1
|
Rönkä K, Eroukhmanoff F, Kulmuni J, Nouhaud P, Thorogood R. Beyond genes-for-behaviour: The potential for genomics to resolve long-standing questions in avian brood parasitism. Ecol Evol 2024; 14:e70335. [PMID: 39575141 PMCID: PMC11581780 DOI: 10.1002/ece3.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 11/24/2024] Open
Abstract
Behavioural ecology by definition of its founding 'Tinbergian framework' is an integrative field, however, it lags behind in incorporating genomic methods. 'Finding the gene/s for a behaviour' is still rarely feasible or cost-effective in the wild but as we show here, genomic data can be used to address broader questions. Here we use avian brood parasitism, a model system in behavioural ecology as a case study to highlight how behavioural ecologists could use the full potential of state-of-the-art genomic tools. Brood parasite-host interactions are one of the most easily observable and amenable natural laboratories of antagonistic coevolution, and as such have intrigued evolutionary biologists for decades. Using worked examples, we demonstrate how genomic data can be used to study the causes and mechanisms of (co)evolutionary adaptation and answer three key questions for the field: (i) Where and when should brood parasitism evolve?, (ii) When and how should hosts defend?, and (iii) Will coevolution persist with ecological change? In doing so, we discuss how behavioural and molecular ecologists can collaborate to integrate Tinbergen's questions and achieve the coherent science that he promoted to solve the mysteries of nature.
Collapse
Affiliation(s)
- Katja Rönkä
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of BiologyUniversity of OsloOsloNorway
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Evolution and Population Biology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pierre Nouhaud
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgroUniv MontpellierMontpellierFrance
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Bonzi LC, Donelson JM, Spinks RK, Munday PL, Ravasi T, Schunter C. Matching maternal and paternal experiences underpin molecular thermal acclimation. Mol Ecol 2024:e17328. [PMID: 38520127 DOI: 10.1111/mec.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
The environment experienced by one generation has the potential to affect the subsequent one through non-genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle the maternal and paternal contributions to transgenerational thermal acclimation in a reef fish, Acanthochromis polyacanthus, by exposing two generations to elevated temperature (+1.5°C) in a fully factorial design and analysing the F2 hepatic gene expression. Paternal and maternal effects showed not only common but also parent-specific components, with the father having the largest influence in shaping the offspring's transcriptomic profile. Fathers contributed to transcriptional transgenerational response to warming through transfer of epigenetically controlled stress-response mechanisms while mothers influenced increased gene expression associated with lipid metabolism regulation. However, the key to acclimation potential was matching thermal experiences of the parents. When both parents were exposed to the same condition, offspring showed increased expression of genes related to structural RNA production and transcriptional regulation, whereas environmental mismatch in parents resulted in maladaptive parental condition transfer, revealed by translation suppression and endoplasmic reticulum stress. Interestingly, the offspring's own environmental experience had the smallest influence on their hepatic transcription profiles. Taken together, our results show the complex nature of the interplay among paternal, maternal and offspring cue integration, and reveal that acclimation potential to ocean warming might depend not only on maternal and paternal contributions but importantly on congruent parental thermal experiences.
Collapse
Affiliation(s)
- L C Bonzi
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - J M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - R K Spinks
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Blue Carbon Section, Australian Government Department of Climate Change, Energy, the Environment and Water, Canberra, Australian Capital Territory, Australia
| | - P L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - T Ravasi
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
3
|
Hellmann JK, Keagy J, Carlson ER, Kempfer S, Bell AM. Predator-induced transgenerational plasticity of parental care behaviour in male three-spined stickleback fish across two generations. Proc Biol Sci 2024; 291:20232582. [PMID: 38196352 PMCID: PMC10777160 DOI: 10.1098/rspb.2023.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
Parental care is a critical determinant of offspring fitness, and parents adjust their care in response to ecological challenges, including predation risk. The experiences of both mothers and fathers can influence phenotypes of future generations (transgenerational plasticity). If it is adaptive for parents to alter parental care in response to predation risk, then we expect F1 and F2 offspring who receive transgenerational cues of predation risk to shift their parental care behaviour if these ancestral cues reliably predict a similarly risky environment as their F0 parents. Here, we used three-spined sticklebacks (Gasterosteus aculeatus) to understand how paternal exposure to predation risk prior to mating alters reproductive traits and parental care behaviour in unexposed F1 sons and F2 grandsons. Sons of predator-exposed fathers took more attempts to mate than sons of control fathers. F1 sons and F2 grandsons with two (maternal and paternal) predator-exposed grandfathers shifted their paternal care (fanning) behaviour in strikingly similar ways: they fanned less initially, but fanned more near egg hatching. This shift in fanning behaviour matches shifts observed in response to direct exposure to predation risk, suggesting a highly conserved response to pre-fertilization predator exposure that persists from the F0 to the F1 and F2 generations.
Collapse
Affiliation(s)
- Jennifer K. Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Keagy
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Erika R. Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shayne Kempfer
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Levell ST, Bedgood SA, Travis J. Plastic maternal effects of social density on reproduction and fitness in the least killifish, Heterandria formosa. Ecol Evol 2023; 13:e10074. [PMID: 37214609 PMCID: PMC10196423 DOI: 10.1002/ece3.10074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental parental effects, also known as transgenerational plasticity, are widespread in plants and animals. Less well known is whether those effects contribute to maternal fitness in the same manner in different populations. We carried out a multigenerational laboratory experiment with females drawn from two populations of the least killifish, Heterandria formosa, to assess transgenerational plasticity in reproductive traits in response to differences in social density and its effects on maternal fitness. In the first and second generations, increased density decreased reproductive rate and increased offspring size in females from both populations. There were complicated patterns of transgenerational plasticity on maternal fitness that differed between females from different populations. Females from a population with historically low densities whose mothers experienced lower density had higher fitness than females whose mothers experienced higher density, regardless of their own density. The opposite pattern emerged in females from the population with historically high densities: Females whose mothers experienced higher density had higher fitness than females whose mothers experienced lower density. This transgenerational plasticity is not anticipatory but might be considered adaptive in both populations if providing those "silver spoons" enhances offspring fitness in all environments.
Collapse
Affiliation(s)
| | - Samuel A. Bedgood
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
5
|
Maternal effects, paternal effects, and their interactions in the freshwater snail Physa acuta. Oecologia 2023; 201:409-419. [PMID: 36682011 DOI: 10.1007/s00442-022-05311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/29/2022] [Indexed: 01/23/2023]
Abstract
Individuals exposed to predation risk can produce offspring with altered phenotypes. Most work on predation-induced parental effects has focused on maternal effects or on generalized parental effects where both parents are exposed to risk. We conducted an experiment to measure and compare maternal and paternal effects on offspring phenotypes and test for interactions in those effects. We exposed 82 snails from 22 lines to control or predator cues and created line dyads with the four possible mating pairings of control and predator cue exposed individuals. We measured the resulting body masses, shell masses, shell shapes, and anti-predator behaviors of the offspring. We found some evidence that offspring were larger and heavier when the mother was exposed to predation cues, but that this effect was negated when the father was also exposed. The mass of offspring shells relative to their total mass was unaffected by parental treatments. Shell shape was marginally affected by maternal treatment, but not paternal treatment. Behavioral responses to cues were not affected by maternal or paternal treatments. Our results suggest potential conflict between male and female parental effects and highlight the importance of examining the interactions of maternal and paternal effects.
Collapse
|
6
|
Green MR, Swaney WT. Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022. [DOI: 10.1002/jez.b.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Michael R. Green
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- Chester Medical School University of Chester Chester UK
| | - William T. Swaney
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| |
Collapse
|
7
|
O’Fallon S, Lowell ESH, Daniels D, Pinter-Wollman N. OUP accepted manuscript. Behav Ecol 2022; 33:644-653. [PMID: 35600995 PMCID: PMC9113307 DOI: 10.1093/beheco/arac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Behavior is shaped by genes, environment, and evolutionary history in different ways. Nest architecture is an extended phenotype that results from the interaction between the behavior of animals and their environment. Nests built by ants are extended phenotypes that differ in structure among species and among colonies within a species, but the source of these differences remains an open question. To investigate the impact of colony identity (genetics), evolutionary history (species), and the environment on nest architecture, we compared how two species of harvester ants, Pogonomyrmex californicus and Veromessor andrei, construct their nests under different environmental conditions. For each species, we allowed workers from four colonies to excavate nests in environments that differed in temperature and humidity for seven days. We then created casts of each nest to compare nest structures among colonies, between species, and across environmental conditions. We found differences in nest structure among colonies of the same species and between species. Interestingly, however, environmental conditions did not have a strong influence on nest structure in either species. Our results suggest that extended phenotypes are shaped more strongly by internal factors, such as genes and evolutionary history, and are less plastic in response to the abiotic environment, like many physical and physiological phenotypes.
Collapse
Affiliation(s)
- Sean O’Fallon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Address correspondence to S. O’Fallon. E-mail:
| | - Eva Sofia Horna Lowell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Doug Daniels
- UCLA Library, 280 Charles E Young Dr N, Los Angeles, CA, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Monroe AA, Schunter C, Welch MJ, Munday PL, Ravasi T. Molecular basis of parental contributions to the behavioural tolerance of elevated pCO 2 in a coral reef fish. Proc Biol Sci 2021; 288:20211931. [PMID: 34875194 PMCID: PMC8651409 DOI: 10.1098/rspb.2021.1931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.
Collapse
Affiliation(s)
- Alison A. Monroe
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Celia Schunter
- Swire Institute of Marine Science, The School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Megan J. Welch
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Philip L. Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Meuthen D, Ferrari MCO, Chivers DP. Paternal care effects outweigh gamete-mediated and personal environment effects during the transgenerational estimation of risk in fathead minnows. BMC Ecol Evol 2021; 21:187. [PMID: 34635051 PMCID: PMC8507329 DOI: 10.1186/s12862-021-01919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Individuals can estimate risk by integrating prenatal with postnatal and personal information, but the relative importance of different information sources during the transgenerational response is unclear. The estimated level of risk can be tested using the cognitive rule of risk allocation, which postulates that under consistent high-risk, antipredator efforts should decrease so that individual metabolic requirements can be satisfied. Here we conduct a comprehensive study on transgenerational risk transmission by testing whether risk allocation occurs across 12 treatments that consist of different maternal, paternal, parental care (including cross-fostering) and offspring risk environment combinations in the fathead minnow Pimephales promelas, a small cyprinid fish with alloparental care. In each risk environment, we manipulated perceived risk by continuously exposing individuals from birth onwards to conspecific alarm cues or a control water treatment. Using 2810 1-month old individuals, we then estimated shoaling behaviour prior to and subsequent to a novel mechanical predator disturbance. RESULTS Overall, shoals estimating risk to be high were denser during the prestimulus period, and, following the risk allocation hypothesis, resumed normal shoaling densities faster following the disturbance. Treatments involving parental care consistently induced densest shoals and greatest levels of risk allocation. Although prenatal risk environments did not relate to paternal care intensity, greater care intensity induced more risk allocation when parents provided care for their own offspring as opposed to those that cross-fostered fry. In the absence of care, parental effects on shoaling density were relatively weak and personal environments modulated risk allocation only when parental risk was low. CONCLUSIONS Our study highlights the high relative importance of parental care as opposed to other information sources, and its function as a mechanism underlying transgenerational risk transmission.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
10
|
Hellmann JK, Carlson ER, Bell AM. The interplay between sperm-mediated and care-mediated paternal effects in threespine sticklebacks. Anim Behav 2021; 179:267-277. [PMID: 34658382 PMCID: PMC8513676 DOI: 10.1016/j.anbehav.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The environment experienced by one generation can influence the phenotypes of future generations. Because parental cues can be conveyed to offspring at multiple points in time, ranging from fertilization to posthatching/parturition, offspring can potentially receive multiple cues from their parents via different mechanisms. We have relatively little information regarding how different mechanisms operate in isolation and in tandem, but it is possible, for example, that offspring phenotypes induced by nongenetic changes to gametes may be amplified by, mitigated by, or depend upon parental care. Here, we manipulated paternal experience with predation risk prior to fertilization in threespine stickleback, Gasterosteus aculeatus, and then examined the potential of paternal care to mitigate and/or amplify sperm-mediated paternal effects. Specifically, we compared (1) offspring of predator-exposed fathers who were reared without paternal care, (2) offspring of predator-exposed fathers who were reared with paternal care, (3) offspring of control (unexposed) fathers who were reared without paternal care and (4) offspring of control fathers who were reared with paternal care. We found that offspring of predator-exposed fathers were less active and had higher cortisol following a simulated predator attack. Although predator-exposed males shifted their paternal care behaviours - reduced fanning early in egg development and increased fanning right before egg hatching compared to control males - this shift in paternal behavior did not appear to affect offspring traits. This suggests that paternal care neither amplifies nor compensates for these phenotypic effects induced by sperm and that nongenetic changes induced by sperm may occur independently of nongenetic changes induced by paternal care. Overall, these results underscore the importance of considering how parents may have multiple nongenetic mechanisms by which they can influence offspring.
Collapse
Affiliation(s)
- Jennifer K. Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Erika R. Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Alison M. Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| |
Collapse
|
11
|
Sobral M, Neylan IP, Narbona E, Dirzo R. Transgenerational Plasticity in Flower Color Induced by Caterpillars. FRONTIERS IN PLANT SCIENCE 2021; 12:617815. [PMID: 33790921 PMCID: PMC8006444 DOI: 10.3389/fpls.2021.617815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Variation in flower color due to transgenerational plasticity could stem directly from abiotic or biotic environmental conditions. Finding a link between biotic ecological interactions across generations and plasticity in flower color would indicate that transgenerational effects of ecological interactions, such as herbivory, might be involved in flower color evolution. We conducted controlled experiments across four generations of wild radish (Raphanus sativus, Brassicaceae) plants to explore whether flower color is influenced by herbivory, and to determine whether flower color is associated with transgenerational chromatin modifications. We found transgenerational effects of herbivory on flower color, partly related to chromatin modifications. Given the presence of herbivory in plant populations worldwide, our results are of broad significance and contribute to our understanding of flower color evolution.
Collapse
Affiliation(s)
- Mar Sobral
- Departamento de Biología Funcional, Universidade de Santiago de Compostela, USC, Santiago de Compostela, Spain
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Isabelle P. Neylan
- Department of Biology, Stanford University, Stanford, CA, United States
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, CA, United States
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, United States
- Woods Institute for the Environment, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Tariel J, Luquet É, Plénet S. Interactions Between Maternal, Paternal, Developmental, and Immediate Environmental Effects on Anti-predator Behavior of the Snail Physa acuta. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.591074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transgenerational plasticity, which occurs when the environment experienced by parents changes the phenotype of offspring, is widespread in animal and plant species. Both maternal and paternal environments can underlie transgenerational plasticity, but experimental studies unraveling how their effects interact together and with the personal (both developmental and immediate) environments are still rare. Yet unraveling these interactions is fundamental to understanding how offspring integrate past and present environmental cues to produce adaptive phenotype. Using the hermaphroditic and freshwater snail Physa acuta, we tested how predator cues experienced by offspring, mothers and fathers interact to shape offspring anti-predator behavior. We raised a first generation of snails in the laboratory with or without chemical predator cues and realized full-factorial crosses to disentangle maternal and paternal cues. We then raised the second generation of snails with or without predator cues and assessed, when adults, their escape behavior in two immediate environments (with or without predator cues) and activity in the immediate environment without predator cues. We found that personal, maternal, and paternal predator cues interacted to shape offspring escape behavior and activity. Firstly, for escape behavior, snails integrated the cues from developmental and parental environments only when exposed to predator cues in their immediate environment, suggesting that personal immediate experience must corroborate the risky parental environment to reveal transgenerational plasticity. For activity, this same hypothesis helps explain why no clear pattern of transgenerational plasticity was revealed, as activity was only measured without predator cues in the immediate environment. Secondly, a single maternal exposure to predator cues decreased offspring escape behavior while a single paternal exposure had no effect, surprisingly demonstrating sex-specific transgenerational plasticity for a simultaneous hermaphroditic species. Thirdly, when both mother and father were exposed, paternal cues were integrated by offspring according to their own developmental environment. The paternal exposure then mitigated the reduction in escape behavior due to the maternal exposure only when offspring developed in control condition. Overall, our study highlighted complex patterns of sex-specific transgenerational plasticity resulting from non-additive interactions between parental, developmental and immediate experiences.
Collapse
|
13
|
Hellmann JK, Bukhari SA, Deno J, Bell AM. Sex-specific plasticity across generations I: Maternal and paternal effects on sons and daughters. J Anim Ecol 2020; 89:2788-2799. [PMID: 33191518 PMCID: PMC7902357 DOI: 10.1111/1365-2656.13364] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Intergenerational plasticity or parental effects-when parental environments alter the phenotype of future generations-can influence how organisms cope with environmental change. An intriguing, underexplored possibility is that sex-of both the parent and the offspring-plays an important role in driving the evolution of intergenerational plasticity in both adaptive and non-adaptive ways. Here, we evaluate the potential for sex-specific parental effects in a freshwater population of three-spined sticklebacks Gasterosteus aculeatus by independently and jointly manipulating maternal and paternal experiences and separately evaluating their phenotypic effects in sons versus daughters. We tested the adaptive hypothesis that daughters are more responsive to cues from their mother, whereas sons are more responsive to cues from their father. We exposed mothers, fathers or both parents to visual cues of predation risk and measured offspring antipredator traits and brain gene expression. Predator-exposed fathers produced sons that were more risk-prone, whereas predator-exposed mothers produced more anxious sons and daughters. Furthermore, maternal and paternal effects on offspring survival were non-additive: offspring with a predator-exposed father, but not two predator-exposed parents, had lower survival against live predators. There were also strong sex-specific effects on brain gene expression: exposing mothers versus fathers to predation risk activated different transcriptional profiles in their offspring, and sons and daughters strongly differed in the ways in which their brain gene expression profiles were influenced by parental experience. We found little evidence to support the hypothesis that offspring prioritize their same-sex parent's experience. Parental effects varied with both the sex of the parent and the offspring in complicated and non-additive ways. Failing to account for these sex-specific patterns (e.g. by pooling sons and daughters) would have underestimated the magnitude of parental effects. Altogether, these results draw attention to the potential for sex to influence patterns of intergenerational plasticity and raise new questions about the interface between intergenerational plasticity and sex-specific selective pressures, sexual conflict and sexual selection.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Syed Abbas Bukhari
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Jack Deno
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
14
|
Hellmann JK, Carlson ER, Bell AM. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific. J Anim Ecol 2020; 89:2800-2812. [PMID: 33191513 PMCID: PMC7902365 DOI: 10.1111/1365-2656.13365] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Erika R Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
15
|
Brass KE, Herndon N, Gardner SA, Grindstaff JL, Campbell P. Intergenerational effects of paternal predator cue exposure on behavior, stress reactivity, and neural gene expression. Horm Behav 2020; 124:104806. [PMID: 32534838 DOI: 10.1016/j.yhbeh.2020.104806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Predation threat impacts prey behavior, physiology, and fitness. Stress-mediated alterations to the paternal epigenome can be transmitted to offspring via the germline, conferring a potential advantage to offspring in predator-rich environments. While intergenerational epigenetic transmission of paternal experience has been demonstrated in mammals, how paternal predator exposure might alter offspring phenotypes across development is unstudied. We exposed male mice to a predator odor (2,4,5-trimethylthiazoline, TMT) or a neutral odor (banana extract) prior to mating and measured offspring behavioral phenotypes throughout development, together with adult stress reactivity and candidate gene expression in the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We predicted that offspring of TMT-exposed males would be less active, would display elevated anxiety-like behaviors, and would have a more efficient stress response relative to controls, phenotypes that should enhance predator avoidance in a high predation risk environment. Unexpectedly, we found that offspring of TMT-exposed males are more active, exhibit less anxiety-like behavior, and have decreased baseline plasma corticosterone relative to controls. Effects of paternal treatment on neural gene expression were limited to the prefrontal cortex, with increased mineralocorticoid receptor expression and a trend towards increased Bdnf expression in offspring of TMT-exposed males. These results suggest that fathers exposed to predation threat produce offspring that are buffered against non-acute stressors and, potentially, better adapted to a predator-dense environment because they avoid trade-offs between predator avoidance and foraging and reproduction. This study provides evidence that ecologically relevant paternal experience can be transmitted through the germline, and can impact offspring phenotypes throughout development.
Collapse
Affiliation(s)
- Kelsey E Brass
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Nathan Herndon
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Sarah A Gardner
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA; University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA 92521, USA
| | - Jennifer L Grindstaff
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Polly Campbell
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA; University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA 92521, USA.
| |
Collapse
|