1
|
Santostefano F, Moiron M, Sánchez-Tójar A, Fisher DN. Indirect genetic effects increase the heritable variation available to selection and are largest for behaviors: a meta-analysis. Evol Lett 2025; 9:89-104. [PMID: 39906585 PMCID: PMC11790215 DOI: 10.1093/evlett/qrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 02/06/2025] Open
Abstract
The evolutionary potential of traits is governed by the amount of heritable variation available to selection. While this is typically quantified based on genetic variation in a focal individual for its own traits (direct genetic effects, DGEs), when social interactions occur, genetic variation in interacting partners can influence a focal individual's traits (indirect genetic effects, IGEs). Theory and studies on domesticated species have suggested IGEs can greatly impact evolutionary trajectories, but whether this is true more broadly remains unclear. Here, we perform a systematic review and meta-analysis to quantify the amount of trait variance explained by IGEs and the contribution of IGEs to predictions of adaptive potential. We identified 180 effect sizes from 47 studies across 21 species and found that, on average, IGEs of a single social partner account for a small but statistically significant amount of phenotypic variation (0.03). As IGEs affect the trait values of each interacting group member and due to a typically positive-although statistically nonsignificant-correlation with DGEs (r DGE-IGE = 0.26), IGEs ultimately increase trait heritability substantially from 0.27 (narrow-sense heritability) to 0.45 (total heritable variance). This 66% average increase in heritability suggests IGEs can increase the amount of genetic variation available to selection. Furthermore, whilst showing considerable variation across studies, IGEs were most prominent for behaviors and, to a lesser extent, for reproduction and survival, in contrast to morphological, metabolic, physiological, and development traits. Our meta-analysis, therefore, shows that IGEs tend to enhance the evolutionary potential of traits, especially for those tightly related to interactions with other individuals, such as behavior and reproduction.
Collapse
Affiliation(s)
- Francesca Santostefano
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | | - David N Fisher
- School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Han CS, Robledo-Ruiz DA, Garcia-Gonzalez F, Dingemanse NJ, Tuni C. Unraveling mate choice evolution through indirect genetic effects. Evol Lett 2024; 8:841-850. [PMID: 39677572 PMCID: PMC11637604 DOI: 10.1093/evlett/qrae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024] Open
Abstract
Attractiveness is not solely determined by a single sexual trait but rather by a combination of traits. Because the response of the chooser is based on the combination of sexual traits in the courter, variation in the chooser's responses that are attributable to the opposite-sex courter genotypes (i.e., the indirect genetic effects [IGEs] on chooser response) can reflect genetic variation in overall attractiveness. This genetic variation can be associated with the genetic basis of other traits in both the chooser and the courter. Investigating this complex genetic architecture, including IGEs, can enhance our understanding of the evolution of mate choice. In the present study on the field cricket Gryllus bimaculatus, we estimated (1) genetic variation in overall attractiveness and (2) genetic correlations between overall attractiveness and other pre- and postcopulatory traits (e.g., male latency to sing, female latency to mount, male guarding intensity, male and female body mass, male mandible size, and testis size) within and between sexes. We revealed a genetic basis for attractiveness in both males and females. Furthermore, a genetic variance associated with female attractiveness was correlated with a genetic variance underlying larger male testes. Our findings imply that males that mate with attractive females can produce offspring that are successful in terms of precopulatory sexual selection (daughters who are attractive) and postcopulatory sexual selection (sons with an advantage in sperm competition), potentially leading to runaway sexual selection. Our study exemplifies how the incorporation of the IGE framework provides novel insights into the evolution of mate choice.
Collapse
Affiliation(s)
- Chang S Han
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Diana A Robledo-Ruiz
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francisco Garcia-Gonzalez
- Estación Biológica de Doñana-CSIC, Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Cristina Tuni
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- Department of Life Science & Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
3
|
Nwajei O, Talagala S, Hampel L, Punj B, Li NY, Long TA. On the expression of reproductive plasticity in Drosophila melanogaster females in spatial and socially varying environments. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001125. [PMID: 39170586 PMCID: PMC11338442 DOI: 10.17912/micropub.biology.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 08/23/2024]
Abstract
Individuals often adjust their behaviour based on their perception and experiences with the social and/or physical environment. In this study, we examined the extent of reproductive plasticity expressed in mating rates, mating latencies, mating durations, and offspring production in female fruit flies, Drosophila melanogaster , that encountered different numbers of males in different sized chambers. We found that mating latency length decreased with more courting males and smaller environments and that matings durations were longer in larger chambers and in the presence of two males. These results illustrate the sensitivity of these behavioural phenotypes to changes in local environmental conditions.
Collapse
Affiliation(s)
- Oghenerho Nwajei
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sanduni Talagala
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Faculty of Graduate and Postdoctoral Studies, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Laura Hampel
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Faculty of Graduate and Postdoctoral Studies, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Bhavya Punj
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Nuek Yin Li
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tristan A.F. Long
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Adeola F, Lailvaux S. Bite force, body size, and octopamine mediate mating interactions in the house cricket (Acheta domesticus). J Evol Biol 2023; 36:1494-1502. [PMID: 37737492 DOI: 10.1111/jeb.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Mating interactions are rife with conflict because the evolutionary interests of males and females seldom coincide. Intersexual conflict affects sexual selection, yet the proximate factors underlying male coercive ability and female resistance are poorly understood. Male combat outcomes are often influenced by bite force, with superior biters being more likely to achieve victory over poorer biters in a range of species, including crickets. If good performers also achieve mating success through sexual coercion, then bite force might play a role in intersexual conflict as well. We tested the capacity of bite force to influence mating interactions in house crickets both directly by measuring bite forces of males and females and by altering male bite capacity through neuropharmacological manipulation. In addition, the invertebrate neurotransmitter octopamine both mediates aggression and underlies motivation to bite in male house crickets. By blocking octopamine receptors through the application of an antagonist, epinastine, we tested the effects of reduced bite force on male mating success. Our results show that male bite capacity, in combination with body size, influences both the likelihood and the outcomes of mating interactions, whereas treatment of males with epinastine eliminates motivation to mate. Our results suggest a functional role for bite force in affecting both sexual conflict and sexual selection and expand our knowledge of the influence of biogenic amines on reproductive behaviour.
Collapse
Affiliation(s)
- Fadeke Adeola
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Simon Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Liu K, Yuan L, Yue L, Chen W, Kang K, Lv J, Zhang W, Pang R. Population density modulates insect progenitive plasticity through the regulation of dopamine biosynthesis. INSECT SCIENCE 2022; 29:1773-1789. [PMID: 35230747 DOI: 10.1111/1744-7917.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Insect fecundity is a quantitative phenotype strongly affected by genotypes and the environment. However, interactions between genotypes and environmental factors in modulating insect fecundity remain largely unknown. This study investigated the impact of population density on the fecundity of Nilaparvata lugens (brown planthopper; BPH) carrying homozygous high- (HFG) or low- (LFG) fecundity homozygous genotypes. Under low population densities, the fecundity and population growth rate of both genotypes showed similar increasing trends across generations, while the trends between HFG and LFG under high population densities were opposite. Through a combination of temporal analysis and weighted gene co-expression network analyses on RNA-seq data of HFG and LFG under low and high population densities in the 1st, 3rd, and 5th generations, we identified 2 gene modules that were associated with these density-dependent progenitive phenotypes. Four pathways related to the neural system were simultaneously enriched by the 2 gene modules. Furthermore, Nlpale, which encodes a tyrosine hydroxylase, was identified as a key gene. The RNA interference of this gene and manipulation of its downstream product dopamine significantly affected the basic and density-dependent progenitive phenotypes of BPH. These findings indicated that dopamine biosynthesis is the key regulatory factor that determines fecundity in response to density changes in different BPH genotypes. Thus, this study provides insights into the interaction of a typical environmental factor and insect genotype during the process of population regulation.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwen Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kui Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Fowler EK, Leigh S, Rostant WG, Thomas A, Bretman A, Chapman T. Memory of social experience affects female fecundity via perception of fly deposits. BMC Biol 2022; 20:244. [PMID: 36310170 PMCID: PMC9620669 DOI: 10.1186/s12915-022-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Animals can exhibit remarkable reproductive plasticity in response to their social surroundings, with profound fitness consequences. The presence of same-sex conspecifics can signal current or future expected competition for resources or mates. Plastic responses to elevated sexual competition caused by exposure to same-sex individuals have been well-studied in males. However, much less is known about such plastic responses in females, whether this represents sexual or resource competition, or if it leads to changes in investment in mating behaviour and/or reproduction. Here, we used Drosophila melanogaster to measure the impact of experimentally varying female exposure to other females prior to mating on fecundity before and after mating. We then deployed physical and genetic methods to manipulate the perception of different social cues and sensory pathways and reveal the potential mechanisms involved. Results The results showed that females maintained in social isolation prior to mating were significantly more likely to retain unfertilised eggs before mating, but to show the opposite and lay significantly more fertilised eggs in the 24h after mating. More than 48h of exposure to other females was necessary for this social memory response to be expressed. Neither olfactory nor visual cues were involved in mediating fecundity plasticity—instead, the relevant cues were perceived through direct contact with the non-egg deposits left behind by other females. Conclusions The results demonstrate that females show reproductive plasticity in response to their social surroundings and can carry this memory of their social experience forward through mating. Comparisons of our results with previous work show that the nature of female plastic reproductive responses and the cues they use differ markedly from those of males. The results emphasise the deep divergence in how each sex realises its reproductive success. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01438-5.
Collapse
Affiliation(s)
- E. K. Fowler
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - S. Leigh
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - W. G. Rostant
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Thomas
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Bretman
- grid.9909.90000 0004 1936 8403School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - T. Chapman
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
7
|
Fowler EK, Leigh S, Bretman A, Chapman T. Plastic responses of males and females interact to determine mating behavior. Evolution 2022; 76:2116-2129. [PMID: 35880536 PMCID: PMC9544784 DOI: 10.1111/evo.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023]
Abstract
Individuals can respond plastically to variation in their social environment. However, each sex may respond to different cues and contrasting aspects of competition. Theory suggests that the plastic phenotype expressed by one sex can influence evolutionary dynamics in the other, and that plasticity simultaneously expressed by both sexes can exert sex-specific effects on fitness. However, data are needed to test this theory base. Here, we examined whether the simultaneous expression of adaptive plasticity by both sexes of Drosophila melanogaster fruit flies in response to their respective social environments interacts to determine the value of key reproductive traits (mating latency, duration, and fecundity). To vary social environments, males were kept alone, or with same sex rivals, and females were kept alone, in same-sex, or mixed-sex groups. Matings were then conducted between individuals from all of these five social treatments in all combinations, and the resulting reproductive traits measured in both "choice" and "no-choice" assays. Mating latency was determined by an interaction between the plastic responses of both sexes to their social environments. Interestingly, the mating latency response occurred in opposing directions in the different assays. In females exposed to same-sex social treatments, mating latency was more rapid with rival treatment males in the choice assays, but slower with those same males in no-choice assays. In contrast, mating duration was determined purely by responses of males to their social environments, and fecundity purely by responses of females. Collectively, the results show that plastic responses represent an important and novel facet of sexual interactions.
Collapse
Affiliation(s)
- Emily K. Fowler
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Stewart Leigh
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Amanda Bretman
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
8
|
|
9
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
10
|
Han CS, Brooks RC, Dingemanse NJ. Condition-Dependent Mutual Mate Preference and Intersexual Genetic Correlations for Mating Activity. Am Nat 2020; 195:997-1008. [PMID: 32469657 DOI: 10.1086/708497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although mating represents a mutual interaction, the study of mate preferences has long focused on choice in one sex and preferred traits in the other. This has certainly been the case in the study of the costs and condition-dependent expression of mating preferences, with the majority of studies concerning female preference. The condition dependence and genetic architecture of mutual mate preferences remain largely unstudied, despite their likely relevance for the evolution of preferences and of mating behavior more generally. Here we measured (a) male and female mate preferences and (b) intersexual genetic correlations for the mating activity in pedigreed populations of southern field crickets (Gryllus bimaculatus) raised on a favorable (free-choice) or a stressful (protein-deprived) diet. In the favorable dietary environment, mutual mate preferences were strong, and the intersexual genetic covariance for mating activity was not different from one. However, in the stressful dietary environment, mutual mate preferences were weak, and the intersexual genetic covariance for mating activity was significantly smaller than one. Altogether, our results show that diet environments affect the expression of genetic variation in mating behaviors: when the environment is stressful, both (a) the strength of mutual mate preference and (b) intersexual genetic covariance for mating activity tend to be weaker. This implies that mating dynamics strongly vary across environments.
Collapse
|
11
|
Haneke-Reinders M, Mazur AP, Zyma O, Ramm SA, Reinhold K. Disentangling a shared trait: male control over mate guarding duration revealed by a mate exchange experiment. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02832-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Shared behavioural traits result from the interaction of two or more individuals, making it difficult to discern which individual is in control of the behaviour of interest. Especially in the case of shared reproductive traits such as mating duration or mate guarding duration is this an important issue to resolve, because these are potentially closely connected to fitness and are likely to exhibit sexual conflict. Here, we sought to disentangle which sex controls mate guarding duration in the tropical house cricket Gryllodes sigillatus, a species in which mate guarding and nuptial feeding by the male have been proposed to prevent premature removal of the transferred spermatophore by the female. To do so, we performed a series of mating experiments in a paired design, in which the first mating dyad was allowed to start mating some time before the second dyad. Once both dyads were in the mate guarding phase, we then interrupted them and exchanged partners, enabling us to determine whether the remaining guarding duration depended more on the duration of guarding already performed by the male in the new dyad (implying male control) or on the guarding already received by the female (implying female control). We found that the time a female was guarded overall was significantly affected by how long the exchanged male had already engaged in mate guarding with the previous female, but conversely, the total time males guarded both females was unaffected by the duration of guarding that the exchanged female had previously received. Our data thus clearly demonstrate that males rather than females control mate guarding duration and adjust the duration according to females’ weight.
Significance statement
It is not easy to determine which individual is in control of a shared behavioural trait (SBT). This information could provide insight into selection pressure on one sex and could help us understand differences in SBTs between related species or between different dyads of one species. We used a relative novel but simple method to disentangle a SBT in a cricket. We performed mating experiments and exchanged the mating partners after copulation within the mate guarding phase and measured the total guarding duration. Our analyses showed males were not influenced by the exchange and guarded as long as expected regardless how long the female were guarded before by another male. Our data suggest males are likely in control of mate guarding duration, and they have no ability to recognize post-copulatory mate exchange.
Collapse
|
12
|
Rodriguez‐Exposito E, Garcia‐Gonzalez F, Polak M. Individual and synergistic effects of male external genital traits in sexual selection. J Evol Biol 2019; 33:67-79. [DOI: 10.1111/jeb.13546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Francisco Garcia‐Gonzalez
- Doñana Biological Station (CSIC) Sevilla Spain
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Michal Polak
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
13
|
Carter MJ, Wilson AJ, Moore AJ, Royle NJ. The role of indirect genetic effects in the evolution of interacting reproductive behaviors in the burying beetle, Nicrophorus vespilloides. Ecol Evol 2019; 9:998-1009. [PMID: 30805136 PMCID: PMC6374716 DOI: 10.1002/ece3.4731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/07/2022] Open
Abstract
Social interactions can give rise to indirect genetic effects (IGEs), which occur when genes expressed in one individual affect the phenotype of another individual. The evolutionary dynamics of traits can be altered when there are IGEs. Sex often involves indirect effects arising from first-order (current) or second-order (prior) social interactions, yet IGEs are infrequently quantified for reproductive behaviors. Here, we use experimental populations of burying beetles that have experienced bidirectional selection on mating rate to test for social plasticity and IGEs associated with focal males mating with a female either without (first-order effect) or with (second-order effect) prior exposure to a competitor, and resource defense behavior (first-order effect). Additive IGEs were detected for mating rate arising from (first-order) interactions with females. For resource defense behavior, a standard variance partitioning analysis provided no evidence of additive genetic variance-either direct or indirect. However, behavior was predicted by focal size relative to that of the competitor, and size is also heritable. Assuming that behavior is causally dependent on relative size, this implies that both DGEs and IGEs do occur (and may potentially interact). The relative contribution of IGEs may differ among social behaviors related to mating which has consequences for the evolutionary trajectories of multivariate traits.
Collapse
Affiliation(s)
- Mauricio J. Carter
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andrés BelloRepública 440SantiagoChile
| | | | - Allen J. Moore
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Department of EntomologyCollege of Agricultural and Environmental SciencesUniversity of GeorgiaAthensGA30602‐7503USA
| | - Nick J. Royle
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
14
|
Bailey NW, Marie-Orleach L, Moore AJ. Indirect genetic effects in behavioral ecology: does behavior play a special role in evolution? Behav Ecol 2017. [DOI: 10.1093/beheco/arx127] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nathan W Bailey
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA USA
- Department of Entomology, University of Georgia, Athens, GA USA
| |
Collapse
|
15
|
Marie-Orleach L, Vogt-Burri N, Mouginot P, Schlatter A, Vizoso DB, Bailey NW, Schärer L. Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm. Evolution 2017; 71:1232-1245. [PMID: 28252800 DOI: 10.1111/evo.13218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/14/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Nadja Vogt-Burri
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Pierick Mouginot
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,General and Systematic Zoology, Museum and Zoological Institute, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Aline Schlatter
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Dita B Vizoso
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
16
|
Travers LM, Simmons LW, Garcia-Gonzalez F. Lifetime changes in phenotypic expression and evolutionary potential of female mating traits in Drosophila melanogaster. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Germain RR, Wolak ME, Arcese P, Losdat S, Reid JM. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows. J Anim Ecol 2016; 85:1613-1624. [PMID: 27448623 DOI: 10.1111/1365-2656.12575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population.
Collapse
Affiliation(s)
- Ryan R Germain
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Matthew E Wolak
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sylvain Losdat
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
18
|
Wolak ME, Reid JM. Is Pairing with a Relative Heritable? Estimating Female and Male Genetic Contributions to the Degree of Biparental Inbreeding in Song Sparrows (Melospiza melodia). Am Nat 2016; 187:736-52. [DOI: 10.1086/686198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Schneider J, Atallah J, Levine JD. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc 2016; 92:1027-1038. [PMID: 26990016 DOI: 10.1111/brv.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this 'social environment effect' by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group-level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Jade Atallah
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
20
|
Immonen E, Collet M, Goenaga J, Arnqvist G. Direct and indirect genetic effects of sex-specific mitonuclear epistasis on reproductive ageing. Heredity (Edinb) 2016; 116:338-47. [PMID: 26732015 DOI: 10.1038/hdy.2015.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are involved in ageing and their function requires coordinated action of both mitochondrial and nuclear genes. Epistasis between the two genomes can influence lifespan but whether this also holds for reproductive senescence is unclear. Maternal inheritance of mitochondria predicts sex differences in the efficacy of selection on mitonuclear genotypes that should result in differences between females and males in mitochondrial genetic effects. Mitonuclear genotype of a focal individual may also indirectly affect trait expression in the mating partner. We tested these predictions in the seed beetle Callosobruchus maculatus, using introgression lines harbouring distinct mitonuclear genotypes. Our results reveal both direct and indirect sex-specific effects of mitonuclear epistasis on reproductive ageing. Females harbouring coadapted mitonuclear genotypes showed higher lifetime fecundity due to slower senescence relative to novel mitonuclear combinations. We found no evidence for mitonuclear coadaptation in males. Mitonuclear epistasis not only affected age-specific ejaculate weight, but also influenced male age-dependent indirect effects on traits expressed by their female partners (fecundity, egg size, longevity). These results demonstrate important consequences of sex-specific mitonuclear epistasis for both mating partners, consistent with a role for mitonuclear genetic constraints upon sex-specific adaptive evolution.
Collapse
Affiliation(s)
- E Immonen
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - M Collet
- Master BioSciences, Department of Biology, École Normale Supérieure of Lyon, Lyon, France
| | - J Goenaga
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Århus Institute of Advanced Studies, Århus University, Århus, Denmark
| | - G Arnqvist
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Reinhold K, Engqvist L, Consul A, Ramm SA. Male birch catkin bugs vary copula duration to invest more in matings with novel females. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Brommer JE, Karell P, Aaltonen E, Ahola K, Karstinen T. Dissecting direct and indirect parental effects on reproduction in a wild bird of prey: dad affects when but not how much. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1842-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster. BMC Evol Biol 2014; 14:95. [PMID: 24884361 PMCID: PMC4101844 DOI: 10.1186/1471-2148-14-95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/31/2014] [Indexed: 11/17/2022] Open
Abstract
Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness.
Collapse
|