1
|
Tagliacollo VA, de Pinna M, Chuctaya J, Datovo A. Accuracy of phylogenetic reconstructions from continuous characters analysed under parsimony and its parametric correlates. Cladistics 2025; 41:212-222. [PMID: 39915925 DOI: 10.1111/cla.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 03/11/2025] Open
Abstract
Quantitative traits are a source of evolutionary information often difficult to handle in cladistics. Tools exist to analyse this kind of data without subjective discretization, avoiding biases in the delimitation of categorical states. Nonetheless, our ability to accurately infer relationships from continuous characters is incompletely understood, particularly under parsimony analysis. This study evaluates the accuracy of phylogenetic reconstructions from simulated matrices of continuous characters evolving under alternative evolutionary processes and analysed by parsimony. We sampled 100 empirical trees to simulate 9000 matrices, each containing between 25 and 50 taxa, and 50 and 150 continuous characters evolving under three evolutionary processes: Brownian motion, Ornstein-Uhlenbeck and early burst with variable parametrizations. Our cladogram comparisons revealed that continuous character matrices, when properly coded and analysed by parsimony in TNT, carry phylogenetic signals from which species relationships can be inferred, regardless of the evolutionary models and parameterization schemes. Interestingly, implementing equal weighting or implied weighting with varying penalization strengths against homoplasies did not affect cladogram reconstructions based on continuous characters. Finally, the accuracy of continuous characters in resolving species relationships is skewed towards apical nodes of the recovered trees. Our findings provide general insights of the utility of quantitative traits in cladistics and demonstrate that their effectiveness in estimating shallower nodes is independent of the underlying evolutionary model, parameters and weighting schemes.
Collapse
Affiliation(s)
- Victor A Tagliacollo
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará - S/N, Umuarama, Minas Gerais, Brazil
| | - Mario de Pinna
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, São Paulo, Brazil
| | - Junior Chuctaya
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará - S/N, Umuarama, Minas Gerais, Brazil
| | - Alessio Datovo
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, São Paulo, Brazil
| |
Collapse
|
2
|
Parins‐Fukuchi CT, Stull GW, Wen J, Beaulieu JM. Transitions Into Freezing Environments Linked With Shifts in Phylogenetic Integration Between Vitaceae Leaf Traits. Ecol Evol 2024; 14:e70553. [PMID: 39544388 PMCID: PMC11563691 DOI: 10.1002/ece3.70553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how the intrinsic ability of populations and species to meet shifting selective demands shapes evolutionary patterns over both short and long timescales is a major question in biology. One major axis of evolutionary flexibility can be measured by phenotypic integration and modularity. The strength, scale, and structure of integration may constrain or catalyze evolution in the face of new selective pressures. We analyze a dataset of seven leaf measurements across Vitaceae to examine how correlations in trait divergence are linked to transitions between freezing and nonfreezing habitats. We assess this by applying a custom algorithm to compare the timing of habitat shifts to changes in the structure of evolutionary trait correlation at discrete points along a phylogeny. We also explore these patterns in relation to lineage diversification rates to understand how and whether patterns in the evolvability of complex multivariate phenotypes are linked to higher-level macroevolutionary dynamics. We found that shifts in the structure, but not the overall strength, of phylogenetic integration of leaves precipitate colonization of freezing climates. Lineages that underwent associated shifts in leaf trait integration and subsequent movement into freezing habitats also displayed lower turnover and higher net diversification, suggesting a link among shifting vectors of selection, internal constraint, and lineage persistence in the face of changing environments.
Collapse
Affiliation(s)
| | - Gregory W. Stull
- Department of BotanyNational Museum of Natural History, Smithsonian InstitutionWashingtonDCUSA
| | - Jun Wen
- Department of BotanyNational Museum of Natural History, Smithsonian InstitutionWashingtonDCUSA
| | - Jeremy M. Beaulieu
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
3
|
Holvast EJ, Celik MA, Phillips MJ, Wilson LAB. Do morphometric data improve phylogenetic reconstruction? A systematic review and assessment. BMC Ecol Evol 2024; 24:127. [PMID: 39425066 PMCID: PMC11487705 DOI: 10.1186/s12862-024-02313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Isolating phylogenetic signal from morphological data is crucial for accurately merging fossils into the tree of life and for calibrating molecular dating. However, subjective character definition is a major limitation which can introduce biases that mislead phylogenetic inferences and divergence time estimation. The use of quantitative data, e.g., geometric morphometric (GMM; shape) data can allow for more objective integration of morphological data into phylogenetic inference. This systematic review describes the current state of the field in using continuous morphometric data (e.g., GMM data) for phylogenetic reconstruction and assesses the efficacy of these data compared to discrete characters using the PRISMA-EcoEvo v1.0. reporting guideline, and offers some pathways for approaching this task with GMM data. A comprehensive search string yielded 11,123 phylogenetic studies published in English up to Oct 2023 in the Web of Science database. Title and abstract screening removed 10,975 articles, and full-text screening was performed for 132 articles. Of these, a total of twelve articles met final inclusion criteria and were used for downstream analyses. RESULTS Phylogenetic performance was compared between approaches that employed continuous morphometric and discrete morphological data. Overall, the reconstructed phylogenies did not show increased resolution or accuracy (i.e., benchmarked against molecular phylogenies) as continuous data alone or combined with discrete morphological datasets. CONCLUSIONS An exhaustive search of the literature for existing empirical continuous data resulted in a total of twelve articles for final inclusion following title/abstract, and full-text screening. Our study was performed under a rigorous framework for systematic reviews, which showed that the lack of available comparisons between discrete and continuous data hinders our understanding of the performance of continuous data. Our study demonstrates the problem surrounding the efficacy of continuous data as remaining relatively intractable despite an exhaustive search, due in part to the difficulty in obtaining relevant comparisons from the literature. Thus, we implore researchers to address this issue with studies that collect discrete and continuous data sets with directly comparable properties (i.e., describing shape, or size).
Collapse
Affiliation(s)
- Emma J Holvast
- School of Archaeology and Anthropology, The Australian National University, Canberra, Australia.
| | - Mélina A Celik
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Research School of Physics, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
4
|
Matzig DN, Marwick B, Riede F, Warnock RCM. A macroevolutionary analysis of European Late Upper Palaeolithic stone tool shape using a Bayesian phylodynamic framework. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240321. [PMID: 39144489 PMCID: PMC11321859 DOI: 10.1098/rsos.240321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Phylogenetic models are commonly used in palaeobiology to study the patterns and processes of organismal evolution. In the human sciences, phylogenetic methods have been deployed for reconstructing ancestor-descendant relationships using linguistic and material culture data. Within evolutionary archaeology specifically, phylogenetic analyses based on maximum parsimony and discrete traits dominate, which sets limitations for the downstream role cultural phylogenies, once derived, can play in more elaborate analytical pipelines. Recent methodological advances in Bayesian phylogenetics, however, now allow us to infer evolutionary dynamics using continuous characters. Capitalizing on these developments, we here present an exploratory analysis of cultural macroevolution of projectile point shape evolution in the European Final Palaeolithic and earliest Mesolithic (approx. 15 000-11 000 BP) using a Bayesian phylodynamic approach and the fossilized birth-death process model. This model-based approach leaps far beyond the application of parsimony, in that it not only produces a tree, but also divergence times, and diversification rates while incorporating uncertainties. This allows us to compare rates to the pronounced climatic changes that occurred during our time frame. While common in cultural evolutionary analyses of language, the extension of Bayesian phylodynamic models to archaeology arguably represents a major methodological breakthrough.
Collapse
Affiliation(s)
- David N. Matzig
- Department of Archaeology and Heritage Studies, Aarhus University, Højbjerg, Denmark
| | - Ben Marwick
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - Felix Riede
- Department of Archaeology and Heritage Studies, Aarhus University, Højbjerg, Denmark
| | - Rachel C. M. Warnock
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Zhang R, Drummond AJ, Mendes FK. Fast Bayesian Inference of Phylogenies from Multiple Continuous Characters. Syst Biol 2024; 73:102-124. [PMID: 38085256 PMCID: PMC11129596 DOI: 10.1093/sysbio/syad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/23/2023] [Accepted: 11/07/2023] [Indexed: 05/28/2024] Open
Abstract
Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remain challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous morphological characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.
Collapse
Affiliation(s)
- Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School 169857, Singapore
| | - Alexei J Drummond
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Fábio K Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Mah JL, Dunn CW. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat Ecol Evol 2024; 8:325-338. [PMID: 38182680 DOI: 10.1038/s41559-023-02281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
The origin and evolution of cell types has emerged as a key topic in evolutionary biology. Driven by rapidly accumulating single-cell datasets, recent attempts to infer cell type evolution have largely been limited to pairwise comparisons because we lack approaches to build cell phylogenies using model-based approaches. Here we approach the challenges of applying explicit phylogenetic methods to single-cell data by using principal components as phylogenetic characters. We infer a cell phylogeny from a large, comparative single-cell dataset of eye cells from five distantly related mammals. Robust cell type clades enable us to provide a phylogenetic, rather than phenetic, definition of cell type, allowing us to forgo marker genes and phylogenetically classify cells by topology. We further observe evolutionary relationships between diverse vessel endothelia and identify the myelinating and non-myelinating Schwann cells as sister cell types. Finally, we examine principal component loadings and describe the gene expression dynamics underlying the function and identity of cell type clades that have been conserved across the five species. A cell phylogeny provides a rigorous framework towards investigating the evolutionary history of cells and will be critical to interpret comparative single-cell datasets that aim to ask fundamental evolutionary questions.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Weisbecker V, Beck RMD, Guillerme T, Harrington AR, Lange-Hodgson L, Lee MSY, Mardon K, Phillips MJ. Multiple modes of inference reveal less phylogenetic signal in marsupial basicranial shape compared with the rest of the cranium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220085. [PMID: 37183893 PMCID: PMC10184248 DOI: 10.1098/rstb.2022.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/17/2022] [Indexed: 05/16/2023] Open
Abstract
Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robin M. D. Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Thomas Guillerme
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Leonie Lange-Hodgson
- School of Biological Sciences, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, South Australia, 5000 Australia
| | - Karine Mardon
- Centre of Advanced Imaging, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Matthew J. Phillips
- School of Biology & Environmental Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
8
|
Deanna R, Martínez C, Manchester S, Wilf P, Campos A, Knapp S, Chiarini FE, Barboza GE, Bernardello G, Sauquet H, Dean E, Orejuela A, Smith SD. Fossil berries reveal global radiation of the nightshade family by the early Cenozoic. THE NEW PHYTOLOGIST 2023; 238:2685-2697. [PMID: 36960534 DOI: 10.1111/nph.18904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.
Collapse
Affiliation(s)
- Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Córdoba, 5000, Argentina
| | - Camila Martínez
- Biological Science Department, Universidad EAFIT, Carrera 49, Cl. 7 Sur #50, Medellín, 050022, Antioquia, Colombia
- Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Balboa Ancon, Panama City, 0843-03092, Panama
| | - Steven Manchester
- Florida Museum of Natural History, University of Florida, 3215 Hull Rd, Gainesville, FL, 32611, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, State College, 201 Old Main, University Park, PA, 16802, USA
| | - Abel Campos
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Franco E Chiarini
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gabriel Bernardello
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, High St Kensington, Sydney, NSW, 2052, Australia
| | - Ellen Dean
- Center for Plant Diversity, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos - GRAM, Facultad de Ingenierías y Ciencias Básicas, Instituto Tecnológico del Putumayo - ITP, Calle 17, Carrera 17, Mocoa, Putumayo, Colombia
- Subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Calle 63 #68-95, Bogotá, DC, Colombia
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| |
Collapse
|
9
|
López-Antoñanzas R, Mitchell J, Simões TR, Condamine FL, Aguilée R, Peláez-Campomanes P, Renaud S, Rolland J, Donoghue PCJ. Integrative Phylogenetics: Tools for Palaeontologists to Explore the Tree of Life. BIOLOGY 2022; 11:1185. [PMID: 36009812 PMCID: PMC9405010 DOI: 10.3390/biology11081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.
Collapse
Affiliation(s)
- Raquel López-Antoñanzas
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Jonathan Mitchell
- Department of Biology, West Virginia University Institute of Technology, 410 Neville Street, Beckley, WV 25801, USA
| | - Tiago R. Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
| | - Robin Aguilée
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | - Pablo Peláez-Campomanes
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Jonathan Rolland
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | | |
Collapse
|
10
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
11
|
Ledesma DT, Ayala A, Kemp ME. Morphometric analyses of the vertebrae of Ambystoma (Tschudi, 1838) and the implications for identification of fossil salamanders. J Morphol 2022; 283:653-676. [PMID: 35178728 DOI: 10.1002/jmor.21464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/07/2022]
Abstract
Ambystoma (Tschudi, 1838) represents a speciose clade of salamanders that are found across much of North America. Fossils referred to Ambystoma are reported from early Cenozoic deposits and are common in Quaternary fossil deposits. Most fossils identified as Ambystoma are isolated vertebrae. Both quantitative and qualitative characters were reported as being useful for identifying fossilized vertebrae of Ambystoma below the genus level. However, there is limited information on intraspecific variation in those characters and previous studies noted intracolumnar variation which affects the utility of those characters for fossil identification. A lack of understanding of variation in modern species of Ambystoma casts uncertainty on our ability to identify fossil vertebrae confidently. We aimed to document intraspecific and intracolumnar variation in vertebral morphology among species of Ambystoma and examine the implications for fossil identification. We assembled one of the largest skeletal datasets for Ambystoma and took linear measurements on 15 species. We used 2D geometric morphometric analyses to characterize atlantal shape variation in Ambystoma. We apply those morphometric data in a case study where we identify fossil vertebrae from Hall's Cave, a Quaternary fossil locality in central Texas. We found patterns of intraspecific and intracolumnar variation that have substantial implications for fossil identification. Classification accuracies for species and clades within Ambystoma varied considerably. Overall classification accuracies based on size adjusted measurements and 2D geometric morphometric landmarks were lower compared to classifications from non-size adjusted linear measurements and were similar to accuracies based on size adjusted linear measurements. We identified fossil vertebrae from our case study as likely belonging to the tiger salamander clade within Ambystoma, but found that some fossils with lower classification probabilities are of uncertain identity. We discuss biogeographic implications for our fossil identifications and comment on challenges and next steps for advancing our understanding of morphological variation in Ambystoma.
Collapse
Affiliation(s)
- David T Ledesma
- Department of Integrative Biology, The University of Texas at Austin
| | - Alissandra Ayala
- Department of Integrative Biology, The University of Texas at Austin.,Department of Biology, University of Louisville
| | - Melissa E Kemp
- Department of Integrative Biology, The University of Texas at Austin
| |
Collapse
|
12
|
Catalano SA, Segura V, Vera Candioti F. SPASOS 1.1: a program for the inference of ancestral shape ontogenies. Cladistics 2021; 37:630-638. [PMID: 34570938 DOI: 10.1111/cla.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
We recently published a method to infer ancestral landmark-based shape ontogenies that takes into account the possible existence of changes in developmental timing. Here we describe SPASOS, a software to perform that analysis. SPASOS is an open-source Windows program written in C. Input data include landmark coordinates for each specimen -with the corresponding information about developmental timing- and a phylogenetic tree showing the relationships among the species sampled. As output, the program produces image files for an easy visualization of the results and data files useful for post-processing. The program incorporates an interpolating function, based on weighting moving averages, which allows analysis of data with scarce information along the ontogenetic trajectory. An empirical evaluation of this function showed its suitability to fill in incomplete ontogenetic trajectories. Finally, we present the results of a reanalysis in SPASOS of a published dataset, where changes in developmental timing were originally inferred by considering PCA scores as shape variables. Both approaches retrieved the same four largest changes in developmental timing, but differed in the ancestral shapes inferred.
Collapse
Affiliation(s)
- Santiago Andrés Catalano
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo), Miguel Lillo 251, S. M. de Tucumán, 4000, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo (Universidad Nacional de Tucumán), S. M. de Tucumán, 4000, Argentina
| | - Valentina Segura
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo), Miguel Lillo 251, S. M. de Tucumán, 4000, Argentina
| | - Florencia Vera Candioti
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo), Miguel Lillo 251, S. M. de Tucumán, 4000, Argentina
| |
Collapse
|
13
|
Ascarrunz E, Claude J, Joyce WG. The phylogenetic relationships of geoemydid turtles from the Eocene Messel Pit Quarry: a first assessment using methods for continuous and discrete characters. PeerJ 2021; 9:e11805. [PMID: 34430073 PMCID: PMC8349520 DOI: 10.7717/peerj.11805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
The geoemydid turtles of the Eocoene Messel Pit Quarry of Hesse, Germany, are part of a rich Western European fossil record of testudinoids. Originally referred to as "Ocadia" kehreri and "Ocadia" messeliana, their systematic relationships remain unclear. A previous study proposed that a majority of the Western European geoemydids, including the Messel geoemydids, are closely related to the Recent European representatives of the clade Mauremys. Another study hypothesised that the Western European geoemydid fauna is more phylogenetically diverse, and that the Messel geoemydids are closely related to the East Asian turtles Orlitia and Malayemys. Here we present the first quantitative analyses to date that investigate this question. We use continuous characters in the form of ratios to estimate the placement of the Messel geoemydids in a reference tree that was estimated from molecular data. We explore the placement error obtained from that data with maximum likelihood and Bayesian methods, as well as linear parsimony in combination with discrete characters. We find good overall performance with Bayesian and parsimony analyses. Parsimony performs even better when we also incorporated discrete characters. Yet, we cannot pin down the position of the Messel geoemydids with high confidence. Depending on how intraspecific variation of the ratio characters is treated, parsimony favours a placement of the Messel fossils sister to Orlitia borneensis or sister to Geoemyda spengleri, with weak bootstrap support. The latter placement is suspect because G. spengleri is a phylogenetically problematic species with molecular and morphological data. There is even less support for placements within the Mauremys clade.
Collapse
Affiliation(s)
- Eduardo Ascarrunz
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Julien Claude
- Institut des Sciences de l’Évolution de Montpellier, UMR UM/CNRS/IRD/EPHE, Montpellier, France
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Lee MSY, Palci A. Evolution: Morphological saturation and release in mammals. Curr Biol 2021; 31:R838-R840. [PMID: 34256913 DOI: 10.1016/j.cub.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammal evolution in the Mesozoic was thought to be heavily constrained by competition and predation by dinosaurs. A new study suggests that placental mammals remained constrained for several million years after non-avian dinosaurs perished, perhaps due to competition from archaic mammals.
Collapse
Affiliation(s)
- Michael S Y Lee
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
| | - Alessandro Palci
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Irish JD, Grabowski M. Relative tooth size, Bayesian inference, and Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:262-282. [PMID: 34190335 DOI: 10.1002/ajpa.24353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Size-corrected tooth crown measurements were used to estimate phenetic affinities among Homo naledi (~335-236 ka) and 11 other Plio-Pleistocene and recent species. To assess further their efficacy, and identify dental evolutionary trends, the data were then quantitatively coded for phylogenetic analyses. Results from both methods contribute additional characterization of H. naledi relative to other hominins. MATERIALS AND METHODS After division by their geometric mean, scaled mesiodistal and buccolingual dimensions were used in tooth size apportionment analysis to compare H. naledi with Australopithecus africanus, A. afarensis, Paranthropus robustus, P. boisei, H. habilis, H. ergaster, H. erectus, H. heidelbergensis, H. neanderthalensis, H. sapiens, and Pan troglodytes. These data produce equivalently scaled samples unaffected by interspecific size differences. The data were then gap-weighted for Bayesian inference. RESULTS Congruence in interspecific relationships is evident between methods, and with many inferred from earlier systematic studies. However, the present results place H. naledi as a sister taxon to H. habilis, based on a symplesiomorphic pattern of relative tooth size. In the preferred Bayesian phylogram, H. naledi is nested within a clade comprising all Homo species, but it shares some characteristics with australopiths and, particularly, early Homo. DISCUSSION Phylogenetic analyses of relative tooth size yield information about evolutionary dental trends not previously reported in H. naledi and the other hominins. Moreover, with an appropriate model these data recovered plausible evolutionary relationships. Together, the findings support recent study suggesting H. naledi originated long before the geological date of the Dinaledi Chamber, from which the specimens under study were recovered.
Collapse
Affiliation(s)
- Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Bastide P, Ho LST, Baele G, Lemey P, Suchard MA. Efficient Bayesian inference of general Gaussian models on large phylogenetic trees. Ann Appl Stat 2021. [DOI: 10.1214/20-aoas1419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Lam Si Tung Ho
- Department of Mathematics and Statistics, Dalhousie University
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven
| | - Marc A. Suchard
- Departments of Biostatistics, Biomathematics, and Human Genetics, University of California, Los Angeles
| |
Collapse
|
17
|
Porto DS, Almeida EAB, Pennell MW. Investigating Morphological Complexes Using Informational Dissonance and Bayes Factors: A Case Study in Corbiculate Bees. Syst Biol 2021; 70:295-306. [PMID: 32722788 PMCID: PMC7882150 DOI: 10.1093/sysbio/syaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
It is widely recognized that different regions of a genome often have different evolutionary histories and that ignoring this variation when estimating phylogenies can be misleading. However, the extent to which this is also true for morphological data is still largely unknown. Discordance among morphological traits might plausibly arise due to either variable convergent selection pressures or else phenomena such as hemiplasy. Here, we investigate patterns of discordance among 282 morphological characters, which we scored for 50 bee species particularly targeting corbiculate bees, a group that includes the well-known eusocial honeybees and bumblebees. As a starting point for selecting the most meaningful partitions in the data, we grouped characters as morphological modules, highly integrated trait complexes that as a result of developmental constraints or coordinated selection we expect to share an evolutionary history and trajectory. In order to assess conflict and coherence across and within these morphological modules, we used recently developed approaches for computing Bayesian phylogenetic information allied with model comparisons using Bayes factors. We found that despite considerable conflict among morphological complexes, accounting for among-character and among-partition rate variation with individual gamma distributions, rate multipliers, and linked branch lengths can lead to coherent phylogenetic inference using morphological data. We suggest that evaluating information content and dissonance among partitions is a useful step in estimating phylogenies from morphological data, just as it is with molecular data. Furthermore, we argue that adopting emerging approaches for investigating dissonance in genomic datasets may provide new insights into the integration and evolution of anatomical complexes. [Apidae; entropy; morphological modules; phenotypic integration; phylogenetic information.].
Collapse
Affiliation(s)
- Diego S Porto
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 926 West Campus Drive, Blacksburg, VA 24061 USA
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
18
|
Varón-González C, Whelan S, Klingenberg CP. Estimating Phylogenies from Shape and Similar Multidimensional Data: Why It Is Not Reliable. Syst Biol 2021; 69:863-883. [PMID: 31985800 DOI: 10.1093/sysbio/syaa003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, there has been controversy whether multidimensional data such as geometric morphometric data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution in multidimensional phenotype spaces to address this question and to identify specific factors that are important for answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods, squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion, phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions, the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change parsimony; phylogeny; shape; stabilizing selection.].
Collapse
Affiliation(s)
- Ceferino Varón-González
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Whelan
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.,Department of Evolutionary Biology, EBC, Uppsala University, Norbyägen 18D, 75236 Uppsala, Sweden
| | - Christian Peter Klingenberg
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Parins-Fukuchi C. Morphological and phylogeographic evidence for budding speciation: an example in hominins. Biol Lett 2021; 17:20200754. [PMID: 33465331 PMCID: PMC7876604 DOI: 10.1098/rsbl.2020.0754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Parametric phylogenetic approaches that attempt to delineate between distinct 'modes' of speciation (splitting cladogenesis, budding cladogenesis and anagenesis) between fossil taxa have become increasingly popular among comparative biologists. But it is not yet well understood how clearly morphological data from fossil taxa speak to detailed questions of speciation mode when compared with the lineage diversification models that serve as their basis. In addition, the congruence of inferences made using these approaches with geographical patterns has not been explored. Here, I extend a previously introduced maximum-likelihood approach for the examination of ancestor-descendant relationships to accommodate budding speciation and apply it to a dataset of fossil hominins. I place these results in a phylogeographic context to better understand spatial dynamics underlying the hypothesized speciation patterns. The spatial patterns implied by the phylogeny hint at the complex demographic processes underlying the spread and diversification of hominins throughout the Pleistocene. I also find that inferences of budding are driven primarily by stratigraphic, versus morphological, data and discuss the ramifications for interpretations of speciation process in hominins specifically and from phylogenetic data in general.
Collapse
Affiliation(s)
- Caroline Parins-Fukuchi
- Division of the Physical Sciences, Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Fernández-López J, Telleria MT, Dueñas M, Laguna-Castro M, Schliep K, Martín MP. Linking morphological and molecular sources to disentangle the case of Xylodon australis. Sci Rep 2020; 10:22004. [PMID: 33319784 PMCID: PMC7738490 DOI: 10.1038/s41598-020-78399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
The use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.
Collapse
Affiliation(s)
- Javier Fernández-López
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014, Madrid, Spain. .,Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain.
| | - M Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Mara Laguna-Castro
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014, Madrid, Spain.,Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial Esteban Terradas, Torrejón de Ardoz, Spain
| | | | - María P Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
21
|
Keating JN, Sansom RS, Sutton MD, Knight CG, Garwood RJ. Morphological Phylogenetics Evaluated Using Novel Evolutionary Simulations. Syst Biol 2020; 69:897-912. [PMID: 32073641 PMCID: PMC7440746 DOI: 10.1093/sysbio/syaa012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 02/04/2023] Open
Abstract
Evolutionary inferences require reliable phylogenies. Morphological data have traditionally been analyzed using maximum parsimony, but recent simulation studies have suggested that Bayesian analyses yield more accurate trees. This debate is ongoing, in part, because of ambiguity over modes of morphological evolution and a lack of appropriate models. Here, we investigate phylogenetic methods using two novel simulation models-one in which morphological characters evolve stochastically along lineages and another in which individuals undergo selection. Both models generate character data and lineage splitting simultaneously: the resulting trees are an emergent property, rather than a fixed parameter. Standard consensus methods for Bayesian searches (Mki) yield fewer incorrect nodes and quartets than the standard consensus trees recovered using equal weighting and implied weighting parsimony searches. Distances between the pool of derived trees (most parsimonious or posterior distribution) and the true trees-measured using Robinson-Foulds (RF), subtree prune and regraft (SPR), and tree bisection reconnection (TBR) metrics-demonstrate that this is related to the search strategy and consensus method of each technique. The amount and structure of homoplasy in character data differ between models. Morphological coherence, which has previously not been considered in this context, proves to be a more important factor for phylogenetic accuracy than homoplasy. Selection-based models exhibit relatively lower homoplasy, lower morphological coherence, and higher inaccuracy in inferred trees. Selection is a dominant driver of morphological evolution, but we demonstrate that it has a confounding effect on numerous character properties which are fundamental to phylogenetic inference. We suggest that the current debate should move beyond considerations of parsimony versus Bayesian, toward identifying modes of morphological evolution and using these to build models for probabilistic search methods. [Bayesian; evolution; morphology; parsimony; phylogenetics; selection; simulation.].
Collapse
Affiliation(s)
- Joseph N Keating
- Department of Earth and Environmental Sciences, Universityof Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, Universityof Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Mark D Sutton
- Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, Universityof Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, Universityof Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
- Earth Sciences Department, Natural History Museum, Cromwell Rd, South Kensington, London SW7 5BD, UK
| |
Collapse
|
22
|
Barido-Sottani J, van Tiel NMA, Hopkins MJ, Wright DF, Stadler T, Warnock RCM. Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology and Divergence Time Estimates in Time Calibrated Tree Inference. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
23
|
Porto A, Voje KL. ML‐morph: A fast, accurate and general approach for automated detection and landmarking of biological structures in images. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arthur Porto
- Centre for Ecological and Evolutionary Synthesis University of Oslo Oslo Norway
| | - Kjetil L. Voje
- Centre for Ecological and Evolutionary Synthesis University of Oslo Oslo Norway
| |
Collapse
|
24
|
Parins-Fukuchi C. Mosaic evolution, preadaptation, and the evolution of evolvability in apes. Evolution 2020; 74:297-310. [PMID: 31909490 DOI: 10.1111/evo.13923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/27/2019] [Indexed: 01/25/2023]
Abstract
A major goal in postsynthesis evolutionary biology has been to better understand how complex interactions between traits drive movement along and facilitate the formation of distinct evolutionary pathways. I present analyses of a character matrix sampled across the haplorrhine skeleton that revealed several modules of characters displaying distinct patterns in macroevolutionary disparity. Comparison of these patterns to those in neurological development showed that early ape evolution was characterized by an intense regime of evolutionary and developmental flexibility. Shifting and reduced constraint in apes was met with episodic bursts in phenotypic innovation that built a wide array of functional diversity over a foundation of shared developmental and anatomical structure. Shifts in modularity drove dramatic evolutionary changes across the ape body plan in two distinct ways: (1) an episode of relaxed integration early in hominoid evolution coincided with bursts in evolutionary rate across multiple character suites; (2) the formation of two new trait modules along the branch leading to chimps and humans preceded rapid and dramatic evolutionary shifts in the carpus and pelvis. Changes to the structure of evolutionary mosaicism may correspond to enhanced evolvability that has a "preadaptive" effect by catalyzing later episodes of dramatic morphological remodeling.
Collapse
|
25
|
Abstract
Evolutionary biologists have long sought to understand the full complexity in pattern and process that shapes organismal diversity. Although phylogenetic comparative methods are often used to reconstruct complex evolutionary dynamics, they are typically limited to a single phenotypic trait. Extensions that accommodate multiple traits lack the ability to partition multidimensional data sets into a set of mosaic suites of evolutionarily linked characters. I introduce a comparative framework that identifies heterogeneity in evolutionary patterns across large data sets of continuous traits. Using a model of continuous trait evolution based on the differential accumulation of disparity across lineages in a phylogeny, the approach algorithmically partitions traits into a set of character suites that best explains the data, where each suite displays a distinct pattern in phylogenetic morphological disparity. When applied to empirical data, the approach revealed a mosaic pattern predicted by developmental biology. The evolutionary distinctiveness of individual suites can be investigated in more detail either by fitting conventional comparative models or by directly studying the phylogenetic patterns in disparity recovered during the analysis. This framework can supplement existing comparative approaches by inferring the complex, integrated patterns that shape evolution across the body plan from disparate developmental, morphometric, and environmental sources of phenotypic data.
Collapse
|
26
|
Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol 2019; 17:e3000494. [PMID: 31800571 PMCID: PMC6892540 DOI: 10.1371/journal.pbio.3000494] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Big, time-scaled phylogenies are fundamental to connecting evolutionary processes to modern biodiversity patterns. Yet inferring reliable phylogenetic trees for thousands of species involves numerous trade-offs that have limited their utility to comparative biologists. To establish a robust evolutionary timescale for all approximately 6,000 living species of mammals, we developed credible sets of trees that capture root-to-tip uncertainty in topology and divergence times. Our "backbone-and-patch" approach to tree building applies a newly assembled 31-gene supermatrix to two levels of Bayesian inference: (1) backbone relationships and ages among major lineages, using fossil node or tip dating, and (2) species-level "patch" phylogenies with nonoverlapping in-groups that each correspond to one representative lineage in the backbone. Species unsampled for DNA are either excluded ("DNA-only" trees) or imputed within taxonomic constraints using branch lengths drawn from local birth-death models ("completed" trees). Joining time-scaled patches to backbones results in species-level trees of extant Mammalia with all branches estimated under the same modeling framework, thereby facilitating rate comparisons among lineages as disparate as marsupials and placentals. We compare our phylogenetic trees to previous estimates of mammal-wide phylogeny and divergence times, finding that (1) node ages are broadly concordant among studies, and (2) recent (tip-level) rates of speciation are estimated more accurately in our study than in previous "supertree" approaches, in which unresolved nodes led to branch-length artifacts. Credible sets of mammalian phylogenetic history are now available for download at http://vertlife.org/phylosubsets, enabling investigations of long-standing questions in comparative biology.
Collapse
Affiliation(s)
- Nathan S. Upham
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity & Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Jacob A. Esselstyn
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity & Global Change, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Ascarrunz E, Claude J, Joyce WG. Estimating the phylogeny of geoemydid turtles (Cryptodira) from landmark data: an assessment of different methods. PeerJ 2019; 7:e7476. [PMID: 31497387 PMCID: PMC6708579 DOI: 10.7717/peerj.7476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last 20 years, a general picture of the evolutionary relationships between geoemydid turtles (ca. 70 species distributed over the Northern hemisphere) has emerged from the analysis of molecular data. However, there is a paucity of good traditional morphological characters that correlate with the phylogeny, which are essential for the robust integration of fossil and molecular data. Part of this problem might be due to intrinsic limitations of traditional discrete characters. Here, we explore the use of continuous data in the form of 3D coordinates of homologous landmarks on the turtle shell for phylogenetic inference and the phylogenetic placement of single species on a scaffold molecular tree. We focus on the performance yielded by sampling the carapace and/or plastral lobes and using various phylogenetic methods. METHODS We digitised the landmark coordinates of the carapace and plastron of 42 and 46 extant geoemydid species, respectively. The configurations were superimposed and we estimated the phylogenetic tree of geoemydids with landmark analysis under parsimony, traditional Farris parsimony, unweighted squared-change parsimony, maximum likelihood with a Brownian motion model, and neighbour-joining on a matrix of pairwise Procrustes distances. We assessed the performance of those analyses by comparing the trees against a reference phylogeny obtained from seven molecular markers. For comparisons between trees we used difference measures based on quartets and splits. We used the same reference tree to evaluate phylogenetic placement performance by a leave-one-out validation procedure. RESULTS Whatever method we used, similarity to the reference phylogeny was low. The carapace alone gave slightly better results than the plastron or the complete shell. Assessment of the potential for placement of single species on the reference tree with landmark data gave much better results, with similar accuracy and higher precision compared to the performance of discrete characters with parsimony.
Collapse
Affiliation(s)
- Eduardo Ascarrunz
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Julien Claude
- Institut des Sciences de l’Évolution de Montpellier, UMR UM/CNRS/IRD/EPHE, Montpellier, France
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
28
|
Wright AM. A Systematist's Guide to Estimating Bayesian Phylogenies From Morphological Data. INSECT SYSTEMATICS AND DIVERSITY 2019; 3:2. [PMID: 31355348 PMCID: PMC6643758 DOI: 10.1093/isd/ixz006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 05/07/2023]
Abstract
Phylogenetic trees are crucial to many aspects of taxonomic and comparative biology. Many researchers have adopted Bayesian methods to estimate their phylogenetic trees. In this family of methods, a model of morphological evolution is assumed to have generated the data observed by the researcher. These models make a variety of assumptions about the evolution of morphological characters, and these assumptions are translated into mathematics as parameters. The incorporation of prior distributions further allows researchers to quantify their prior beliefs about the value any one parameter can take. How to translate biological knowledge into mathematical language is difficult, and can be confusing to many biologists. This review aims to help systematics researchers understand the biological meaning of common models and assumptions. Using examples from the insect fossil record, I will demonstrate empirically what assumptions mean in concrete terms, and discuss how researchers can use and understand Bayesian methods for phylogenetic estimation.
Collapse
Affiliation(s)
- April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA
| |
Collapse
|
29
|
Álvarez-Carretero S, Goswami A, Yang Z, Dos Reis M. Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters. Syst Biol 2019; 68:967-986. [DOI: 10.1093/sysbio/syz015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence times using quantitative characters. Quantitative character evolution is modeled using Brownian diffusion with character correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population variation (or population “noise”) and the correlation among characters leads to biased estimates of divergence times and rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates are also affected by the type of data analyzed, with analyses of morphological characters only, molecular data only, or a combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new model is implemented in the MCMCtree computer program for Bayesian inference of divergence times.
Collapse
Affiliation(s)
- Sandra Álvarez-Carretero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anjali Goswami
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5DB, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
30
|
Jones AS, Butler RJ. A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding. PeerJ 2018; 6:e5901. [PMID: 30581656 PMCID: PMC6292387 DOI: 10.7717/peerj.5901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
Phytosauria is a clade of large, carnivorous, semi-aquatic archosauromorphs which reached its peak diversity and an almost global distribution in the Late Triassic (c. 230-201 Mya). Previous phylogenetic analyses of Phytosauria have either focused primarily on the relationships of specific subclades, or were limited in taxonomic scope, and no taxonomically comprehensive dataset is currently available. We here present the most taxonomically comprehensive cladistic dataset of phytosaurs to date, based on extensive first-hand study, identification of novel characters and synthesis of previous matrices. This results in an almost twofold increase in phylogenetic information scored per taxon over previous analyses. Alongside a traditional discrete character matrix, three variant matrices were analysed in which selected characters were coded using continuous and landmarking methods, to more rigorously explore phytosaur relationships. Based on these four data matrices, four tree topologies were recovered. Relationships among non-leptosuchomorph phytosaurs are largely consistent between these four topologies, whereas those of more derived taxa are more variable. Rutiodon carolinensis consistently forms a sister relationship with Angistorhinus. In three topologies Nicrosaurus nests deeply within a group of traditionally non-Mystriosuchini taxa, leading us to redefine Mystriosuchini by excluding Nicrosaurus as an internal specifier. Two distinct patterns of relationships within Mystriosuchini are present in the four topologies, distinguished largely by the variable position of Mystriosuchus. In two topologies Mystriosuchus forms the most basal clade in Mystriosuchini, whilst in the others it occupies a highly derived position within the Machaeroprosopus clade. 'Redondasaurus' is consistently recovered as monophyletic; however, it also nests within the Machaeroprosopus clade. The greatest impact on tree topology was associated with the incorporation of continuous data into our matrices, with landmark characters exerting a relatively modest influence. All topologies correlated significantly with stratigraphic range estimates. Topological variability in our results highlights clades in which further investigation may better elucidate phytosaur relationships.
Collapse
Affiliation(s)
- Andrew S. Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|