspecies of Pearson′s horseshoe bat (Rhinolophus pearsoni
chinensis and R. p. pearsoni). To efficiently identify
putative speciation genes and/or beneficial genes in our current system, we used a
candidate gene approach by including loci from X chromosome that are suggested to be more
likely involved in reproductive isolation in other organisms and loci underlying hearing
that have been suggested to spread across the hybrid zone in another congeneric species.
Phylogenetic and coalescent analyses were performed at 2 X-linked, 4 hearing genes, as
well as 2 other autosomal loci individually. Likelihood ratio tests could not reject the
model of zero gene flow at 2 X-linked and 2 autosomal genes. In contrast, gene flow was
supported at 3 of 4 hearing genes. While this introgression could be adaptive, we cannot
rule out stochastic processes. Our results highlight the utility of the candidate gene
approach in searching for speciation genes and/or beneficial genes across the species
boundary in natural populations.
Collapse
Affiliation(s)
- Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China and.,School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Shuyi Zhang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China and
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
36
|
Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteomics 2016; 135:26-37. [DOI: 10.1016/j.jprot.2015.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
37
|
Noh S, Marshall JL. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. PeerJ 2016; 4:e1678. [PMID: 26893965 PMCID: PMC4756749 DOI: 10.7717/peerj.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Washington University in St. Louis , St. Louis, MO , United States
| | - Jeremy L Marshall
- Department of Entomology, Kansas State University , Manhattan, KS , United States
| |
Collapse
|
38
|
Grant PR, Grant BR. Introgressive hybridization and natural selection in Darwin's finches. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12702] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peter R. Grant
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ 08544-1003 USA
| | - B. Rosemary Grant
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ 08544-1003 USA
| |
Collapse
|
39
|
Bradbury IR, Hamilton LC, Dempson B, Robertson MJ, Bourret V, Bernatchez L, Verspoor E. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol Ecol 2015; 24:5130-44. [DOI: 10.1111/mec.13395] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ian R. Bradbury
- Science Branch; Department of Fisheries and Oceans Canada; 80 East White Hills Road St. John's Newfoundland Canada A1C 5X1
| | - Lorraine C. Hamilton
- Aquatic Biotechnology Laboratory; Bedford Institute of Oceanography; Dartmouth Halifax Nova Scotia Canada B2Y 4A2
| | - Brian Dempson
- Science Branch; Department of Fisheries and Oceans Canada; 80 East White Hills Road St. John's Newfoundland Canada A1C 5X1
| | - Martha J. Robertson
- Science Branch; Department of Fisheries and Oceans Canada; 80 East White Hills Road St. John's Newfoundland Canada A1C 5X1
| | - Vincent Bourret
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; 1030 avenue de la Médecine Québec Québec Canada G1V 0A6
- Direction de la faune aquatique; Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs; Québec Québec Canada G1S 4X4
| | - Louis Bernatchez
- Direction de la faune aquatique; Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs; Québec Québec Canada G1S 4X4
| | - Eric Verspoor
- Rivers and Lochs Institute; Inverness College University of the Highlands and Islands; Inverness IV2 5NA UK
| |
Collapse
|
40
|
Maroja LS, Larson EL, Bogdanowicz SM, Harrison RG. Genes with Restricted Introgression in a Field Cricket (Gryllus firmus/Gryllus pennsylvanicus) Hybrid Zone Are Concentrated on the X Chromosome and a Single Autosome. G3 (BETHESDA, MD.) 2015; 5:2219-27. [PMID: 26311650 PMCID: PMC4632042 DOI: 10.1534/g3.115.021246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Characterizing the extent of genomic differentiation between recently diverged lineages provides an important context for understanding the early stages of speciation. When such lineages form discrete hybrid zones, patterns of differential introgression allow direct estimates of which genome regions are likely involved in speciation and local adaptation. Here we use a backcross experimental design to construct a genetic linkage map for the field crickets Gryllus firmus and Gryllus pennsylvanicus, which interact in a well-characterized hybrid zone in eastern North America. We demonstrate that loci with major allele frequency differences between allopatric populations are not randomly distributed across the genome. Instead, most are either X-linked or map to a few small autosomal regions. Furthermore, the subset of those highly differentiated markers that exhibit restricted introgression across the cricket hybrid zone are also concentrated on the X chromosome (39 of 50 loci) and in a single 7-cM region of one autosome. Although the accumulation on the sex chromosome of genes responsible for postzygotic barriers is a well-known phenomenon, less attention has been given to the genomic distribution of genes responsible for prezygotic barriers. We discuss the implications of our results for speciation, both in the context of the role of sex chromosomes and also with respect to the likely causes of heterogeneous genomic divergence. Although we do not yet have direct evidence for the accumulation of ecological, behavioral, or fertilization prezygotic barrier genes on the X chromosome, faster-X evolution could make these barriers more likely to be X-linked.
Collapse
Affiliation(s)
- Luana S Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
41
|
Combosch DJ, Vollmer SV. Trans-Pacific RAD-Seq population genomics confirms introgressive hybridization in Eastern Pacific Pocillopora corals. Mol Phylogenet Evol 2015; 88:154-62. [DOI: 10.1016/j.ympev.2015.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/30/2023]
|
42
|
Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P, Borevitz J, Sgrò C. A framework for incorporating evolutionary genomics into biodiversity conservation and management. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40665-014-0009-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl 2015; 8:23-46. [PMID: 25667601 PMCID: PMC4310580 DOI: 10.1111/eva.12234] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Philippa C Griffin
- Department of Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - John G Oakeshott
- CSIRO Land and Water Flagship, Black Mountain LaboratoriesCanberra, ACT, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery CentreBentley, WA, Australia
| | - Ary A Hoffmann
- Departments of Zoology and Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|
44
|
Hart MW. Models of selection, isolation, and gene flow in speciation. THE BIOLOGICAL BULLETIN 2014; 227:133-145. [PMID: 25411372 DOI: 10.1086/bblv227n2p133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many marine ecologists aspire to use genetic data to understand how selection and demographic history shape the evolution of diverging populations as they become reproductively isolated species. I propose combining two types of genetic analysis focused on this key early stage of the speciation process to identify the selective agents directly responsible for population divergence. Isolation-with-migration (IM) models can be used to characterize reproductive isolation between populations (low gene flow), while codon models can be used to characterize selection for population differences at the molecular level (especially positive selection for high rates of amino acid substitution). Accessible transcriptome sequencing methods can generate the large quantities of data needed for both types of analysis. I highlight recent examples (including our work on fertilization genes in sea stars) in which this confluence of interest, models, and data has led to taxonomically broad advances in understanding marine speciation at the molecular level. I also highlight new models that incorporate both demography and selection: simulations based on these theoretical advances suggest that polymorphisms shared among individuals (a key source of information in IM models) may lead to false-positive evidence of selection (in codon models), especially during the early stages of population divergence and speciation that are most in need of study. The false-positive problem may be resolved through a combination of model improvements plus experiments that document the phenotypic and fitness effects of specific polymorphisms for which codon models and IM models indicate selection and reproductive isolation (such as genes that mediate sperm-egg compatibility at fertilization).
Collapse
Affiliation(s)
- Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
45
|
Taylor SA, Curry RL, White TA, Ferretti V, Lovette I. Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. Evolution 2014; 68:3066-81. [DOI: 10.1111/evo.12510] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 07/28/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Scott A. Taylor
- Fuller Evolutionary Biology Program; Cornell Lab of Ornithology; 159 Sapsucker Woods Road Ithaca New York 14850
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York 14850
| | - Robert L. Curry
- Department of Biology; Villanova University; 800 Lancaster Avenue Villanova Pennsylvania 19085
| | - Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York 14850
- Ecology Research Group; Department of Geographical and Life Sciences; Canterbury Christ Church University; North Holmes Campus; Canterbury CT1 1QU United Kingdom
| | - Valentina Ferretti
- Fuller Evolutionary Biology Program; Cornell Lab of Ornithology; 159 Sapsucker Woods Road Ithaca New York 14850
- Department of Biology; Villanova University; 800 Lancaster Avenue Villanova Pennsylvania 19085
| | - Irby Lovette
- Fuller Evolutionary Biology Program; Cornell Lab of Ornithology; 159 Sapsucker Woods Road Ithaca New York 14850
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York 14850
| |
Collapse
|
46
|
Harrison RG, Larson EL. Hybridization, Introgression, and the Nature of Species Boundaries. J Hered 2014; 105 Suppl 1:795-809. [DOI: 10.1093/jhered/esu033] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
47
|
Mao X, Zhu G, Zhang L, Zhang S, Rossiter SJ. Differential introgression among loci across a hybrid zone of the intermediate horseshoe bat (Rhinolophus affinis). BMC Evol Biol 2014; 14:154. [PMID: 25011626 PMCID: PMC4105523 DOI: 10.1186/1471-2148-14-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background Hybrid zones formed by the secondary contact of divergent lineages represent natural laboratories for studying the genetic basis of speciation. Here we tested for patterns of differential introgression among three X-linked and 11 autosomal regions to identify candidate loci related to either reproductive isolation or adaptive introgression across a hybrid zone between two Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis: R. a. himalayanus and R. a. macrurus. Results Our results support the previous suggestion that macrurus formed when a third subspecies (R. a. hainanus) recolonized the mainland from Hainan Island, and that himalayanus is the ancestral taxon. However, this overall evolutionary history was not reflected in all loci examined, with considerable locus-wise heterogeneity seen in gene tree topologies, levels of polymorphism, genetic differentiation and rates of introgression. Coalescent simulations suggested levels of lineage mixing seen at some nuclear loci might result from incomplete lineage sorting. Isolation with migration models supported evidence of gene flow across the hybrid zone at one intronic marker of the hearing gene Prestin. Conclusions We suggest that phylogenetic discordance with respect to the species tree seen here is likely to arise via a combination of incomplete lineage sorting and a low incidence of introgression although we cannot rule out other explanations such as selection and recombination. Two X-linked loci and one autosomal locus were identified as candidate regions related to reproductive isolation across the hybrid zone. Our work highlights the importance of including multiple genomic regions in characterizing patterns of divergence and gene flow across a hybrid zone.
Collapse
Affiliation(s)
| | | | | | | | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
48
|
Vines TH. Stuck in the middle with you: close concordance between geographical clines in a cricket hybrid zone. Mol Ecol 2014; 23:1647-9. [PMID: 24667007 DOI: 10.1111/mec.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
Students of speciation have long recognized that hybridization between populations does not affect all parts of the genome in the same way (Key 1968, Bazykin 1969, Wu 2001, Nosil et al. 2009). For example, divergence is expected to be high at loci involved in Dobzhansky-Muller incompatibilities or at loci under divergent natural selection, while those that are effectively neutral should show only weak divergence. Studies that examine geographical clines at divergent loci in a hybrid zone can be particularly powerful, as here one can estimate how net selection is affecting each locus (Payseur 2010). An excellent example of this approach appears in this issue (Larson et al. 2014) for a hybrid zone between the crickets Gryllus firmus and Gryllus pennsylvanicus in the eastern United States.
Collapse
Affiliation(s)
- Timothy H Vines
- Molecular Ecology Editorial Office, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Liu T, Chen Y, Chao L, Wang S, Wu W, Dai S, Wang F, Fan Q, Zhou R. Extensive hybridization and introgression between Melastoma candidum and M. sanguineum. PLoS One 2014; 9:e96680. [PMID: 24797959 PMCID: PMC4010499 DOI: 10.1371/journal.pone.0096680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
Natural hybridization can lead to various evolutionary outcomes in plants, including hybrid speciation and interspecific gene transfer. It can also cause taxonomic problems, especially in plant genera containing multiple species. In this study, the hybrid status of Melastoma affine, the most widespread taxon in this genus, and introgression between its putative parental species, M. candidum and M. sanguineum, were assessed on two sites, Hainan and Guangdong, using 13 SSR markers and sequences of a chloroplast intergenic spacer. Bayesian-based STRUCTURE analysis detected two most likely distinct clusters for the three taxa, and 76.0% and 73.9% of the morphologically identified individuals of M. candidum and M. sanguineum were correctly assigned, respectively. 74.5% of the M. affine individuals had a membership coefficient to either parental species between 0.1 and 0.9, suggesting admixture between M. candidum and M. sanguineum. Furthermore, NewHybrids analysis suggested that most individuals of M. affine were F2 hybrids or backcross hybrids to M. candidum, and that there was extensive introgression between M. candidum and M. sanguineum. These SSR data thus provides convincing evidence for hybrid origin of M. affine and extensive introgression between M. candidum and M. sanguineum. Chloroplast DNA results were consistent with this conclusion. Much higher hybrid frequency on the more disturbed Guangdong site suggests that human disturbance might offer suitable habitats for the survival of hybrids, a hypothesis that is in need of further testing.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Yunyun Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lifang Chao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Seping Dai
- Guangzhou Institute of Landscape Gardening, Guangzhou, China
| | - Feng Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
50
|
Larson EL, White TA, Ross CL, Harrison RG. Gene flow and the maintenance of species boundaries. Mol Ecol 2013; 23:1668-78. [DOI: 10.1111/mec.12601] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica L. Larson
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Division of Biological Sciences; University of Montana; Missoula MT 59812 USA
| | - Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- CMPG Lab; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 3012 Bern Switzerland
| | - Charles L. Ross
- School of Natural Science; Hampshire College; Amherst MA 01002 USA
| | - Richard G. Harrison
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|