1
|
Koivu‐Jolma M, Kortet R, Vainikka A, Kaitala V. Host Resistance and Behavior Determine Invasion Dynamics of a Detrimental Aquatic Disease. Ecol Evol 2024; 14:e70393. [PMID: 39371268 PMCID: PMC11450184 DOI: 10.1002/ece3.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Understanding the role of variation in host resistance and the multitude of transmission modes of parasites infecting hosts with complex behavioral interactions is essential for the control of emerging diseases. We used a discrete stage model to study the invasion dynamics of crayfish plague-an example of a detrimental disease-into a naïve host population that displays within-population variation in resistance of environmental infections and juvenile classes that are safe from contacts with adults. In the model, infection sources include four age classes of crayfish, contaminated carcasses, and free-dwelling zoospores. Disease transmission occurs via environment with a threshold infection density and through contacts, cannibalism, and scavenging of disease-killed conspecifics. Even if the infection is fatal, coexistence of the host and the parasite can be facilitated by variance of resistance and survival of the hiding juveniles. The model can be applied in the control of emerging diseases especially in crayfish-like organisms.
Collapse
Affiliation(s)
- Mikko Koivu‐Jolma
- Department of PhysicsUniversity of HelsinkiHelsinkiFinland
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Raine Kortet
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Anssi Vainikka
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Veijo Kaitala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Evensen C, White A, Boots M. Multispecies interactions and the community context of the evolution of virulence. Proc Biol Sci 2024; 291:20240991. [PMID: 39317313 PMCID: PMC11421928 DOI: 10.1098/rspb.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Pairwise host-parasite relationships are typically embedded in broader networks of ecological interactions, which have the potential to shape parasite evolutionary trajectories. Understanding this 'community context' of pathogen evolution is vital for wildlife, agricultural and human systems alike, as pathogens typically infect more than one host-and these hosts may have independent ecological relationships. Here, we introduce an eco-evolutionary model examining ecological feedback across a range of host-host interactions. Specifically, we analyse a model of the evolution of virulence of a parasite infecting two hosts exhibiting competitive, mutualistic or exploitative relationships. We first find that parasite specialism is necessary for inter-host interactions to impact parasite evolution. Furthermore, we find generally that increasing competition between hosts leads to higher shared parasite virulence while increasing mutualism leads to lower virulence. In exploitative host-host interactions, the particular form of parasite specialization is critical-for instance, specialization in terms of onward transmission, host tolerance or intra-host pathogen growth rate lead to distinct evolutionary outcomes under the same host-host interactions. Our work provides testable hypotheses for multi-host disease systems, predicts how changing interaction networks may impact virulence evolution and broadly demonstrates the importance of looking beyond pairwise relationships to understand evolution in realistic community contexts.
Collapse
Affiliation(s)
- Claire Evensen
- Department of Integrative Biology, University of California Berkeley, CA, USA
| | - Andrew White
- Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
- Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, CA, USA
| |
Collapse
|
3
|
Northrup GR, White A, Parratt SR, Rozins C, Laine AL, Boots M. The evolutionary dynamics of hyperparasites. J Theor Biol 2024; 582:111741. [PMID: 38280543 DOI: 10.1016/j.jtbi.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Evolutionary theory has typically focused on pairwise interactions, such as those between hosts and parasites, with relatively little work having been carried out on more complex interactions including hyperparasites: parasites of parasites. Hyperparasites are common in nature, with the chestnut blight fungus virus CHV-1 a well-known natural example, but also notably include the phages of important human bacterial diseases. We build a general modeling framework for the evolution of hyperparasites that highlights the central role that the ability of a hyperparasite to be transmitted with its parasite plays in their evolution. A key result is that hyperparasites which transmit with their parasite hosts (hitchhike) will be selected for lower virulence, trending towards hypermutualism or hypercommensalism. We examine the impact on the evolution of hyperparasite systems of a wide range of host and parasite traits showing, for example, that high parasite virulence selects for higher hyperparasite virulence resulting in reductions in parasite virulence when hyperparasitized. Furthermore, we show that acute parasite infection will also select for increased hyperparasite virulence. Our results have implications for hyperparasite research, both as biocontrol agents and for their role in shaping community ecology and evolution and moreover emphasize the importance of understanding evolution in the context of multitrophic interactions.
Collapse
Affiliation(s)
- Graham R Northrup
- Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA.
| | - Andy White
- Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK; Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - Steven R Parratt
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool, UK
| | - Carly Rozins
- Department of Science and Technology Studies, Division of Natural Science, York University, Toronto, Ontario, Canada
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, CA, USA; Center for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, UK
| |
Collapse
|
4
|
Singh P, Best A. The impact of sterility-mortality tolerance and recovery-transmission trade-offs on host-parasite coevolution. Proc Biol Sci 2024; 291:20232610. [PMID: 38378150 PMCID: PMC10878805 DOI: 10.1098/rspb.2023.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the coevolutionary dynamics of hosts and their parasites remains a major focus of much theoretical literature. Despite empirical evidence supporting the presence of sterility-mortality tolerance trade-offs in hosts and recovery-transmission trade-offs in parasites, none of the current models have explored the potential outcomes when both trade-offs are considered within a coevolutionary framework. In this study, we consider a model where the host evolves sterility tolerance at the cost of increased mortality and the parasite evolves higher transmission rate at the cost of increased recovery rate (reduced infection duration), and use adaptive dynamics to predict the coevolutionary outcomes under such trade-off assumptions. We particularly aim to understand how our coevolutionary dynamics compare with single species evolutionary models. We find that evolutionary branching in the host can drive the parasite population to branch, but that cycles in the population dynamics can prevent the coexisting strains from reaching their extremes. We also find that varying crowding does not impact the recovery rate when only the parasite evolves, yet coevolution reduces recovery as crowding intensifies. We conclude by discussing how different host and parasite trade-offs shape coevolutionary outcomes, underscoring the pivotal role of trade-offs in coevolution.
Collapse
Affiliation(s)
- Prerna Singh
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08648, USA
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
5
|
Bruijning M, Metcalf CJE, Visser MD. Closing the gap in the Janzen-Connell hypothesis: What determines pathogen diversity? Ecol Lett 2024; 27:e14316. [PMID: 37787147 DOI: 10.1111/ele.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
O'Neill X, White A, Boots M. The evolution of parasite virulence under targeted culling and harvesting in wildlife and livestock. Evol Appl 2023; 16:1697-1707. [PMID: 38020874 PMCID: PMC10660816 DOI: 10.1111/eva.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
There is a clear need to understand the effect of human intervention on the evolution of infectious disease. In particular, culling and harvesting of both wildlife and managed livestock populations are carried out in a wide range of management practices, and they have the potential to impact the evolution of a broad range of disease characteristics. Applying eco-evolutionary theory we show that once culling/harvesting becomes targeted on specific disease classes, the established result that culling selects for higher virulence is only found when sufficient infected individuals are culled. If susceptible or recovered individuals are targeted, selection for lower virulence can occur. An important implication of this result is that when culling to eradicate an infectious disease from a population, while it is optimal to target infected individuals, the consequent evolution can increase the basic reproductive ratio of the infection, R 0 , and make parasite eradication more difficult. We show that increases in evolved virulence due to the culling of infected individuals can lead to excess population decline when sustainably harvesting a population. In contrast, culling susceptible or recovered individuals can select for decreased virulence and a reduction in population decline through culling. The implications to the evolution of virulence are typically the same in wildlife populations, that are regulated by the parasite, and livestock populations, that have a constant population size where restocking balances the losses due to mortality. However, the well-known result that vertical transmission selects for lower virulence and transmission in wildlife populations is less marked in livestock populations for parasites that convey long-term immunity since restocking can enhance the density of the immune class. Our work emphasizes the importance of understanding the evolutionary consequences of intervention strategies and the different ecological feedbacks that can occur in wildlife and livestock populations.
Collapse
Affiliation(s)
- Xander O'Neill
- Department of MathematicsMaxwell Institute for Mathematical Sciences, Heriot‐Watt UniversityEdinburghUK
| | - Andy White
- Department of MathematicsMaxwell Institute for Mathematical Sciences, Heriot‐Watt UniversityEdinburghUK
| | - Mike Boots
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Centre for Ecology and Conservation, BiosciencesUniversity of ExeterCornwallUK
| |
Collapse
|
7
|
Hulse SV, Antonovics J, Hood ME, Bruns EL. Host-pathogen coevolution promotes the evolution of general, broad-spectrum resistance and reduces foreign pathogen spillover risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.548430. [PMID: 37577528 PMCID: PMC10418218 DOI: 10.1101/2023.08.04.548430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genetic variation for disease resistance within host populations can strongly impact the spread of endemic pathogens. In plants, recent work has shown that within-population variation in resistance can also affect the transmission of foreign spillover pathogens if that resistance is general. However, most hosts also possess specific resistance mechanisms that provide strong defenses against coevolved endemic pathogens. Here we use a modeling approach to ask how antagonistic coevolution between hosts and their endemic pathogen at the specific resistance locus can affect the frequency of general resistance, and therefore a host's vulnerability to foreign pathogens. We develop a two-locus model with variable recombination that incorporates both general (resistance to all pathogens) and specific (resistance to endemic pathogens only). We find that introducing coevolution into our model greatly expands the regions where general resistance can evolve, decreasing the risk of foreign pathogen invasion. Furthermore, coevolution greatly expands which conditions maintain polymorphisms at both resistance loci, thereby driving greater genetic diversity within host populations. This genetic diversity often leads to positive correlations between host resistance to foreign and endemic pathogens, similar to those observed in natural populations. However, if resistance loci become linked, the resistance correlations can shift to negative. If we include a third, linkage modifying locus into our model, we find that selection often favors complete linkage. Our model demonstrates how coevolutionary dynamics with an endemic pathogen can mold the resistance structure of host populations in ways that affect its susceptibility to foreign pathogen spillovers, and that the nature of these outcomes depends on resistance costs, as well as the degree of linkage between resistance genes.
Collapse
|
8
|
Auld SKJR, Brand J, Bussière LF. The timings of host diapause and epidemic progression mediate host genetic diversity and future epidemic size in Daphnia-parasite populations. Proc Biol Sci 2023; 290:20222139. [PMID: 36946108 PMCID: PMC10031403 DOI: 10.1098/rspb.2022.2139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Epidemics commonly exert parasite-mediated selection and cause declines in host population genetic diversity. This can lead to evolution of resistance in the long term and smaller subsequent epidemics. Alternatively, the loss of genetic diversity can increase host vulnerability to future disease spread and larger future epidemics. Matters are made more complex by the fact that a great many host organisms produce diapausing life stages in response to environmental change (often as a result of sexual reproduction; e.g. plant seeds and invertebrate resting eggs). These diapausing stages can disrupt the relationship between past epidemics, host genetic diversity and future epidemics because they allow host dispersal through time. Specifically, temporally dispersing hosts avoid infection and thus selection from contemporary parasites, and also archive genetic variation for the future. We studied 80 epidemics in 20 semi-natural populations of the temporally dispersing crustacean Daphnia magna and its sterilizing bacterial parasite Pasteuria ramosa, and half of these populations experienced a simulated environmental disturbance treatment. We found that early initiation of diapause relative to the timing of the epidemic led to greater host genetic diversity and reduced epidemic size in the subsequent year, but this was unaffected by environmental disturbance.
Collapse
Affiliation(s)
| | - June Brand
- Biological & Environmental Sciences, University of Stirling, Stirling, UK
| | - Luc F. Bussière
- Biological & Environmental Sciences & Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Best A, Ashby B. How do fluctuating ecological dynamics impact the evolution of hosts and parasites? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220006. [PMID: 36744565 PMCID: PMC9900711 DOI: 10.1098/rstb.2022.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Theoretical models of the evolution of parasites and their hosts have shaped our understanding of infectious disease dynamics for over 40 years. Many theoretical models assume that the underlying ecological dynamics are at equilibrium or constant, yet we know that in a great many systems there are fluctuations in the ecological dynamics owing to a variety of intrinsic or extrinsic factors. Here, we discuss the challenges presented when modelling evolution in systems with fluctuating ecological dynamics and summarize the main approaches that have been developed to study host-parasite evolution in such systems. We provide an in-depth guide to one of the methods by applying it to two worked examples of host evolution that have not previously been studied in the literature: when cycles occur owing to seasonal forcing in competition, and when the presence of a free-living parasite causes cycles, with accompanying interactive Python code provided. We review the findings of studies that have explored host-parasite evolution when ecological dynamics fluctuate, and point to areas of future research. Throughout we stress the importance of feedbacks between the ecological and evolutionary dynamics in driving the outcomes of infectious disease systems. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- A. Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK,Integrative Biology, University of California - Berkeley, Berkeley, CA 94720-5800, USA
| | - B. Ashby
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6,Department of Mathematics, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease. Nat Commun 2022; 13:6018. [PMID: 36229442 PMCID: PMC9561709 DOI: 10.1038/s41467-022-33665-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
While the negative effects that pathogens have on their hosts are well-documented in humans and agricultural systems, direct evidence of pathogen-driven impacts in wild host populations is scarce and mixed. Here, to determine how the strength of pathogen-imposed selection depends on spatial structure, we analyze growth rates across approximately 4000 host populations of a perennial plant through time coupled with data on pathogen presence-absence. We find that infection decreases growth more in the isolated than well-connected host populations. Our inoculation study reveals isolated populations to be highly susceptible to disease while connected host populations support the highest levels of resistance diversity, regardless of their disease history. A spatial eco-evolutionary model predicts that non-linearity in the costs to resistance may be critical in determining this pattern. Overall, evolutionary feedbacks define the ecological impacts of disease in spatially structured systems with host gene flow being more important than disease history in determining the outcome.
Collapse
|
11
|
Yang Y, Ma C, Zu J. Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality. J Math Biol 2022; 85:15. [PMID: 35877051 PMCID: PMC9309463 DOI: 10.1007/s00285-022-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022]
Abstract
This study explores the coevolutionary dynamics of host-pathogen interaction based on a susceptible-infected population model with density-dependent mortality. We assume that both the host's resistance and the pathogen's virulence will adaptively evolve, but there are inevitable costs in terms of host birth rate and disease-related mortality rate. Particularly, it is assumed that both the host resistance and pathogen virulence can affect the transmission rate. By using the approach of adaptive dynamics and numerical simulation, we find that the finally coevolutionary outcome depends on the strength of host-pathogen asymmetric interaction, the curvature of trade-off functions, and the intensity of density-dependent natural mortality. To be specific, firstly, we find that if the strengths of host-pathogen asymmetric interaction and disease-related mortality are relatively weak, or the density-dependent natural mortality is relatively strong, then the host resistance and pathogen virulence will evolve to a continuously stable strategy. However, if the strength of host-pathogen asymmetric interaction and disease-related mortality becomes stronger, then the host resistance and pathogen virulence will evolve periodically. Secondly, we find that if the intensities of both the birth rate trade-off function and the density-dependent natural mortality are relatively weak, but the strength of host-pathogen asymmetric interaction becomes relatively strong, then the evolution of host resistance will have a relatively strongly accelerating benefit, the evolutionary branching of host resistance will first arise. However, if the strength of host-pathogen asymmetric interaction is relatively weak, but the intensity of the trade-off function of disease-related mortality becomes relatively strong, then the evolution of pathogen virulence will have a relatively strongly decelerating cost, and the evolutionary branching of pathogen virulence will first arise. Thirdly, after the evolutionary branching of host resistance and pathogen virulence, we further study the coevolutionary dynamics of two-hosts-one-pathogen interaction and one-host-two-pathogens interaction. We find that if the evolutionary branching of host resistance arises firstly, then the finally evolutionary outcome contains a dimorphic host and a monomorphic pathogen population. If the evolutionary branching of pathogen virulence arises firstly, then the finally evolutionary outcome may contain a monomorphic host and a dimorphic pathogen population.
Collapse
Affiliation(s)
- Yantao Yang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China
- College of Mathematics and Computer Science, Yan'an University, Yan'an, 716000, PR China
| | - Chaojing Ma
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jian Zu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
12
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
13
|
Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nat Ecol Evol 2022; 6:51-62. [PMID: 34949816 PMCID: PMC9671278 DOI: 10.1038/s41559-021-01603-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Despite the propensity for complex and non-equilibrium dynamics in nature, eco-evolutionary analytical theory typically assumes that populations are at equilibria. In particular, pathogens often show antigenic escape from host immune defences, leading to repeated epidemics, fluctuating selection and diversification, but we do not understand how this impacts the evolution of virulence. We model the impact of antigenic drift and escape on the evolution of virulence in a generalized pathogen and apply a recently introduced oligomorphic methodology that captures the dynamics of the mean and variance of traits, to show analytically that these non-equilibrium dynamics select for the long-term persistence of more acute pathogens with higher virulence. Our analysis predicts both the timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the increase in variation in both antigenicity and virulence before antigenic escape. There is considerable variation in the degree of antigenic escape that occurs across pathogens and our results may help to explain the difference in virulence between related pathogens including, potentially, human influenzas. Furthermore, it follows that these pathogens will have a lower R0, with clear implications for epidemic behaviour, endemic behaviour and control. More generally, our results show the importance of examining the evolutionary consequences of non-equilibrium dynamics.
Collapse
|
14
|
Lerner N, Luizzi V, Antonovics J, Bruns E, Hood ME. Resistance Correlations Influence Infection by Foreign Pathogens. Am Nat 2021; 198:206-218. [PMID: 34260867 PMCID: PMC8283004 DOI: 10.1086/715013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractReciprocal selection promotes the specificity of host-pathogen associations and resistance polymorphisms in response to disease. However, plants and animals also vary in response to pathogen species not previously encountered in nature, with potential effects on new disease emergence. Using anther smut disease, we show that resistance (measured as infection rates) to foreign pathogens can be correlated with standing variation in resistance to an endemic pathogen. In Silene vulgaris, genetic variation in resistance to its endemic anther smut pathogen correlated positively with resistance variation to an anther smut pathogen from another host, but the relationship was negative between anther smut and a necrotrophic pathogen. We present models describing the genetic basis for assessing resistance relationships between endemic and foreign pathogens and for quantifying infection probabilities on foreign pathogen introduction. We show that even when the foreign pathogen has a lower average infection ability than the endemic pathogen, infection outcomes are determined by the sign and strength of the regression of the host's genetic variation in infection rates by a foreign pathogen on variation in infection rates by an endemic pathogen as well as by resistance allele frequencies. Given that preinvasion equilibria of resistance are determined by factors including resistance costs, we show that protection against foreign pathogens afforded by positively correlated resistances can be lessened or even result in elevated infection risk at the population level, depending on local dynamics. Therefore, a pathogen's emergence potential could be influenced not only by its average infection rate but also by resistance variation resulting from prior selection imposed by endemic diseases.
Collapse
Affiliation(s)
- Noah Lerner
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Victoria Luizzi
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Emily Bruns
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
15
|
Visher E, Boots M. The problem of mediocre generalists: population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc Biol Sci 2020; 287:20201230. [PMID: 32811306 PMCID: PMC7482275 DOI: 10.1098/rspb.2020.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Many of our theories for the generation and maintenance of diversity in nature depend on the existence of specialist biotic interactions which, in host-pathogen systems, also shape cross-species disease emergence. As such, niche breadth evolution, especially in host-parasite systems, remains a central focus in ecology and evolution. The predominant explanation for the existence of specialization in the literature is that niche breadth is constrained by trade-offs, such that a generalist is less fit on any particular environment than a given specialist. This trade-off theory has been used to predict niche breadth (co)evolution in both population genetics and eco-evolutionary models, with the different modelling methods providing separate, complementary insights. However, trade-offs may be far from universal, so population genetics theory has also proposed alternate mechanisms for costly generalism, including mutation accumulation. However, these mechanisms have yet to be integrated into eco-evolutionary models in order to understand how the mechanism of costly generalism alters the biological and ecological circumstances predicted to maintain specialism. In this review, we outline how population genetics and eco-evolutionary models based on trade-offs have provided insights for parasite niche breadth evolution and argue that the population genetics-derived mutation accumulation theory needs to be better integrated into eco-evolutionary theory.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Ringgold Standard Institution, Penryn, Cornwall, UK
| |
Collapse
|
16
|
Ferris C, Wright R, Brockhurst MA, Best A. The evolution of host resistance and parasite infectivity is highest in seasonal resource environments that oscillate at intermediate amplitudes. Proc Biol Sci 2020; 287:20200787. [PMID: 32453992 PMCID: PMC7287369 DOI: 10.1098/rspb.2020.0787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Seasonal environments vary in their amplitude of oscillation but the effects of this temporal heterogeneity for host-parasite coevolution are poorly understood. Here, we combined mathematical modelling and experimental evolution of a coevolving bacteria-phage interaction to show that the intensity of host-parasite coevolution peaked in environments that oscillate in their resource supply with intermediate amplitude. Our experimentally parameterized mathematical model explains that this pattern is primarily driven by the ecological effects of resource oscillations on host growth rates. Our findings suggest that in host-parasite systems where the host's but not the parasite's population growth dynamics are subject to seasonal forcing, the intensity of coevolution will peak at intermediate amplitudes but be constrained at extreme amplitudes of environmental oscillation.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, 226 Hounsfield Road, Sheffield S3 7RH, UK
| | - Rosanna Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, 226 Hounsfield Road, Sheffield S3 7RH, UK
| |
Collapse
|
17
|
Živković D, John S, Verin M, Stephan W, Tellier A. Neutral genomic signatures of host-parasite coevolution. BMC Evol Biol 2019; 19:230. [PMID: 31856710 PMCID: PMC6924072 DOI: 10.1186/s12862-019-1556-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Coevolution is a selective process of reciprocal adaptation in hosts and parasites or in mutualistic symbionts. Classic population genetics theory predicts the signatures of selection at the interacting loci of both species, but not the neutral genome-wide polymorphism patterns. To bridge this gap, we build an eco-evolutionary model, where neutral genomic changes over time are driven by a single selected locus in hosts and parasites via a simple biallelic gene-for-gene or matching-allele interaction. This coevolutionary process may lead to cyclic changes in the sizes of the interacting populations. Results We investigate if and when these changes can be observed in the site frequency spectrum of neutral polymorphisms from host and parasite full genome data. We show that changes of the host population size are too smooth to be observable in its polymorphism pattern over the course of time. Conversely, the parasite population may undergo a series of strong bottlenecks occurring on a slower relative time scale, which may lead to observable changes in a time series sample. We also extend our results to cases with 1) several parasites per host accelerating relative time, and 2) multiple parasite generations per host generation slowing down rescaled time. Conclusions Our results show that time series sampling of host and parasite populations with full genome data are crucial to understand if and how coevolution occurs. This model provides therefore a framework to interpret and draw inference from genome-wide polymorphism data of interacting species.
Collapse
Affiliation(s)
- Daniel Živković
- Section of Population Genetics, Technical University of Munich, Freising, Germany.
| | - Sona John
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Mélissa Verin
- Section of Population Genetics, Technical University of Munich, Freising, Germany.,Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada
| | - Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
18
|
Yamamichi M, Lyberger K, Patel S. Antagonistic coevolution between multiple quantitative traits: Matching dynamics can arise from difference interactions. POPUL ECOL 2019. [DOI: 10.1002/1438-390x.12022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies University of Tokyo Tokyo Japan
| | - Kelsey Lyberger
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Swati Patel
- Department of Mathematics Tulane University New Orleans Louisiana
| |
Collapse
|
19
|
Leitão AB, Bian X, Day JP, Pitton S, Demir E, Jiggins FM. Independent effects on cellular and humoral immune responses underlie genotype-by-genotype interactions between Drosophila and parasitoids. PLoS Pathog 2019; 15:e1008084. [PMID: 31589659 PMCID: PMC6797232 DOI: 10.1371/journal.ppat.1008084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
It is common to find abundant genetic variation in host resistance and parasite infectivity within populations, with the outcome of infection frequently depending on genotype-specific interactions. Underlying these effects are complex immune defenses that are under the control of both host and parasite genes. We have found extensive variation in Drosophila melanogaster's immune response against the parasitoid wasp Leptopilina boulardi. Some aspects of the immune response, such as phenoloxidase activity, are predominantly affected by the host genotype. Some, such as upregulation of the complement-like protein Tep1, are controlled by the parasite genotype. Others, like the differentiation of immune cells called lamellocytes, depend on the specific combination of host and parasite genotypes. These observations illustrate how the outcome of infection depends on independent genetic effects on different aspects of host immunity. As parasite-killing results from the concerted action of different components of the immune response, these observations provide a physiological mechanism to generate phenomena like epistasis and genotype-interactions that underlie models of coevolution.
Collapse
Affiliation(s)
| | - Xueni Bian
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Simone Pitton
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eşref Demir
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Antalya Bilim University, Faculty of Engineering, Department of Material Science and Nanotechnology Engineering, Dosemealti, Antalya, Turkey
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Ferris C, Best A. The effect of temporal fluctuations on the evolution of host tolerance to parasitism. Theor Popul Biol 2019; 130:182-190. [PMID: 31415775 DOI: 10.1016/j.tpb.2019.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/29/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022]
Abstract
There are many mechanisms that hosts can evolve to defend against parasites, two of which are resistance and tolerance. These defences often have different evolutionary behaviours, and it is important to consider how each individual mechanism may respond to changes in environment. In particular, host defence through tolerance is predicted to be unlikely to lead to variation, despite many observations of diversity in both animal and plant systems. Hence understanding the drivers of diversity in host defence and parasite virulence is vital for predicting future evolutionary changes in infectious disease dynamics. It has been suggested that heterogeneous environments might generally promote diversity, but the effect of temporal fluctuations has received little attention theoretically or empirically, and there has been no examination of how temporal fluctuations affects the evolution of host tolerance. In this study, we use a mathematical model to investigate the evolution of host tolerance in a temporally fluctuating environment. We show that investment in tolerance increases in more variable environments, giving qualitatively different evolutionary behaviours when compared to resistance. Once seasonality is introduced evolutionary branching though tolerance can occur and create diversity within the population, although potentially only temporarily. This branching behaviour arises due to the emergence of a negative feedback with the maximum infected density on a cycle, which is strongest when the infected population is large. This work reinforces the qualitative differences between tolerance and resistance evolution, but also provides theoretical evidence for the theory that heterogeneous environments promote host-parasite diversity, hence constant environment assumptions may omit important evolutionary outcomes.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
| |
Collapse
|
21
|
Duxbury EML, Day JP, Maria Vespasiani D, Thüringer Y, Tolosana I, Smith SCL, Tagliaferri L, Kamacioglu A, Lindsley I, Love L, Unckless RL, Jiggins FM, Longdon B. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 2019; 8:e46440. [PMID: 31038124 PMCID: PMC6491035 DOI: 10.7554/elife.46440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
It is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-pathogen interactions. We conclude that selection by pathogens has increased genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.
Collapse
Affiliation(s)
- Elizabeth ML Duxbury
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan P Day
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Yannik Thüringer
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ignacio Tolosana
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Sophia CL Smith
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia Tagliaferri
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Altug Kamacioglu
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Imogen Lindsley
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Love
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert L Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Francis M Jiggins
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ben Longdon
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Centre for Ecology and Conservation, BiosciencesUniversity of Exeter (Penryn Campus)CornwallUnited Kingdom
| |
Collapse
|
22
|
Best A. Host-pathogen coevolution in the presence of predators: fluctuating selection and ecological feedbacks. Proc Biol Sci 2018; 285:rspb.2018.0928. [PMID: 30135155 DOI: 10.1098/rspb.2018.0928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023] Open
Abstract
Host-pathogen coevolution is central to shaping natural communities and is the focus of much experimental and theoretical study. For tractability, the vast majority of studies assume the host and pathogen interact in isolation, yet in reality, they will form one part of complex communities, with predation likely to be a particularly key interaction. Here, I present, to my knowledge, the first theoretical study to assess the impact of predation on the coevolution of costly host resistance and pathogen transmission. I show that fluctuating selection is most likely when predators selectively prey upon infected hosts, but that saturating predation, owing to large handling times, dramatically restricts the potential for fluctuations. I also show how host evolution may drive either enemy to extinction, and demonstrate that while predation selects for low host resistance and high pathogen infectivity, ecological feedbacks mean this results in lower infection rates when predators are present. I emphasize the importance of accounting for varying population sizes, and place the models in the context of recent experimental studies.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
23
|
|
24
|
Boots M, Best A. The evolution of constitutive and induced defences to infectious disease. Proc Biol Sci 2018; 285:rspb.2018.0658. [PMID: 30051865 PMCID: PMC6083258 DOI: 10.1098/rspb.2018.0658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 01/15/2023] Open
Abstract
In response to infectious disease, hosts typically mount both constitutive and induced defences. Constitutive defence prevents infection in the first place, while induced defence typically shortens the infectious period. The two routes to defence, therefore, have very different implications not only to individuals but also to the epidemiology of the disease. Moreover, the costs of constitutive defences are likely to be paid even in the absence of disease, while induced defences are likely to incur the most substantial costs when they are used in response to infection. We examine theoretically the evolutionary implications of these fundamental differences. A key result is that high virulence in the parasite typically selects for higher induced defences even if they result in immunopathology leading to very high disease mortality. Disease impacts on fecundity are critical to the relative investment in constitutive and induced defence with important differences found when parasites castrate their hosts. The trade-off between constitutive and induced defence has been cited as a cause of the diversity in defence, but we show that the trade-off alone is unlikely to lead to diversity. Our models provide a framework to examine relative investment in different defence components both experimentally and in the field.
Collapse
Affiliation(s)
- Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, USA .,Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR11 9FE, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
25
|
Best A, Ashby B, White A, Bowers R, Buckling A, Koskella B, Boots M. Host-parasite fluctuating selection in the absence of specificity. Proc Biol Sci 2018; 284:rspb.2017.1615. [PMID: 29093222 PMCID: PMC5698645 DOI: 10.1098/rspb.2017.1615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Fluctuating selection driven by coevolution between hosts and parasites is important for the generation of host and parasite diversity across space and time. Theory has focused primarily on infection genetics, with highly specific ‘matching-allele’ frameworks more likely to generate fluctuating selection dynamics (FSD) than ‘gene-for-gene’ (generalist–specialist) frameworks. However, the environment, ecological feedbacks and life-history characteristics may all play a role in determining when FSD occurs. Here, we develop eco-evolutionary models with explicit ecological dynamics to explore the ecological, epidemiological and host life-history drivers of FSD. Our key result is to demonstrate for the first time, to our knowledge, that specificity between hosts and parasites is not required to generate FSD. Furthermore, highly specific host–parasite interactions produce unstable, less robust stochastic fluctuations in contrast to interactions that lack specificity altogether or those that vary from generalist to specialist, which produce predictable limit cycles. Given the ubiquity of ecological feedbacks and the variation in the nature of specificity in host–parasite interactions, our work emphasizes the underestimated potential for host–parasite coevolution to generate fluctuating selection.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.,Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andy White
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Roger Bowers
- Department of Mathematical Sciences, Division of Applied Mathematics, The University of Liverpool, Mathematical Sciences Building, Liverpool L69 7ZL, UK
| | - Angus Buckling
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall TR10 9EZ, UK
| | - Britt Koskella
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.,Biosciences, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
26
|
Antonovics J, Wilson AJ, Forbes MR, Hauffe HC, Kallio ER, Leggett HC, Longdon B, Okamura B, Sait SM, Webster JP. The evolution of transmission mode. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0083. [PMID: 28289251 PMCID: PMC5352810 DOI: 10.1098/rstb.2016.0083] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Anthony J Wilson
- Integrative Entomology group, Vector-borne Viral Diseases programme, The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B7
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.,Department of Ecology, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Helen C Leggett
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW5 7BD, UK
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, London AL9 7TA, UK
| |
Collapse
|
27
|
Ashby B, Boots M. Multi-mode fluctuating selection in host-parasite coevolution. Ecol Lett 2017; 20:357-365. [DOI: 10.1111/ele.12734] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Ben Ashby
- Department of Mathematical Sciences; University of Bath; Bath BA2 7AY UK
- Integrative Biology; University of California Berkeley; Berkeley CA USA
| | - Mike Boots
- Integrative Biology; University of California Berkeley; Berkeley CA USA
- Department of Biosciences, College of Life and Environmental Sciences; University of Exeter; Penryn TR10 9EZ UK
| |
Collapse
|
28
|
Persoons A, Hayden KJ, Fabre B, Frey P, De Mita S, Tellier A, Halkett F. The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust. Mol Ecol 2017; 26:1902-1918. [PMID: 28012228 DOI: 10.1111/mec.13980] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Abstract
Host-parasite systems provide convincing examples of Red Queen co-evolutionary dynamics. Yet, a key process underscored in Van Valen's theory - that arms race dynamics can result in extinction - has never been documented. One reason for this may be that most sampling designs lack the breadth needed to illuminate the rapid pace of adaptation by pathogen populations. In this study, we used a 25-year temporal sampling to decipher the demographic history of a plant pathogen: the poplar rust fungus, Melampsora larici-populina. A major adaptive event occurred in 1994 with the breakdown of R7 resistance carried by several poplar cultivars widely planted in Western Europe since 1982. The corresponding virulence rapidly spread in M. larici-populina populations and nearly reached fixation in northern France, even on susceptible hosts. Using both temporal records of virulence profiles and temporal population genetic data, our analyses revealed that (i) R7 resistance breakdown resulted in the emergence of a unique and homogeneous genetic group, the so-called cultivated population, which predominated in northern France for about 20 years, (ii) selection for Vir7 individuals brought with it multiple other virulence types via hitchhiking, resulting in an overall increase in the population-wide number of virulence types and (iii) - above all - the emergence of the cultivated population superseded the initial population which predominated at the same place before R7 resistance breakdown. Our temporal analysis illustrates how antagonistic co-evolution can lead to population extinction and replacement, hence providing direct evidence for the escalation process which is at the core of Red Queen dynamics.
Collapse
Affiliation(s)
| | | | | | - Pascal Frey
- UMR IAM, INRA, Université de Lorraine, 54000, Nancy, France
| | | | - Aurélien Tellier
- Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Fabien Halkett
- UMR IAM, INRA, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
29
|
|
30
|
Hudson AI, Fleming-Davies AE, Páez DJ, Dwyer G. Genotype-by-genotype interactions between an insect and its pathogen. J Evol Biol 2016; 29:2480-2490. [PMID: 27622965 DOI: 10.1111/jeb.12977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Genotype-by-genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full-sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between-isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between-isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth-baculovirus interaction and provide empirical evidence that correlations in infection rates between field-collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.
Collapse
Affiliation(s)
- A I Hudson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - A E Fleming-Davies
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - D J Páez
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - G Dwyer
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Chappell TM, Rausher MD. Evolution of host range in Coleosporium ipomoeae, a plant pathogen with multiple hosts. Proc Natl Acad Sci U S A 2016; 113:5346-51. [PMID: 27114547 PMCID: PMC4868424 DOI: 10.1073/pnas.1522997113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plants and their pathogens coevolve locally. Previous investigations of one host-one pathogen systems have demonstrated that natural selection favors pathogen genotypes that are virulent on a broad range of host genotypes. In the present study, we examine a system consisting of one pathogen species that infects three host species in the morning glory genus Ipomoea. We show that many pathogen genotypes can infect two or three of the host species when tested on plants from nonlocal communities. By contrast, pathogen genotypes are highly host-specific, infecting only one host species, when tested on host species from the local community. This pattern indicates that within-community evolution narrows the host breadth of pathogen genotypes. Possible evolutionary mechanisms include direct selection for narrow host breadth due to costs of virulence and evolution of ipomoea resistance in the host species.
Collapse
Affiliation(s)
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
32
|
Toor J, Best A. Evolution of Host Defense against Multiple Enemy Populations. Am Nat 2016; 187:308-19. [DOI: 10.1086/684682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Frickel J, Sieber M, Becks L. Eco-evolutionary dynamics in a coevolving host-virus system. Ecol Lett 2016; 19:450-9. [DOI: 10.1111/ele.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jens Frickel
- Community Dynamics Group; Department Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; 24306 Plön Germany
| | - Michael Sieber
- Institute of Biochemistry and Biology; Universität Potsdam; D-14469 Potsdam Germany
| | - Lutz Becks
- Community Dynamics Group; Department Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; 24306 Plön Germany
| |
Collapse
|
34
|
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: why changing population size matters. ZOOLOGY 2016; 119:330-8. [PMID: 27161157 DOI: 10.1016/j.zool.2016.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
Host-parasite coevolution is widely assumed to have a major influence on biological evolution, especially as these interactions impose high selective pressure on the reciprocally interacting antagonists. The exact nature of the underlying dynamics is yet under debate and may be determined by recurrent selective sweeps (i.e., arms race dynamics), negative frequency-dependent selection (i.e., Red Queen dynamics), or a combination thereof. These interactions are often associated with reciprocally induced changes in population size, which, in turn, should have a strong impact on co-adaptation processes, yet are neglected in most current work on the topic. Here, we discuss potential consequences of temporal variations in population size on host-parasite coevolution. The limited empirical data available and the current theoretical literature in this field highlight that the consideration of such interaction-dependent population size changes is likely key for the full understanding of the coevolutionary dynamics, and, thus, a more realistic view on the complex nature of species interactions.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
35
|
Abstract
Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution.
Collapse
|
36
|
Antonovics J, Bergmann J, Hempel S, Verbruggen E, Veresoglou S, Rillig M. The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner’s Dilemma. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9775-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Best A, Bowers R, White A. Evolution, the loss of diversity and the role of trade-offs. Math Biosci 2015; 264:86-93. [PMID: 25839733 DOI: 10.1016/j.mbs.2015.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022]
Abstract
We investigate how the loss of previously evolved diversity in host resistance to disease is dependent on the complexity of the underlying evolutionary trade-off. Working within the adaptive dynamics framework, using graphical tools (pairwise invasion plots, PIPs; trait evolution plots, TEPs) and algebraic analysis we consider polynomial trade-offs of increasing degree. Our focus is on the evolutionary trajectory of the dimorphic population after it has been attracted to an evolutionary branching point. We show that for sufficiently complex trade-offs (here, polynomials of degree three or higher) the resulting invasion boundaries can form closed 'oval' areas of invadability and strategy coexistence. If no attracting singular strategies exist within this region, then the population is destined to evolve outside of the region of coexistence, resulting in the loss of one strain. In particular, the loss of diversity in this model always occurs in such a way that the remaining strain is not attracted back to the branching point but to an extreme of the trade-off, meaning the diversity is lost forever. We also show similar results for a non-polynomial but complex trade-off, and for a different eco-evolutionary model. Our work further highlights the importance of trade-offs to evolutionary behaviour.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, S3 7RH, Sheffield, UK .
| | - Roger Bowers
- Department of Mathematical Sciences, Mathematical Sciences Building, The University of Liverpool, L69 7ZL, Liverpool, UK
| | - Andy White
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, Scotland, UK
| |
Collapse
|
38
|
Lopez Pascua L, Hall AR, Best A, Morgan AD, Boots M, Buckling A. Higher resources decrease fluctuating selection during host-parasite coevolution. Ecol Lett 2014; 17:1380-8. [PMID: 25167763 PMCID: PMC4257576 DOI: 10.1111/ele.12337] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/29/2014] [Accepted: 07/15/2014] [Indexed: 01/20/2023]
Abstract
We still know very little about how the environment influences coevolutionary dynamics. Here, we investigated both theoretically and empirically how nutrient availability affects the relative extent of escalation of resistance and infectivity (arms race dynamic; ARD) and fluctuating selection (fluctuating selection dynamic; FSD) in experimentally coevolving populations of bacteria and viruses. By comparing interactions between clones of bacteria and viruses both within- and between-time points, we show that increasing nutrient availability resulted in coevolution shifting from FSD, with fluctuations in average infectivity and resistance ranges over time, to ARD. Our model shows that range fluctuations with lower nutrient availability can be explained both by elevated costs of resistance (a direct effect of nutrient availability), and reduced benefits of resistance when population sizes of hosts and parasites are lower (an indirect effect). Nutrient availability can therefore predictably and generally affect qualitative coevolutionary dynamics by both direct and indirect (mediated through ecological feedbacks) effects on costs of resistance.
Collapse
Affiliation(s)
- Laura Lopez Pascua
- Oxford Regional Molecular Genetics Laboratory, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | | | | | | | |
Collapse
|