1
|
Wolff JO. Spider silk tensile performance does not correlate with web use. Evolution 2024; 78:2032-2038. [PMID: 39276078 DOI: 10.1093/evolut/qpae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Spider silk is amongst the toughest materials produced by living systems, but its tensile performance varies considerably between species. Despite the extensive sampling of the material properties and composition of dragline silk, the understanding of why some silks performs better than others is still limited. Here, I adopted a phylogenetic comparative approach to reanalyze structural and mechanical data from the Silkome database and the literature across 164 species to (a) provide an extended model of silk property evolution, (b) test for correlations between structural and mechanical properties, and (c) to test if silk tensile performance differs between web-building and nonweb-building species. Unlike the common notion that orb-weavers have evolved the best-performing silks, outstanding tensile properties were found both in and outside the araneoid clade. Phylogenetic linear models indicated that the mechanical and structural properties of spider draglines poorly correlate, but silk strength and toughness correlated better with birefringence (an indicator of the material anisotropy) than crystallinity. Furthermore, in contrast to previous ideas, silk tensile performance did not differ between ecological guilds. These findings indicate multiple unknown pathways toward the evolution of spider silk tensile super-performance, calling for better integration of nonorb-weaving spiders in spider silk studies.
Collapse
Affiliation(s)
- Jonas O Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Chong KL, Grahn A, Perl CD, Sumner-Rooney L. Allometry and ecology shape eye size evolution in spiders. Curr Biol 2024; 34:3178-3188.e5. [PMID: 38959880 DOI: 10.1016/j.cub.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals. Spiders have up to four pairs of eyes whose sizes vary dramatically, but their ontogenetic, static, and evolutionary allometry has not yet been studied in a comparative context. We report variable dynamics in eye size across 1,098 individuals in 39 species and 8 families, indicating selective pressures and constraints driving the evolution of different eye pairs and lineages. Supplementing our sampling with a recently published phylogenetically comprehensive dataset, we confirmed these findings across more than 400 species; found that ecological factors such as visual hunting, web building, and circadian activity correlate with eye diameter; and identified significant allometric shifts across spider phylogeny using an unbiased approach, many of which coincide with visual hunting strategies. The modular nature of the spider visual system provides additional degrees of freedom and is apparent in the strong correlations between maximum/minimum investment and interocular variance and three key ecological factors. Our analyses suggest an antagonistic relationship between the anterior and posterior eye pairs. These findings shed light on the relationship between spider visual systems and their diverse ecologies and how spiders exploit their modular visual systems to balance selective pressures and optical and energetic constraints.
Collapse
Affiliation(s)
- Kaylin L Chong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| | - Angelique Grahn
- Institut für Biologie, Humboldt Universität, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Craig D Perl
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| |
Collapse
|
3
|
Wolff JO, Ashley LJ, Schmitt C, Heu C, Denkova D, Jani M, Řezáčová V, Blamires SJ, Gorb SN, Garb J, Goodacre SL, Řezáč M. From fibres to adhesives: evolution of spider capture threads from web anchors by radical changes in silk gland function. J R Soc Interface 2024; 21:20240123. [PMID: 39081115 PMCID: PMC11289648 DOI: 10.1098/rsif.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, Pholcus phalangioides. Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.
Collapse
Affiliation(s)
- Jonas O. Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Leah J. Ashley
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Clemens Schmitt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Potsdam 14476, Germany
| | - Celine Heu
- Katharina Gaus Light Microscopy Facility (KGLMF), Mark Wainwright Analytical Centre, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Denitza Denkova
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Maitry Jani
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany
| | - Veronika Řezáčová
- Functional Biodiversity Team, Crop Research Institute, Drnovská 507, CZ-16106 Prague 6 – Ruzyně, Czechia
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, School of Biology, Earth and Environmental Sciences, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9 Kiel, 24098, Germany
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sara L. Goodacre
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Milan Řezáč
- Functional Biodiversity Team, Crop Research Institute, Drnovská 507, CZ-16106 Prague 6 – Ruzyně, Czechia
| |
Collapse
|
4
|
Kreuz J, Michalik P, Wolff JO. Comparative anatomy of the spinneret musculature in cribellate and ecribellate spiders (Araneae). J Morphol 2024; 285:e21670. [PMID: 38361256 DOI: 10.1002/jmor.21670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
Silk production is a prominent characteristic of spiders. The silk is extruded through spigots located on the spinnerets, which are single- to multimembered paired appendages at the end of the abdomen. Most extant spiders have three pairs of spinnerets, and in between either a cribellum (spinning plate) or a colulus (defunct vestigial organ), dividing these spiders into cribellate and ecribellate species. Previous research has shown that cribellate and ecribellate spiders differ not only in the composition of their spinning apparatus but also in the movements of their spinnerets during silk spinning. The objective of this study was to determine whether the differences in spinneret movements are solely due to variations in spinneret shape or whether they are based on differences in muscular anatomy. This was accomplished by analyzing microcomputed tomography scans of the posterior abdomen of each three cribellate and ecribellate species. It was found that the number of muscles did not generally differ between cribellate and ecribellate species, but varied considerably between the species within each of these two groups. Muscle thickness, particularly of the posterior median spinneret, varied slightly between groups, with cribellate spiders exhibiting more robust muscles, possibly to aid in the combing process during cribellar thread production. Interestingly, the vestigial colulus still possesses muscles, that can be homologized with those of the cribellum. This exploration into spinneret anatomy using microcomputed tomography data reveals that despite being small appendages, the spider spinnerets are equipped with a complex musculature that enables them to perform fine-scaled maneuvers to construct different fiber-based materials.
Collapse
Affiliation(s)
- Josefine Kreuz
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Peter Michalik
- Zoological Museum, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Jonas O Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Schaber CF, Grawe I, Gorb SN. Attachment discs of the diving bell spider Argyroneta aquatica. Commun Biol 2023; 6:1232. [PMID: 38057422 PMCID: PMC10700320 DOI: 10.1038/s42003-023-05575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
To adhere their silk threads for the construction of webs and to fix the dragline, spiders produce attachment discs of piriform silk. Uniquely, the aquatic spider Argyroneta aquatica spends its entire life cycle underwater. Therefore, it has to glue its attachment discs to substrates underwater. Here we show that Argyroneta aquatica applies its thread anchors within an air layer around the spinnerets maintained by superhydrophobic setae. During spinning, symmetric movements of the spinnerets ensure retaining air in the contact area. The flat structure of the attachment discs is thought to facilitate fast curing of the piriform adhesive cement and improves the resistance against drag forces. Pull-off tests on draglines connected with attachment discs on different hydrophilic substrates point to dragline rupture as the failure mode. The Young´s modulus of the dragline (8.3 GPa) is within the range as in terrestrial spiders. The shown structural and behavioral adaptations can be the model for new artificial underwater gluing devices.
Collapse
Affiliation(s)
- Clemens F Schaber
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Ingo Grawe
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
6
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Wilson JD, Bond JE, Harvey MS, Ramírez MJ, Rix MG. Correlation with a limited set of behavioral niches explains the convergence of somatic morphology in mygalomorph spiders. Ecol Evol 2023; 13:e9706. [PMID: 36636427 PMCID: PMC9830016 DOI: 10.1002/ece3.9706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
Collapse
Affiliation(s)
- Jeremy D. Wilson
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| | - Jason E. Bond
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mark S. Harvey
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Martín J. Ramírez
- Museo Argentino de Ciencias NaturalesConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Michael G. Rix
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| |
Collapse
|
8
|
Eberhard WG. Biological challenges to conclusions from molecular phylogenies: behaviour strongly favours orb web monophyly, contradicting molecular analyses. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
This first-ever extensive review of the construction behaviour of orb webs, of webs secondarily derived from orbs, and of non-orbs shows that the evidence favouring monophyly over convergent evolution of orbs is stronger than previously appreciated. The two major orb-weaving groups, Uloboridae and Araneoidea, share 31 construction behaviour traits, 20 of which are likely to be both derived and to have feasible alternatives, making convergence an unlikely explanation. Convergence in two lineages seems unlikely, and convergence in five different lineages, as proposed in some recent molecular studies of phylogeny, is even less credible. A further set of seven shared responses in orb design to experimentally constrained spaces also supports orb monophyly. Finally, a ‘control’ case of confirmed convergence on similar ‘pseudo-orbs’ in a taxonomically distant group also supports this argument, as it shows a low frequency of behavioural similarities. I argue that the omission of behavioural data from recent molecular studies of orb web evolution represents a failure of the analytic techniques, not the data, and increases the risk of making mistakes. In general, phylogenetic studies that aim to understand the evolution of particular phenotypes can benefit from including careful study of the phenotypes themselves.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute , Ancon, Ciudad de Panama , Panama
- Universidad de Costa Rica , Ciudad Universitaria , Costa Rica
- Museum of Natural Science, Louisiana State University , Baton Rouge, LA 70808
| |
Collapse
|
9
|
OUP accepted manuscript. Syst Biol 2022; 71:1487-1503. [DOI: 10.1093/sysbio/syac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
|
10
|
Wolff JO, Liprandi D, Bosia F, Joel AC, Pugno NM. Robust substrate anchorages of silk lines with extensible nano-fibres. SOFT MATTER 2021; 17:7903-7913. [PMID: 34369547 DOI: 10.1039/d1sm00552a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Living systems are built of multiscale-composites: materials formed of components with different properties that are assembled in complex micro- and nano-structures. Such biological multiscale-composites often show outstanding physical properties that are unachieved by artificial materials. A major scientific goal is thus to understand the assembly processes and the relationship between structure and function in order to reproduce them in a new generation of biomimetic high-performance materials. Here, we tested how the assembly of spider silk nano-fibres (i.e. glue coated 0.5 μm thick fibres produced by so-called piriform glands) into different micro-structures correlates with mechanical performance by empirically and numerically exploring the mechanical behaviour of line anchors in an orb weaver, a hunting spider and two ancient web builders. We demonstrate that the anchors of orb weavers exhibit outstanding mechanical robustness with minimal material use by the indirect attachment of the silk line to the substrate through a soft domain ('bridge'). This principle can be used to design new artificial high-performance attachment systems.
Collapse
Affiliation(s)
- Jonas O Wolff
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
11
|
Kallal RJ, Kulkarni SS, Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Hormiga G. Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. Cladistics 2021; 37:298-316. [PMID: 34478199 DOI: 10.1111/cla.12439] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
High throughput sequencing and phylogenomic analyses focusing on relationships among spiders have both reinforced and upturned long-standing hypotheses. Likewise, the evolution of spider webs-perhaps their most emblematic attribute-is being understood in new ways. With a matrix including 272 spider species and close arachnid relatives, we analyze and evaluate the relationships among these lineages using a variety of orthology assessment methods, occupancy thresholds, tree inference methods and support metrics. Our analyses include families not previously sampled in transcriptomic analyses, such as Symphytognathidae, the only araneoid family absent in such prior works. We find support for the major established spider lineages, including Mygalomorphae, Araneomorphae, Synspermiata, Palpimanoidea, Araneoidea and the Retrolateral Tibial Apophysis Clade, as well as the uloborids, deinopids, oecobiids and hersiliids Grade. Resulting trees are evaluated using bootstrapping, Shimodaira-Hasegawa approximate likelihood ratio test, local posterior probabilities and concordance factors. Using structured Markov models to assess the evolution of spider webs while accounting for hierarchically nested traits, we find multiple convergent occurrences of the orb web across the spider tree-of-life. Overall, we provide the most comprehensive spider tree-of-life to date using transcriptomic data and use new methods to explore controversial issues of web evolution, including the origins and multiple losses of the orb web.
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Siddharth S Kulkarni
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, Bergen, 5020, Norway
| | - Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Miquel A Arnedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
| |
Collapse
|
12
|
Wolff JO, Michalik P, Ravelo AM, Herberstein ME, Ramírez MJ. Evolution of silk anchor structure as the joint effect of spinning behavior and spinneret morphology. Integr Comp Biol 2021; 61:1411-1431. [PMID: 33616646 DOI: 10.1093/icb/icab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved. Here, we comparatively studied the micro-structure of silk anchors across the spider tree of life, and set it in relation to spinneret morphology, spinning behavior and the ecology of the spider. We identified a number of apomorphies in the structure of silk anchors that may positively affect anchor function: 1. bundled dragline, 2. dragline envelope, and 3. dragline suspension ('bridge'). All these characters were apomorphic and evolved repeatedly in multiple lineages, supporting the notion that they are adaptive. The occurrence of these structural features can be explained with changes in the shape and mobility of the spinneret tip, the spinning behavior or both. Spinneret shapes generally varied less than their fine-tuned movements, indicating that changes in construction behavior play a more important role in the evolution of silk anchor assembly. However, the morphology of the spinning apparatus is also a major constraint to the evolution of the spinning choreography. These results highlight changes in behavior as the proximate and in morphology as the ultimate causes of extended phenotype evolution. Further, this research provides a roadmap for future bioprospecting research to design high-performance instant line anchors.
Collapse
Affiliation(s)
- Jonas O Wolff
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter Michalik
- Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, Loitzer Str. 26, Greifswald, 17489, Germany
| | - Alexandra M Ravelo
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| | | | - Martín J Ramírez
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| |
Collapse
|
13
|
Cribellate thread production as model for spider's spinneret kinematics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:127-139. [PMID: 33483834 PMCID: PMC8046689 DOI: 10.1007/s00359-020-01460-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022]
Abstract
Spider silk attracts researchers from the most diverse fields, such as material science or medicine. However, still little is known about silk aside from its molecular structure and material strength. Spiders produce many different silks and even join several silk types to one functional unit. In cribellate spiders, a complex multi-fibre system with up to six different silks affects the adherence to the prey. The assembly of these cribellate capture threads influences the mechanical properties as each fibre type absorbs forces specifically. For the interplay of fibres, spinnerets have to move spatially and come into contact with each other at specific points in time. However, spinneret kinematics are not well described though highly sophisticated movements are performed which are in no way inferior to the movements of other flexible appendages. We describe here the kinematics for the spinnerets involved in the cribellate spinning process of the grey house spider, Badumna longinqua, as an example of spinneret kinematics in general. With this information, we set a basis for understanding spinneret kinematics in other spinning processes of spiders and additionally provide inspiration for biomimetic multiple fibre spinning.
Collapse
|
14
|
Abstract
Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, 5020 Bergen, Norway;
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
15
|
Evolutionary kinematics of spinneret movements for rapid silk thread anchorage in spiders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:141-152. [PMID: 33226486 DOI: 10.1007/s00359-020-01453-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 10/22/2022]
Abstract
Many organisms secrete structural materials from their bodies to enhance protection, foraging or signalling. The function of such secretion products can be further extended by their assembly into complex structures, so-called extended phenotypes, such as shells, nests and biofilms. Understanding the variation in the efficacy of such assembly processes could help to explain why extended phenotypes are common on some lineages and rare in others. Here, I comparatively studied the assembly of sticky silk fibres into thread anchorages by the innate 'printing' behaviour in 92 species of spiders from 45 families, representing the so-far largest comparative study of construction-related motion patterns. I found a global evolutionary trend towards a faster production of silk thread anchorages, in both web builders and hunting spiders. The slowest producers of silk anchors belong to a clade with an ancestral configuration of respiratory organs, suggesting that a major constraint to the evolution of spinning speed is the efficiency of oxygen uptake. Motion patterns were found to contain a high phylogenetic signal, but did not correlate with spinning speeds. These results help to explain the variation in diversity and ecological success among the spider fauna and showcase the value of comparative kinematics in biodiversity studies.
Collapse
|
16
|
Limits of piriform silk adhesion—similar effects of substrate surface polarity on silk anchor performance in two spider species with disparate microhabitat use. Naturwissenschaften 2020; 107:31. [DOI: 10.1007/s00114-020-01687-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
|
17
|
Ramírez MJ, Magalhaes ILF, Derkarabetian S, Ledford J, Griswold CE, Wood HM, Hedin M. Sequence Capture Phylogenomics of True Spiders Reveals Convergent Evolution of Respiratory Systems. Syst Biol 2020; 70:14-20. [PMID: 32497195 DOI: 10.1093/sysbio/syaa043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning organs and aerial webs originating with the evolution of the megadiverse "true spiders" (Araneomorphae). The base of the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider web evolution; ultraconserved elements.].
Collapse
Affiliation(s)
- Martín J Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Buenos Aires, Argentina
| | - Ivan L F Magalhaes
- Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Buenos Aires, Argentina
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joel Ledford
- Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Charles E Griswold
- Entomology, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Hannah M Wood
- National Museum of Natural History, Smithsonian Institution, Washington DC 20560-0188, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
18
|
The Evolution of Dragline Initiation in Spiders: Multiple Transitions from Multi- to Single-Gland Usage. DIVERSITY-BASEL 2019. [DOI: 10.3390/d12010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the recognition of spider silk as a biological super-material and its dominant role in various aspects of a spider’s life, knowledge on silk use and silk properties is incomplete. This is a major impediment for the general understanding of spider ecology, spider silk evolution and biomaterial prospecting. In particular, the biological role of different types of silk glands is largely unexplored. Here, I report the results from a comparative study of spinneret usage during silk anchor and dragline spinning. I found that the use of both anterior lateral spinnerets (ALS) and posterior median spinnerets (PMS) is the plesiomorphic state of silk anchor and dragline spinning in the Araneomorphae, with transitions to ALS-only use in the Araneoidea and some smaller lineages scattered across the spider tree of life. Opposing the reduction to using a single spinneret pair, few taxa have switched to using all ALS, PMS and the posterior lateral spinnerets (PLS) for silk anchor and dragline formation. Silk fibres from the used spinnerets (major ampullate, minor ampullate and aciniform silk) were generally bundled in draglines after the completion of silk anchor spinning. Araneoid spiders were highly distinct from most other spiders in their draglines, being composed of major ampullate silk only. This indicates that major ampullate silk properties reported from comparative measurements of draglines should be handled with care. These observations call for a closer investigation of the function of different silk glands in spiders.
Collapse
|
19
|
Brely L, Bosia F, Palumbo S, Fraldi M, Dhinojwala A, Pugno NM. Competition between delamination and tearing in multiple peeling problems. J R Soc Interface 2019; 16:20190388. [PMID: 31771420 DOI: 10.1098/rsif.2019.0388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adhesive attachment systems consisting of multiple tapes or strands are commonly found in nature, for example in spider web anchorages or in mussel byssal threads, and their structure has been found to be ingeniously architected in order to optimize mechanical properties: in particular, to maximize dissipated energy before full detachment. These properties emerge from the complex interplay between mechanical and geometric parameters, including tape stiffness, adhesive energy, attached and detached lengths and peeling angles, which determine the occurrence of three main mechanisms: elastic deformation, interface delamination and tape fracture. In this paper, we introduce a formalism to evaluate the mechanical performance of multiple tape attachments in different parameter ranges, where an optimal (not maximal) adhesion energy emerges. We also introduce a numerical model to simulate the multiple peeling behaviour of complex structures, illustrating its predictions in the case of the staple-pin architecture. Finally, we present a proof-of-principle experiment to illustrate the predicted behaviour. We expect the presented formalism and the numerical model to provide important tools for the design of bioinspired adhesive systems with tuneable or optimized detachment properties.
Collapse
Affiliation(s)
- Lucas Brely
- Department of Physics and 'Nanostructured Interfaces and Surfaces' Inter-Departmental Centre, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Federico Bosia
- Department of Physics and 'Nanostructured Interfaces and Surfaces' Inter-Departmental Centre, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Stefania Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Naples, Italy
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Naples, Italy
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA
| | - Nicola M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, Università di Trento, via Mesiano, 77, I-38123 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Fondazione E. Amaldi, Ket Lab, Via del Politecnico snc, 00133 Rome, Italy
| |
Collapse
|