1
|
Defendini H, Prunier-Leterme N, Robin S, Lameiras S, Baulande S, Simon JC, Jaquiéry J. The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression. Proc Biol Sci 2025; 292:20242631. [PMID: 39876718 PMCID: PMC11775605 DOI: 10.1098/rspb.2024.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression. We investigate the evolution of sexual conflict subsequent to sex loss by contrasting the gene expression patterns of sexual and asexual lineages in the pea aphid Acyrthosiphon pisum. Although asexual lineages of this aphid produce a small number of males in autumn, their mating opportunities are limited because of geographic isolation between sexual and asexual lineages. Therefore, gene expression in parthenogenetic females of asexual lineages is no longer constrained by that of other morphs. We found that the expression of genes in males from asexual lineages tended towards the parthenogenetic female optimum, in agreement with theoretical predictions. Surprisingly, males and parthenogenetic females of asexual lineages overexpressed genes normally found in the ovaries and testes of sexual morphs. These changes in gene expression in asexual lineages may arise from the relaxation of selection or the dysregulation of gene networks otherwise used in sexual lineages.
Collapse
Affiliation(s)
- Hélène Defendini
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Nathalie Prunier-Leterme
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Stéphanie Robin
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Sylvain Baulande
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Jean-Christophe Simon
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Julie Jaquiéry
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| |
Collapse
|
2
|
Yarbrough E, Chandler C. Patterns of molecular evolution in a parthenogenic terrestrial isopod ( Trichoniscus pusillus). PeerJ 2024; 12:e17780. [PMID: 39071119 PMCID: PMC11276757 DOI: 10.7717/peerj.17780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
The "paradox of sex" refers to the question of why sexual reproduction is maintained in the wild, despite how costly it is compared to asexual reproduction. Because of these costs, one might expect nature to select for asexual reproduction, yet sex seems to be continually selected for. Multiple hypotheses have been proposed to explain this incongruence, including the niche differentiation hypothesis, the Red Queen hypothesis, and accumulation of harmful mutations in asexual species due to inefficient purifying selection. This study focuses on the accumulation of mutations in two terrestrial isopods, Trichoniscus pusillus, which has sexual diploid and parthenogenic triploid forms, and Hyloniscus riparius, an obligately sexual relative. We surveyed sex ratios of both species in an upstate New York population and obtained RNA-seq data from wild-caught individuals of both species to examine within- and between-species patterns of molecular evolution in protein-coding genes. The sex ratio and RNA-seq data together provide strong evidence that this T. pusillus population is entirely asexual and triploid, while the H. riparius population is sexual and diploid. Although all the wild T. pusillus individuals used for sequencing shared identical genotypes at nearly all SNPs, supporting a clonal origin, heterozygosity and SNP density were much higher in T. pusillus than in the sexually reproducing H. riparius. This observation suggests this parthenogenic lineage may have arisen via mating between two divergent diploid lineages. Between-species sequence comparisons showed no evidence of ineffective purifying selection in the asexual T. pusillus lineage, as measured by the ratio of nonsynonymous to synonymous substitutions (dN/dS ratios). Likewise, there was no difference between T. pusillus and H. riparius in the ratios of nonsynonymous to synonymous SNPs overall (pN/pS). However, pN/pS ratios in T. pusillus were significantly higher when considering only SNPs that may have arisen via recent mutation after the transition to parthenogenesis. Thus, these recent SNPs are consistent with the hypothesis that purifying selection is less effective against new mutations in asexual lineages, but only over long time scales. This system provides a useful model for future studies on the evolutionary tradeoffs between sexual and asexual reproduction in nature.
Collapse
Affiliation(s)
- Emily Yarbrough
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, United States of America
| | - Christopher Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
3
|
Sochor M, Duchoslav M, Forejtová V, Hroneš M, Konečná M, Trávníček B. Distinct geographic parthenogenesis in spite of niche conservatism and a single ploidy level: A case of Rubus ser. Glandulosi (Rosaceae). THE NEW PHYTOLOGIST 2024; 242:1348-1362. [PMID: 38407427 DOI: 10.1111/nph.19618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Asexual organisms often differ in their geographic distributions from their sexual relatives. This phenomenon, termed geographic parthenogenesis, has long been known, but the underlying factors behind its diverse patterns have been under dispute. Particularly problematic is an association between asexuality and polyploidy in most taxa. Here, we present a new system of geographic parthenogenesis on the tetraploid level, promising new insights into this complex topic. We used flow cytometric seed screen and microsatellite genotyping to characterise the patterns of distribution of sexuals and apomicts and genotypic distributions in Rubus ser. Glandulosi across its range. Ecological modelling and local-scale vegetation and soil analyses were used to test for niche differentiation between the reproductive groups. Apomicts were detected only in North-western Europe, sexuals in the rest of the range in Europe and West Asia, with a sharp borderline stretched across Central Europe. Despite that, we found no significant differences in ecological niches. Genotypic richness distributions suggested independence of the reproductive groups and a secondary contact. We argue that unless a niche differentiation (resulting from polyploidy and/or hybridity) evolves, the main factors behind the patterns of geographic parthenogenesis in plants are phylogeographic history and neutral microevolutionary processes, such as clonal turnover.
Collapse
Affiliation(s)
- Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, Olomouc, 78371, Czech Republic
| | - Martin Duchoslav
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Věra Forejtová
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
- Station of Apple Breeding for Disease Resistance, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, Prague 6-Lysolaje, 16502, Czech Republic
| | - Michal Hroneš
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Michaela Konečná
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Bohumil Trávníček
- Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| |
Collapse
|
4
|
Dai D, Xie C, Zhou Y, Bo D, Zhang S, Mao S, Liao Y, Cui S, Zhu Z, Wang X, Li F, Peng D, Zheng J, Sun M. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization. Nat Commun 2023; 14:7156. [PMID: 37935661 PMCID: PMC10630426 DOI: 10.1038/s41467-023-42700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The formation and consequences of polyploidization in animals with clonal reproduction remain largely unknown. Clade I root-knot nematodes (RKNs), characterized by parthenogenesis and allopolyploidy, show a widespread geographical distribution and extensive agricultural destruction. Here, we generated 4 unzipped polyploid RKN genomes and identified a putative novel alternative telomeric element. Then we reconstructed 4 chromosome-level assemblies and resolved their genome structures as AAB for triploid and AABB for tetraploid. The phylogeny of subgenomes revealed polyploid RKN origin patterns as hybridization between haploid and unreduced gametes. We also observed extensive chromosomal fusions and homologous gene expression decrease after polyploidization, which might offset the disadvantages of clonal reproduction and increase fitness in polyploid RKNs. Our results reveal a rare pathway of polyploidization in parthenogenic polyploid animals and provide a large number of high-precision genetic resources that could be used for RKN prevention and control.
Collapse
Affiliation(s)
- Dadong Dai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanshuai Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yayi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dexin Bo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shurong Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiang Mao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yucheng Liao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Simeng Cui
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanling Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Liegeois M, Sartori M, Schwander T. What Ecological Factors Favor Parthenogenesis over Sexual Reproduction? A Study on the Facultatively Parthenogenetic Mayfly Alainites muticus in Natural Populations. Am Nat 2023; 201:229-240. [PMID: 36724461 DOI: 10.1086/722515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractDifferent reproductive modes are characterized by costs and benefits that depend on ecological contexts. For example, sex can provide benefits under complex biotic interactions, while its costs increase under mate limitation. Furthermore, ecological contexts often vary along abiotic gradients. Here, we study how these factors simultaneously influence the frequency of sex in the facultatively parthenogenetic mayfly Alainites muticus. We first verified that parthenogenesis translates into female-biased population sex ratios. We then measured the density of individuals (a proxy for mate limitation) and community diversity (biotic interaction complexity) for 159 A. muticus populations covering a broad altitudinal gradient and used structural equation modeling to investigate their direct and indirect influences on sex ratios. We found no effect of community diversity or altitude on sex ratios. Furthermore, even when females can reproduce parthenogenetically, they generally reproduce sexually, indicating that the benefits of sex exceed its costs in most situations. Sex ratios become female-biased only under low population densities, as expected if mate limitation was the main factor selecting for parthenogenesis. Mate limitation might be widespread in mayflies because of their short adult life span and limited dispersal, which can generate strong selection for reproductive assurance and may provide a stepping stone toward obligate parthenogenesis.
Collapse
|
6
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
7
|
Pequeno PACL, Franklin E, Norton RA. Hunger for sex: Abundant, heterogeneous resources select for sexual reproduction in the field. J Evol Biol 2022; 35:1387-1395. [PMID: 36117406 DOI: 10.1111/jeb.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Major hypotheses on sex evolution predict that resource abundance and heterogeneity should either select for or against sexual reproduction. However, seldom have these predictions been explicitly tested in the field. Here, we investigated this question using soil oribatid mites, a diverse and abundant group of soil arthropods whose local communities can be dominated by either sexual or asexual species. First, we refined theoretical predictions by addressing how the effects of resource abundance, heterogeneity and abiotic conditions could modify each other. Then, we estimated the strength of selection for sexual species in local communities while controlling for phylogeny and neutral processes (ecological drift and dispersal), and tested its relation to resource and abiotic gradients. We show that sexual species tended to be favoured with increasing litter amount, a measure of basal resource abundance. Further, there was some evidence that this response occurred mainly under higher tree species richness, a measure of basal resource heterogeneity. This response to resources is unlikely to reflect niche partitioning between reproductive modes, as sexual and asexual species overlapped in trophic niche according to a comparative analysis using literature data on stable isotope ratios. Rather, these findings are consistent with the hypothesis that sex facilitates adaptation by breaking unfavourable genetic associations, an advantage that should increase with effective population size when many loci are under selection and, thus, with resource abundance.
Collapse
Affiliation(s)
| | - Elizabeth Franklin
- Biodiversity Coordination, National Institute for Amazonia Research, Manaus, Brazil
| | - Roy A Norton
- College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA
| |
Collapse
|
8
|
McElroy KE, Bankers L, Soper D, Hehman G, Boore JL, Logsdon JM, Neiman M. Patterns of gene expression in ovaries of sexual vs. asexual lineages of a freshwater snail. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Why sexual reproduction is so common when asexual reproduction should be much more efficient and less costly remains an open question in evolutionary biology. Comparisons between otherwise similar sexual and asexual taxa allow us to characterize the genetic architecture underlying asexuality, which can, in turn, illuminate how this reproductive mode transition occurred and the mechanisms by which it is maintained or disrupted. Here, we used transcriptome sequencing to compare patterns of ovarian gene expression between actively reproducing obligately sexual and obligately asexual females from multiple lineages of Potamopyrgus antipodarum, a freshwater New Zealand snail characterized by frequent separate transitions to asexuality and coexistence of otherwise similar sexual and asexual lineages. We also used these sequence data to evaluate whether population history accounts for variation in patterns of gene expression. We found that source population was a major source of gene expression variation, and likely more influential than reproductive mode. This outcome for these common garden-raised snails is strikingly similar to earlier results from field-collected snails. While we did not identify a likely set of candidate genes from expression profiles that could plausibly explain how transitions to asexuality occurred, we identified around 1,000 genes with evidence of differential expression between sexual and asexual reproductive modes, and 21 genes that appear to exhibit consistent expression differences between sexuals and asexuals across genetic backgrounds. This second smaller set of genes provides a good starting point for further exploration regarding a potential role in the transition to asexual reproduction. These results mark the first effort to characterize the causes of asexuality in P. antipodarum, demonstrate the apparently high heritability of gene expression patterns in this species, and hint that for P. antipodarum, transitions to asexuality might not necessarily be strongly associated with broad changes in gene expression.
Collapse
|
9
|
Maraun M, Bischof PSP, Klemp FL, Pollack J, Raab L, Schmerbach J, Schaefer I, Scheu S, Caruso T. "Jack-of-all-trades" is parthenogenetic. Ecol Evol 2022; 12:e9036. [PMID: 35784052 PMCID: PMC9219104 DOI: 10.1002/ece3.9036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Sex is evolutionarily more costly than parthenogenesis, evolutionary ecologists therefore wonder why sex is much more frequent than parthenogenesis in the majority of animal lineages. Intriguingly, parthenogenetic individuals and species are as common as or even more common than sexuals in some major and putative ancient animal lineages such as oribatid mites and rotifers. Here, we analyzed oribatid mites (Acari: Oribatida) as a model group because these mites are ancient (early Paleozoic), widely distributed around the globe, and include a high number of parthenogenetic species, which often co-exist with sexual oribatid mite species. There is evidence that the reproductive mode is phylogenetically conserved in oribatid mites, which makes them an ideal model to test hypotheses on the relationship between reproductive mode and species' ecological strategies. We used oribatid mites to test the frozen niche variation hypothesis; we hypothesized that parthenogenetic oribatid mites occupy narrow specialized ecological niches. We used the geographic range of species as a proxy for specialization as specialized species typically do have narrower geographic ranges than generalistic species. After correcting for phylogenetic signal in reproductive mode and demonstrating that geographic range size has no phylogenetic signal, we found that parthenogenetic lineages have a higher probability to have broader geographic ranges than sexual species arguing against the frozen niche variation hypothesis. Rather, the results suggest that parthenogenetic oribatid mite species are more generalistic than sexual species supporting the general-purpose genotype hypothesis. The reason why parthenogenetic oribatid mite species are generalists with wide geographic range sizes might be that they are of ancient origin reflecting that they adapted to varying environmental conditions during evolutionary history. Overall, our findings indicate that parthenogenetic oribatid mite species possess a widely adapted general-purpose genotype and therefore might be viewed as "Jack-of-all-trades."
Collapse
Affiliation(s)
- Mark Maraun
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Paul S. P. Bischof
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Finn L. Klemp
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Jule Pollack
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Linnea Raab
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Jan Schmerbach
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Ina Schaefer
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Stefan Scheu
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Tancredi Caruso
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| |
Collapse
|
10
|
Normark BB. The clones are all right. Science 2022; 376:1052-1053. [PMID: 35653466 DOI: 10.1126/science.abq3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parthenogenetic grasshoppers confound predictions by showing no signs of decline.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
11
|
Dinges ZM, Lively CM. Asymmetric density-dependent competition does not contribute to the maintenance of sex in a mixed population of sexual and asexual Potamopyrgus antipodarum. J Evol Biol 2022; 35:1012-1019. [PMID: 35647767 DOI: 10.1111/jeb.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
Asexual reproduction is expected to have a twofold reproductive advantage over sexual reproduction, owing to the cost of producing males in sexual subpopulations. The persistence of sexual females, thus, requires an advantage to sexual reproduction, at least periodically. Here, we tested the hypothesis that asexual females are more sensitive to limited resources. Under this idea, fluctuations in the availability of resources (per capita) could periodically favour sexual females when resources become limited. We combined sexual and asexual freshwater snails (Potamopyrgus antipodarum) together in nylon mesh enclosures at three different densities in an outdoor mesocosm. After 1 month, we counted the brood size of fertile female snails. We found that fecundity declined significantly with increasing density. However, sexual females did not produce more offspring than asexual females at any of the experimental densities. Our results, thus, suggest that the cost of sexual reproduction in P. antipodarum is not ameliorated by periods of intense resource competition.
Collapse
Affiliation(s)
- Zoe M Dinges
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
12
|
Jaron KS, Parker DJ, Anselmetti Y, Tran Van P, Bast J, Dumas Z, Figuet E, François CM, Hayward K, Rossier V, Simion P, Robinson-Rechavi M, Galtier N, Schwander T. Convergent consequences of parthenogenesis on stick insect genomes. SCIENCE ADVANCES 2022; 8:eabg3842. [PMID: 35196080 PMCID: PMC8865771 DOI: 10.1126/sciadv.abg3842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, providing empirical support for the negative consequences of parthenogenesis as predicted by theory.
Collapse
Affiliation(s)
- Kamil S. Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| | | | - Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | | | - Keith Hayward
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Victor Rossier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Simion
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Galtier
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| |
Collapse
|
13
|
Brandt A, Tran Van P, Bluhm C, Anselmetti Y, Dumas Z, Figuet E, François CM, Galtier N, Heimburger B, Jaron KS, Labédan M, Maraun M, Parker DJ, Robinson-Rechavi M, Schaefer I, Simion P, Scheu S, Schwander T, Bast J. Haplotype divergence supports long-term asexuality in the oribatid mite Oppiella nova. Proc Natl Acad Sci U S A 2021; 118:e2101485118. [PMID: 34535550 PMCID: PMC8463897 DOI: 10.1073/pnas.2101485118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.
Collapse
Affiliation(s)
- Alexander Brandt
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany;
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Bluhm
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
- Abteilung Boden und Umwelt, Forstliche Versuchs- und Forschungsanstalt Baden-Wuerttemberg, 79100 Freiburg, Germany
| | - Yoann Anselmetti
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- CoBIUS Lab, Department of Computer Science, University of Sherbrooke, Sherbrooke, QC J1K2R1, Canada
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emeric Figuet
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
| | - Clémentine M François
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, École Nationale des Travaux Publics de l'État, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Nicolas Galtier
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
| | - Bastian Heimburger
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mark Maraun
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ina Schaefer
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Paul Simion
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- Laboratory of Evolutionary Genetics and Ecology, Unit in Environmental and Evolutionary Biology, Université de Namur, 5000 Namur, Belgium
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
- Section Biodiversity and Ecology, Centre of Biodiversity and Sustainable Land Use, 37073 Goettingen, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Institute for Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
14
|
Meirmans PG. Niche divergence contributes to geographical parthenogenesis in two dandelion taxa. J Evol Biol 2021; 34:1071-1086. [PMID: 33955626 PMCID: PMC8362108 DOI: 10.1111/jeb.13794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
Many sexual-asexual complexes show a distinct pattern where the asexuals have larger and more northerly ranges than closely related sexuals. A prime candidate to explain this so-called "geographical parthenogenesis" is ecological niche divergence between the sexuals and asexuals. Modern niche modelling techniques allow testing niche divergence by directly comparing the niches of sexuals and asexuals. In this study, I use such techniques to perform range-wide tests of whether nine bioclimatic variables, including annual mean temperature and annual precipitation, contribute to geographical parthenogenesis in two dandelion taxa: Taraxacum section Ruderalia and Taraxacum section Erythrosperma, which are both comprised of sexual diploids and asexual triploids. For both sections, I found evidence of niche divergence, though the exact nature of this divergence was different for the two sections. In section Ruderalia, the sexuals preferred warmer and wetter conditions, whereas in section Erythrosperma, the sexuals preferred dryer conditions. Using Species Distribution Modelling, consistent differences between the sexuals and asexuals were found when looking at the niche determinants: the variables that are most important for modelling the distribution. Furthermore, and in contrast with theoretical expectations that predict that the sexuals should have a wider niche, in section Erythrosperma the asexuals were found to have a wider niche than the sexuals. In conclusion, differences in niche optima, niche determinants, and niche width all contribute to the pattern of geographical parthenogenesis of these two dandelion taxa. However, the results also indicate that the exact causation of geographical parthenogenesis is not uniform across taxa.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Tran Van P, Anselmetti Y, Bast J, Dumas Z, Galtier N, Jaron KS, Martens K, Parker DJ, Robinson-Rechavi M, Schwander T, Simion P, Schön I. First annotated draft genomes of nonmarine ostracods (Ostracoda, Crustacea) with different reproductive modes. G3 (BETHESDA, MD.) 2021; 11:jkab043. [PMID: 33591306 PMCID: PMC8049415 DOI: 10.1093/g3journal/jkab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 11/14/2022]
Abstract
Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research.
Collapse
Affiliation(s)
- Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yoann Anselmetti
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Galtier
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- Department of Biology, University of Ghent, Ghent 9000, Belgium
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paul Simion
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
- Université de Namur, LEGE, URBE, Namur 5000, Belgium
| | - Isa Schön
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- University of Hasselt, Research Group Zoology, Diepenbeek 3590, Belgium
| |
Collapse
|
16
|
Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M, Schwander T. Genomic Features of Parthenogenetic Animals. J Hered 2021; 112:19-33. [PMID: 32985658 PMCID: PMC7953838 DOI: 10.1093/jhered/esaa031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Evolution without sex is predicted to impact genomes in numerous ways. Case studies of individual parthenogenetic animals have reported peculiar genomic features that were suggested to be caused by their mode of reproduction, including high heterozygosity, a high abundance of horizontally acquired genes, a low transposable element load, or the presence of palindromes. We systematically characterized these genomic features in published genomes of 26 parthenogenetic animals representing at least 18 independent transitions to asexuality. Surprisingly, not a single feature was systematically replicated across a majority of these transitions, suggesting that previously reported patterns were lineage-specific rather than illustrating the general consequences of parthenogenesis. We found that only parthenogens of hybrid origin were characterized by high heterozygosity levels. Parthenogens that were not of hybrid origin appeared to be largely homozygous, independent of the cellular mechanism underlying parthenogenesis. Overall, despite the importance of recombination rate variation for the evolution of sexual animal genomes, the genome-wide absence of recombination does not appear to have had the dramatic effects which are expected from classical theoretical models. The reasons for this are probably a combination of lineage-specific patterns, the impact of the origin of parthenogenesis, and a survivorship bias of parthenogenetic lineages.
Collapse
Affiliation(s)
- Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
- Reuben W. Nowell is now at the Department of Zoology, University of Oxford, Oxford, UK
| | | | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Rushworth CA, Brandvain Y, Mitchell‐Olds T. Identifying the fitness consequences of sex in complex natural environments. Evol Lett 2020; 4:516-529. [PMID: 33312687 PMCID: PMC7719549 DOI: 10.1002/evl3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
In the natural world, sex prevails, despite its costs. Although much effort has been dedicated to identifying the intrinsic costs of sex (e.g., the cost of males), few studies have identified the ecological fitness consequences of sex. Furthermore, correlated biological traits that differ between sexuals and asexuals may alter these costs, or even render the typical costs of sex irrelevant. We conducted a large-scale, multisite, reciprocal transplant using multiple sexual and asexual genotypes of a native North American wildflower to show that sexual genotypes have reduced lifetime fitness, despite lower herbivory. We separated the effects of sex from those of hybridity, finding that overwinter survival is elevated in asexuals regardless of hybridity, but herbivores target hybrid asexuals more than nonhybrid asexual or sexual genotypes. Survival is lowest in homozygous sexual lineages, implicating inbreeding depression as a cost of sex. Our results show that the consequences of sex are shaped not just by sex itself, but by complex natural environments, correlated traits, and the identity and availability of mates.
Collapse
Affiliation(s)
- Catherine A. Rushworth
- Department of Evolution and EcologyUniversity of California, DavisDavisCalifornia95616
- University and Jepson HerbariaUniversity of California, BerkeleyBerkeleyCalifornia94720
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108
- Department of BiologyDuke UniversityDurhamNorth Carolina27708
| | - Yaniv Brandvain
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108
| | - Tom Mitchell‐Olds
- Department of BiologyDuke UniversityDurhamNorth Carolina27708
- Center for Genomic and Computational BiologyDuke UniversityDurhamNorth Carolina27708
| |
Collapse
|
18
|
Rushworth CA, Mitchell-Olds T. The Evolution of Sex is Tempered by Costly Hybridization in Boechera (Rock Cress). J Hered 2020; 112:67-77. [PMID: 33211850 DOI: 10.1093/jhered/esaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Despite decades of research, the evolution of sex remains an enigma in evolutionary biology. Typically, research addresses the costs of sex and asexuality to characterize the circumstances favoring one reproductive mode. Surprisingly few studies address the influence of common traits that are, in many organisms, obligately correlated with asexuality, including hybridization and polyploidy. These characteristics have substantial impacts on traits under selection. In particular, the fitness consequences of hybridization (i.e., reduced fitness due to interspecific reproductive isolation) will influence the evolution of sex. This may comprise a cost of either sex or asexuality due to the link between hybridity and asexuality. We examined reproductive isolation in the formation of de novo hybrid lineages between 2 widespread species in the ecological model system Boechera. Seventeen percent of 664 crosses produced F1 fruits, and only 10% of these were viable, suggesting that postmating prezygotic and postzygotic barriers inhibit hybrid success in this system. The postmating prezygotic barrier was asymmetrical, with 110 of 115 total F1 fruits produced when Boechera stricta acted as maternal parent. This asymmetry was confirmed in wild-collected lineages, using a chloroplast phylogeny of wild-collected B. stricta, Boechera retrofracta, and hybrids. We next compared fitness of F2 hybrids and selfed parental B. stricta lines, finding that F2 fitness was reduced by substantial hybrid sterility. Multiple reproductively isolating barriers influence the formation and fitness of hybrid lineages in the wild, and the costs of hybridization likely have profound impacts on the evolution of sex in the natural environment.
Collapse
Affiliation(s)
- Catherine A Rushworth
- Department of Evolution and Ecology, Storer Hall, University of California Davis, Davis, CA.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN.,University and Jepson Herbaria, University of California Berkeley, Berkeley, CA.,Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| | - Tom Mitchell-Olds
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| |
Collapse
|
19
|
Otto SP. Selective Interference and the Evolution of Sex. J Hered 2020; 112:9-18. [DOI: 10.1093/jhered/esaa026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 11/14/2022] Open
Abstract
AbstractSelection acts upon genes linked together on chromosomes. This physical connection reduces the efficiency by which selection can act because, in the absence of sex, alleles must rise and fall together in frequency with the genome in which they are found. This selective interference underlies such phenomena as clonal interference and Muller’s Ratchet and is broadly termed Hill-Robertson interference. In this review, I examine the potential for selective interference to account for the evolution and maintenance of sex, discussing the positive and negative evidence from both theoretical and empirical studies, and highlight the gaps that remain.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, Canada
| |
Collapse
|
20
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
21
|
Lohr JN, Haag CR. Parasite-driven replacement of a sexual by a closely related asexual taxon in nature. Ecology 2020; 101:e03105. [PMID: 32452541 DOI: 10.1002/ecy.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022]
Abstract
Asexual species are thought to suffer more from coevolving parasites than related sexuals. Yet a variety of studies do not find the patterns predicted by theory. Here, to shine light on this conundrum, we investigate one such case of an asexual advantage in the presence of parasites. We follow the frequency dynamics of sexual and asexual Daphnia pulex in a natural pond that was initially dominated by sexuals. Coinciding with an epidemic of a microsporidian parasite infecting both sexuals and asexuals, the pond was rapidly taken over by the initially rare asexuals. With experiments comparing multiple sexual and asexual clones from across the local metapopulation, we confirm that asexuals are less susceptible and also suffer less from the parasite once infected. These results are consistent with the parasite-driven, ecological replacement of dominant sexuals by closely related, but more resistant asexuals, ultimately leading to the extinction of the formerly superior sexual competitor. Our study is one of the clearest examples from nature, backed up by experimental verification, showing a parasite-mediated reversal of competition dynamics. The experiments show that, across the metapopulation, asexuals have an advantage in the presence of parasites. In this metapopulation, asexuals are relatively rare, likely due to their recent invasion. While we cannot rule out other reasons for the observed patterns, the results are consistent with a temporary parasite-mediated advantage of asexuals due to the fact that they are rare, which is an underappreciated aspect of the Red Queen Hypothesis.
Collapse
Affiliation(s)
- Jennifer N Lohr
- Department of Biology, Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.,Tvärminne Zoological Station, J.A. Palménin tie 260, 10900, Hanko, Finland.,Department of Genetics, Evolution and Environment, University College London, Institute of Healthy Ageing, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christoph R Haag
- Department of Biology, Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.,Tvärminne Zoological Station, J.A. Palménin tie 260, 10900, Hanko, Finland.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 1919, route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
22
|
Abstract
In diverse parasite taxa, from scale insects to root-knot nematodes, asexual lineages have exceptionally large host ranges, larger than those of their sexual relatives. Phylogenetic comparative studies of parasite taxa indicate that increases in host range and geographic range increase the probability of establishment of asexual lineages. At first pass, this convergence of traits appears counter-intuitive: intimate, antagonistic association with an enormous range of host taxa correlates with asexual reproduction, which should limit genetic variation within populations. Why would narrow host ranges favor sexual parasites and large host ranges favor asexual parasites? To take on this problem I link theory on ecological specialization to the two predominant hypotheses for the evolution of sex. I argue that both hypotheses predict a positive association between host range and the probability of invasion of asexual parasites, mediated either by variation in population size or in the strength of antagonistic coevolution. I also review hypotheses on colonization and the evolution of niche breadth in asexual lineages. I emphasize parasite taxa, with their diversity of reproductive modes and ecological strategies, as valuable assets in the hunt for solutions to the classic problems of the evolution of sex and geographic parthenogenesis.
Collapse
Affiliation(s)
- Amanda K Gibson
- Wissenschaftskolleg zu Berlin, Berlin, Germany.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
|
24
|
Morgan-Richards M, Langton-Myers SS, Trewick SA. Loss and gain of sexual reproduction in the same stick insect. Mol Ecol 2019; 28:3929-3941. [PMID: 31386772 PMCID: PMC6852293 DOI: 10.1111/mec.15203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023]
Abstract
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.
Collapse
Affiliation(s)
| | | | - Steven A Trewick
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Gerber N, Kokko H. Abandoning the ship using sex, dispersal or dormancy: multiple escape routes from challenging conditions. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0424. [PMID: 30150222 DOI: 10.1098/rstb.2017.0424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2018] [Indexed: 12/21/2022] Open
Abstract
Natural populations often experience environments that vary across space and over time, leading to spatio-temporal variation of the fitness of a genotype. If local conditions are poor, organisms can disperse in space (physical movement) or time (dormancy, diapause). Facultatively sexual organisms can switch between asexual and sexual reproduction, and thus have a third option available to deal with maladaptedness: they can engage in sexual reproduction in unfavourable conditions (an 'abandon-ship' response). Sexual reproduction in facultatively sexual organisms is often coupled with dispersal and/or dormancy, while bet-hedging theory at first sight predicts sex, dispersal and dormancy to covary negatively, as they represent different escape mechanisms that could substitute for each other. Here we briefly review the observed links between sex, dormancy and dispersal, and model the expected covariation patterns of dispersal, dormancy and the reproductive mode in the context of local adaptation to spatio-temporally fluctuating environments. The correlations between sex, dormancy and dispersal evolve differently within species versus across species. Various risk-spreading strategies are not completely interchangeable, as each has dynamic consequences that can feed back into the profitability of others. Our results shed light on the discrepancy between previous theoretical predictions on covarying risk-spreading traits and help explain why sex often associates with other means of escaping unfavourable situations.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Nina Gerber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylän yliopisto, Finland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Meirmans S, Butlin RK, Charmantier A, Engelstädter J, Groot AT, King KC, Kokko H, Reid JM, Neiman M. Science policies: How should science funding be allocated? An evolutionary biologists' perspective. J Evol Biol 2019; 32:754-768. [PMID: 31215105 PMCID: PMC6771946 DOI: 10.1111/jeb.13497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/11/2023]
Abstract
In an ideal world, funding agencies could identify the best scientists and projects and provide them with the resources to undertake these projects. Most scientists would agree that in practice, how funding for scientific research is allocated is far from ideal and likely compromises research quality. We, nine evolutionary biologists from different countries and career stages, provide a comparative summary of our impressions on funding strategies for evolutionary biology across eleven different funding agencies. We also assess whether and how funding effectiveness might be improved. We focused this assessment on 14 elements within four broad categories: (a) topical shaping of science, (b) distribution of funds, (c) application and review procedures, and (d) incentives for mobility and diversity. These comparisons revealed striking among‐country variation in those elements, including wide variation in funding rates, the effort and burden required for grant applications, and the extent of emphasis on societal relevance and individual mobility. We use these observations to provide constructive suggestions for the future and urge the need to further gather informed considerations from scientists on the effects of funding policies on science across countries and research fields.
Collapse
Affiliation(s)
| | - Roger K Butlin
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Anne Charmantier
- CEFE UMR 5175, CNRS, Université Paul-Valery Montpellier, Université de Montpellier, Montpellier Cedex 05, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Kayla C King
- Department of Zoology, Christ Church College, University of Oxford, Oxford, UK
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jane M Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Brandt A, Bast J, Scheu S, Meusemann K, Donath A, Schütte K, Machida R, Kraaijeveld K. No signal of deleterious mutation accumulation in conserved gene sequences of extant asexual hexapods. Sci Rep 2019; 9:5338. [PMID: 30926861 PMCID: PMC6441085 DOI: 10.1038/s41598-019-41821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/18/2019] [Indexed: 11/15/2022] Open
Abstract
Loss of sex and recombination is generally assumed to impede the effectiveness of purifying selection and to result in the accumulation of slightly deleterious mutations. Empirical evidence for this has come from several studies investigating mutational load in a small number of individual genes. However, recent whole transcriptome based studies have yielded inconsistent results, hence questioning the validity of the assumption of mutational meltdown in asexual populations. Here, we study the effectiveness of purifying selection in eight asexual hexapod lineages and their sexual relatives, as present in the 1 K Insect Transcriptome Evolution (1KITE) project, covering eight hexapod groups. We analyse the accumulation of slightly deleterious nonsynonymous and synonymous point mutations in 99 single copy orthologue protein-coding loci shared among the investigated taxa. While accumulation rates of nonsynonymous mutations differed between genes and hexapod groups, we found no effect of reproductive mode on the effectiveness of purifying selection acting at nonsynonymous and synonymous sites. Although the setup of this study does not fully rule out nondetection of subtle effects, our data does not support the established consensus of asexual lineages undergoing ‘mutational meltdown’.
Collapse
Affiliation(s)
- Alexander Brandt
- University of Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, D-37073, Göttingen, Germany.
| | - Jens Bast
- University of Lausanne, Department of Ecology and Evolution, UNIL Sorge, Le Biophore, CH-1015, Lausanne, Switzerland
| | - Stefan Scheu
- University of Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Karen Meusemann
- University of Freiburg, Biology I, Evolutionary Biology & Ecology, Hauptstraße 1, D-79104, Freiburg, Germany.,Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander König, Adenauerallee 160, D-53113, Bonn, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander König, Adenauerallee 160, D-53113, Bonn, Germany
| | - Kai Schütte
- University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Zoology, Research Unit Animal Ecology and Conservation, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294, Sugadaira Kogen, Ueda, Nagano, 386-2204, Japan
| | - Ken Kraaijeveld
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Tvedte ES, Logsdon JM, Forbes AA. Sex loss in insects: causes of asexuality and consequences for genomes. CURRENT OPINION IN INSECT SCIENCE 2019; 31:77-83. [PMID: 31109677 DOI: 10.1016/j.cois.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Boasting a staggering diversity of reproductive strategies, insects provide attractive models for the comparative study of the causes and consequences of transitions to asexuality. We provide an overview of some contemporary studies of reproductive systems in insects and compile an initial database of asexual insect genome resources. Insect systems have already yielded some important insights into various mechanisms by which sex is lost, including genetic, endosymbiont-mediated, and hybridization. Studies of mutation and substitution after loss of sex provide the strongest empirical support for hypothesized effects of asexuality, whereas there is mixed evidence for ecological hypotheses such as increased parasite load and altered niche breadth in asexuals. Most hypotheses have been explored in a select few taxa (e.g. stick insects, aphids), such that much of the great taxonomic breadth of insects remain understudied. Given the variation in the proximate causes of asexuality in insects, we argue for expanding the taxonomic breadth of study systems. Despite some challenges for investigating sex in insects, the increasing cost-effectiveness of genomic sequencing makes data generation for closely-related asexual and sexual lineages increasingly feasible.
Collapse
Affiliation(s)
- Eric S Tvedte
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
29
|
Larose C, Parker DJ, Schwander T. Fundamental and realized feeding niche breadths of sexual and asexual stick insects. Proc Biol Sci 2018; 285:20181805. [PMID: 30487310 PMCID: PMC6283937 DOI: 10.1098/rspb.2018.1805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 11/12/2022] Open
Abstract
The factors contributing to the maintenance of sex over asexuality in natural populations remain unclear. Ecological divergences between sexual and asexual lineages could help to maintain reproductive polymorphisms, at least transiently, but the consequences of asexuality for the evolution of ecological niches are unknown. Here, we investigated how niche breadths change in transitions from sexual reproduction to asexuality. We used host plant ranges as a proxy to compare the realized feeding niche breadths of five independently derived asexual Timema stick insect species and their sexual relatives at both the species and population levels. Asexual species had systematically narrower realized niches than sexual species, though this pattern was not apparent at the population level. To investigate how the narrower realized niches of asexual species arise, we performed feeding experiments to estimate fundamental niche breadths but found no systematic differences between reproductive modes. The narrow realized niches found in asexual species are therefore probably a consequence of biotic interactions such as predation or competition, that constrain realized niche size in asexuals more strongly than in sexuals.
Collapse
Affiliation(s)
- Chloé Larose
- Department of Ecology and Evolution, University of Lausanne, Quartier Unil-Sorge, CH-1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, Quartier Unil-Sorge, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Quartier Unil-Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Clo J. Digest: How mutational bias could explain the maintenance of sex. Evolution 2018; 72:1970-1971. [PMID: 30101456 DOI: 10.1111/evo.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022]
Abstract
How does mutational bias affect the fitness of populations under different reproductive strategies? Vanhoenacker et al. (2018) found that mutational bias can greatly reduce the mean fitness of asexual populations, offering a new hypothesis for the maintenance of sex.
Collapse
Affiliation(s)
- Josselin Clo
- Unité Mixte de Recherche AGAP, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 02, France
| |
Collapse
|
31
|
Werry N. Digest: Survey of field-based studies identifies trends in maintenance of sex. Evolution 2018; 72:1328-1329. [PMID: 29737524 DOI: 10.1111/evo.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Nicholas Werry
- Department of Biology, The University of Western Ontario, London, N6A 3K7, Canada
| |
Collapse
|