1
|
Araya-Ajoy YG, Hansson Frank T, Burnett H, Søraker JS, Ranke PS, Goedert D, Ringsby TH, Jensen H, Sæther BE. Assessing the 'Small Population' Paradigm: The Effects of Stochasticity on Evolutionary Change and Population Growth in a Bird Metapopulation. Ecol Lett 2025; 28:e70090. [PMID: 40178331 DOI: 10.1111/ele.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 04/05/2025]
Abstract
Habitat loss is leading to smaller fragmented populations, increasing their susceptibility to stochasticity. Quantifying the effects of demographic and environmental stochasticity on population dynamics and the contribution of selection versus drift to phenotypic change is essential to assess the potential consequences of environmental change. We examined how stochasticity influenced population growth and body mass changes over 22 years in 11 insular house sparrow (Passer domesticus) populations. Environmental stochasticity induced synchrony in growth rates across populations while also causing substantial island-specific fluctuations. Additionally, demographic stochasticity led to larger annual growth rate fluctuations in smaller populations. Although heavier individuals generally had higher fitness, we detected non-directional evolutionary change in body mass, driven by drift rather than selection. Our study provides a unique quantitative assessment of the 'small population' paradigm, highlighting the importance of theoretically driven analyses of long-term individual-based data to understand the drivers of phenotypic evolution and a population's long-term viability.
Collapse
Affiliation(s)
- Yimen G Araya-Ajoy
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Hansson Frank
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hamish Burnett
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen S Søraker
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Edward Grey Institute, Department of Biology, University of Oxford, Oxford, UK
| | - Peter S Ranke
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
- BirdLife Norway, Trondheim, Norway
| | - Debora Goedert
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor-Harald Ringsby
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Sæther
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Bliard L, Martin JS, Paniw M, Blumstein DT, Martin JGA, Pemberton JM, Nussey DH, Childs DZ, Ozgul A. Detecting context dependence in the expression of life history trade-offs. J Anim Ecol 2025; 94:379-393. [PMID: 39221784 PMCID: PMC11880661 DOI: 10.1111/1365-2656.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.
Collapse
Affiliation(s)
- Louis Bliard
- Department of Evolutionary Biology and Environmental StudiesZurich UniversityZurichSwitzerland
| | - Jordan S. Martin
- Institute of Evolutionary MedicineZurich UniversityZurichSwitzerland
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental StudiesZurich UniversityZurichSwitzerland
- Department of Conservation BiologyEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesCaliforniaLos AngelesUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | | | | | - Daniel H. Nussey
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Dylan Z. Childs
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental StudiesZurich UniversityZurichSwitzerland
| |
Collapse
|
3
|
O'Brien AM, Sawers RJH, Gasca-Pineda J, Baxter I, Eguiarte LE, Ross-Ibarra J, Strauss SY. Teosinte populations exhibit weak local adaptation to their rhizosphere biota despite strong effects of biota source on teosinte fitness and traits. Evolution 2024; 78:1991-2005. [PMID: 39277541 DOI: 10.1093/evolut/qpae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
While biotic interactions often impose selection, species and populations vary in whether they are locally adapted to biotic interactions. Evolutionary theory predicts that environmental conditions drive this variable local adaptation by altering the fitness impacts of species interactions. To investigate the influence of an environmental gradient on adaptation between a plant and its associated rhizosphere biota, we cross-combined teosinte (Zea mays ssp. mexicana) and rhizosphere biota collected across a gradient of decreasing temperature, precipitation, and nutrients in a greenhouse common garden experiment. We measured both fitness and phenotypes expected to be influenced by biota, including concentrations of nutrients in leaves. Independent, main effects of teosinte and biota source explained most variation in teosinte fitness and traits. For example, biota from warmer sites provided population-independent fitness benefits across teosinte hosts. Effects of biota that depended on teosinte genotype were often not specific to their local hosts, and most traits had similar relationships to fitness across biota treatments. However, we found weak patterns of local adaptation between teosinte and biota from colder sites, suggesting environmental gradients may alter the importance of local adaptation in teosinte-biota interactions, as evolutionary theory predicts.
Collapse
Affiliation(s)
- Anna M O'Brien
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
- Department of Plant Science, Pennsylvania State University, State College, PA, United States
| | - Jaime Gasca-Pineda
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Genome Center, University of California, Davis, CA, United States
| | - Sharon Y Strauss
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
| |
Collapse
|
4
|
Class B, Strickland K, Potvin D, Jackson N, Nakagawa S, Frère C. Sex-Specific Associations between Social Behavior, Its Predictability, and Fitness in a Wild Lizard. Am Nat 2024; 204:501-516. [PMID: 39486032 DOI: 10.1086/732178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractSocial environments impose a number of constraints on individuals' behavior. These constraints have been hypothesized to generate behavioral variation among individuals, social responsiveness, and within-individual behavioral consistency (also termed "predictability"). In particular, the social niche specialization hypothesis posits that higher levels of competition associated with higher population density should increase among-individual behavioral variation and individual predictability as a way to reduce conflicts. Being predictable should hence have fitness benefits in group-living animals. However, to date empirical studies of the fitness consequences of behavioral predictability remain scarce. In this study, we investigated the associations between social behavior, its predictability, and fitness in the eastern water dragon (Intellagama lesueurii), a wild gregarious lizard. Since this species is sexually dimorphic, we examined these patterns both between sexes and among individuals. Although females were more sociable than males, there was no evidence for sex differences in among-individual variation or predictability. However, females exhibited positive associations between social behavior, its predictability, and survival, while males exhibited only a positive association between mean social behavior and fitness. These findings hence partly support predictions from the social niche specialization hypothesis and suggest that the function of social predictability may be sex dependent.
Collapse
|
5
|
Cones AG, Westneat DF. Variation in the thermal plasticity of avian embryos is produced by the developmental environment, not genes. Proc Biol Sci 2024; 291:20241892. [PMID: 39378989 PMCID: PMC11461059 DOI: 10.1098/rspb.2024.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Limited evidence suggests that variation in phenotypic plasticity within populations may arise largely from environmental sources, thereby constraining its evolvability. This is of concern for temperature-sensitive metabolism in the face of climate change. We quantified the relative influence of the developmental environment versus genes on the metabolic plasticity of avian embryos to temperature. We partially cross-fostered 602 house sparrow eggs (Passer domesticus), measured the heart rate plasticity of these embryos to egg temperature and partitioned variance in plasticity. We found that the foster (incubation) environment was the sole meaningful source of variance in embryonic plasticity (not genes, pre-laying effects or ambient conditions). In contrast to heart rate plasticity, offspring growth was influenced by the foster environment, genes/pre-laying parental effects and ambient conditions. Although embryonic plasticity to temperature varied in this population, these results suggest that it is unlikely to evolve quickly. Nevertheless, the expression of this plasticity may be able to shift between generations in response to changes in the developmental environment. Whether the multidimensional plasticity of heart rate to both current temperature and the developmental environment is itself an adaptive, evolved trait allowing avian embryos to optimize their metabolic plasticity to their current environment remains to be tested.
Collapse
Affiliation(s)
- Alexandra G. Cones
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Bavaria82152, Germany
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| |
Collapse
|
6
|
Cameron H, Marshall D. Estimating the relationship between fitness and metabolic rate: which rate should we use? Philos Trans R Soc Lond B Biol Sci 2024; 379:20220491. [PMID: 38186283 PMCID: PMC10772602 DOI: 10.1098/rstb.2022.0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
As physiologists seek to better understand how and why metabolism varies, they have focused on how metabolic rate covaries with fitness-that is, selection. Evolutionary biologists have developed a sophisticated framework for exploring selection, but there are particular challenges associated with estimating selection on metabolic rate owing to its allometric relationship with body mass. Most researchers estimate selection on mass and absolute metabolic rate; or selection on mass and mass-independent metabolic rate (MIMR)-the residuals generated from a nonlinear regression. These approaches are sometimes treated as synonymous: their coefficients are often interpreted in the same way. Here, we show that these approaches are not equivalent because absolute metabolic rate and MIMR are different traits. We also show that it is difficult to make sound biological inferences about selection on absolute metabolic rate because its causal relationship with mass is enigmatic. By contrast, MIMR requires less-desirable statistical practices (i.e. residuals as a predictor), but provides clearer causal pathways. Moreover, we argue that estimates of selection on MIMR have more meaningful interpretations for physiologists interested in the drivers of variation in metabolic allometry. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Dustin Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Monk CT, Power M, Freitas C, Harrison PM, Heupel M, Kuparinen A, Moland E, Simpfendorfer C, Villegas-Ríos D, Olsen EM. Atlantic cod individual spatial behaviour and stable isotope associations in a no-take marine reserve. J Anim Ecol 2023; 92:2333-2347. [PMID: 37843043 DOI: 10.1111/1365-2656.14014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
Collapse
Affiliation(s)
- Christopher T Monk
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Power
- Biology Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Carla Freitas
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- MARE, Marine and Environmental Sciences Center, Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Philip M Harrison
- Department of Biology and Faculty of Forestry and Environmental Management, Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Michelle Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Even Moland
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Colin Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Esben M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
8
|
Menário Costa W, King WJ, Bonnet T, Festa-Bianchet M, Kruuk LEB. Early-life behavior, survival, and maternal personality in a wild marsupial. Behav Ecol 2023; 34:1002-1012. [PMID: 37969552 PMCID: PMC10636729 DOI: 10.1093/beheco/arad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 11/17/2023] Open
Abstract
Individual behavior varies for many reasons, but how early in life are such differences apparent, and are they under selection? We investigated variation in early-life behavior in a wild eastern gray kangaroo (Macropus giganteus) population, and quantified associations of behavior with early survival. Behavior of young was measured while still in the pouch and as subadults, and survival to weaning was monitored. We found consistent variation between offspring of different mothers in levels of activity at the pouch stage, in flight initiation distance (FID) as subadults, and in subadult survival, indicating similarity between siblings. There was no evidence of covariance between the measures of behavior at the pouch young versus subadult stages, nor of covariance of the early-life behavioral traits with subadult survival. However, there was a strong covariance between FIDs of mothers and those of their offspring tested at different times. Further, of the total repeatability of subadult FID (51.5%), more than half could be attributed to differences between offspring of different mothers. Our results indicate that 1) behavioral variation is apparent at a very early stage of development (still in the pouch in the case of this marsupial); 2) between-mother differences can explain much of the repeatability (or "personality") of juvenile behavior; and 3) mothers and offspring exhibit similar behavioral responses to stimuli. However, 4) we found no evidence of selection via covariance between early-life or maternal behavioral traits and juvenile survival in this wild marsupial.
Collapse
Affiliation(s)
- Weliton Menário Costa
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
| | - Wendy J King
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Timothée Bonnet
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- French National Centre for Scientific Research, Centre d’Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Marco Festa-Bianchet
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Loeske E B Kruuk
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
9
|
Araya-Ajoy YG, Dingemanse NJ, Westneat DF, Wright J. The evolutionary ecology of variation in labile traits: selection on its among- and within-individual components. Evolution 2023; 77:2246-2256. [PMID: 37490354 DOI: 10.1093/evolut/qpad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Closer integration between behavioral ecology and quantitative genetics has resulted in a recent increase in studies partitioning sources of variation in labile traits. Repeatable between-individual differences are commonly documented, and their existence is generally explained using adaptive arguments, implying that selection has shaped variation at the among- and within-individual level. However, predicting the expected pattern of non-adaptive phenotypic variation around an optimal phenotypic value is difficult, hampering our ability to provide quantitative assessments of the adaptive nature of observed patterns of phenotypic variation within a population. We argue that estimating the strength of selection on trait variation among and within individuals provides a way to test adaptive theory concerned with phenotypic variation. To achieve this aim, we describe a nonlinear selection analysis that enables the study of the selective pressures on trait means and their among- and within-individual variation. By describing an integrative approach for studying the strength of selection on phenotypic variation at different levels, we hope to stimulate empirical studies investigating the ecological factors that can shape the repeatability, heritability, and coefficients of variation of labile and other repeatedly expressed traits.
Collapse
Affiliation(s)
- Yimen G Araya-Ajoy
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
10
|
Peignier M, Araya-Ajoy YG, Ringler M, Ringler E. Personality traits differentially affect components of reproductive success in a Neotropical poison frog. Proc Biol Sci 2023; 290:20231551. [PMID: 37727087 PMCID: PMC10509575 DOI: 10.1098/rspb.2023.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Individual reproductive success has several components, including the acquisition of mating partners, offspring production, and offspring survival until adulthood. While the effects of certain personality traits-such as boldness or aggressiveness-on single components of reproductive success are well studied, we know little about the composite and multifaceted effects behavioural traits can have on all the aspects of reproductive success. Behavioural traits positively linked to one component of reproductive success might not be beneficial for other components, and these effects may differ between sexes. We investigated the influence of boldness, aggressiveness, and exploration on the number of mating partners, mating events, and offspring surviving until adulthood in males and females of the Neotropical poison frog Allobates femoralis. Behavioural traits had different-even opposite-effects on distinct components of reproductive success in both males and females. For example, males who displayed high levels of aggressiveness and exploration (or low levels of aggressiveness and exploration) managed to attract high number of mating partners, while males with low levels of boldness, low levels of aggressiveness, and high levels of exploration had the most offspring surviving until adulthood. Our results therefore suggest correlational selection favouring particular combinations of behavioural traits.
Collapse
Affiliation(s)
- Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Yimen G. Araya-Ajoy
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Max Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
- Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, 8010 Graz, Austria
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
11
|
Castellanos MC, Montero-Pau J, Ziarsolo P, Blanca JM, Cañizares J, Pausas JG. Quantitative genetic analysis of floral traits shows current limits but potential evolution in the wild. Proc Biol Sci 2023; 290:20230141. [PMID: 37122252 PMCID: PMC10130720 DOI: 10.1098/rspb.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The vast variation in floral traits across angiosperms is often interpreted as the result of adaptation to pollinators. However, studies in wild populations often find no evidence of pollinator-mediated selection on flowers. Evolutionary theory predicts this could be the outcome of periods of stasis under stable conditions, followed by shorter periods of pollinator change that provide selection for innovative phenotypes. We asked if periods of stasis are caused by stabilizing selection, absence of other forms of selection or by low trait ability to respond even if selection is present. We studied a plant predominantly pollinated by one bee species across its range. We measured heritability and evolvability of traits, using genome-wide relatedness in a large wild population, and combined this with estimates of selection on the same individuals. We found evidence for both stabilizing selection and low trait heritability as potential explanations for stasis in flowers. The area of the standard petal is under stabilizing selection, but the variability is not heritable. A separate trait, floral weight, presents high heritability, but is not currently under selection. We show how a simple pollination environment coincides with the absence of current prerequisites for adaptive evolutionary change, while heritable variation remains to respond to future selection pressures.
Collapse
Affiliation(s)
- Maria Clara Castellanos
- School of Life Sciences, Universityof Sussex, Brighton BN1 9QG, UK
- CIDE-CSIC, Montcada, Valencia, Spain
| | - Javier Montero-Pau
- COMAV, Universitat Politècnica de València, Valencia, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Peio Ziarsolo
- COMAV, Universitat Politècnica de València, Valencia, Spain
| | | | | | | |
Collapse
|
12
|
Pick JL, Khwaja N, Spence MA, Ihle M, Nakagawa S. Counter culture: causes, extent and solutions of systematic bias in the analysis of behavioural counts. PeerJ 2023; 11:e15059. [PMID: 37033727 PMCID: PMC10081455 DOI: 10.7717/peerj.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
We often quantify the rate at which a behaviour occurs by counting the number of times it occurs within a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest to behavioural and evolutionary ecologists such as R2, repeatability (intra-class correlation, ICC) and heritability. Through introducing a null model, the Poisson process, for modelling the frequency of behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes comparisons between studies and species problematic, because the magnitude of the error depends on how frequently the behaviour has been observed as well as how biologically variable the behaviour is. Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental provisioning rate in birds, we assess the applicability of our null model for modelling the frequency of behaviour. We then survey recent literature and demonstrate that the error is rarely accounted for in current analyses. We highlight the problems that arise from this and provide solutions. We further discuss the biological implications of deviations from our null model, and highlight the new avenues of research that they may provide. Adopting our recommendations into analyses of behavioural counts will improve the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.
Collapse
Affiliation(s)
- Joel L. Pick
- University of Sheffield, Sheffield, United Kingdom
- University of New South Wales, Sydney, Australia
- University of Edinburgh, Edinburgh, United Kingdom
| | - Nyil Khwaja
- University of Sheffield, Sheffield, United Kingdom
- University of Canterbury, Christchurch, New Zealand
| | - Michael A. Spence
- University of Sheffield, Sheffield, United Kingdom
- Centre for Environmental Fisheries and Aquaculture Science, Lowestoft, United Kingdom
| | - Malika Ihle
- University of Sheffield, Sheffield, United Kingdom
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
13
|
Xu W, Gigliotti LC, Royauté R, Sawyer H, Middleton AD. Fencing amplifies individual differences in movement with implications on survival for two migratory ungulates. J Anim Ecol 2023; 92:677-689. [PMID: 36598334 DOI: 10.1111/1365-2656.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Laura C Gigliotti
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Royauté
- French National Institute for Agriculture, Food, and Environment (INRAE), Versailles cedex, France
| | - Hall Sawyer
- Western Ecosystems Technology, Inc., Laramie, Wyoming, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
14
|
Gulotta NA, Mathot KJ. Does fluctuating selection maintain variation in nest defense behavior in Arctic peregrine falcons ( Falco peregrinus tundrius)? Ecol Evol 2022; 12:e9284. [PMID: 36177133 PMCID: PMC9471043 DOI: 10.1002/ece3.9284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Behavioral expression can vary both within- (i.e., plasticity) and among-individuals (i.e., animal personality), and understanding the causes and consequences of variation at each of these levels is a major area of investigation in contemporary behavioral ecology. Here, we studied sources of variation in both plasticity and personality in nest defense behavior in Arctic peregrine falcons (Falco peregrinus tundrius) in two consecutive years. We found that peregrines adjusted their nest defense in response to nesting stage and year, revealing plastic, state-dependent, adjustment of nest defense. At the same time, nest defense behavior was repeatable in peregrine falcons both within and between years. We tested if fluctuating selection on behavioral types (i.e., individuals average phenotypic expression) and/or assortative mating acted to maintain long-term among-individual differences in nest defense behavior. We found that selection on female nest defense differed across years; being positive in 1 year and negative in the other. We also found support for assortative mating in the first year, but disassortative mating in the second. We propose two potential explanations for the observed year-specific patterns of nonrandom mating: (1) year-specific plastic adjustment of nest defense and/or (2) changes in the age-structure of the breeding population. These posthoc explanations are speculative, and require further study. Unfortunately, we could not evaluate this directly with the available data, and future studies are needed with more than 2 years of data on nest-defense and fitness outcomes, and with a larger number of marked individuals, to properly evaluate these potential explanations.
Collapse
Affiliation(s)
- Nick A. Gulotta
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Nunavut Wildlife Cooperative Research UnitUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Kimberley J. Mathot
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Nunavut Wildlife Cooperative Research UnitUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
15
|
Wright J, Haaland TR, Dingemanse NJ, Westneat DF. A reaction norm framework for the evolution of learning: how cumulative experience shapes phenotypic plasticity. Biol Rev Camb Philos Soc 2022; 97:1999-2021. [PMID: 35790067 PMCID: PMC9543233 DOI: 10.1111/brv.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior experiences or exposures to environmental cues. We therefore suggest that all forms of learning (and some similar biological phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of phenotypic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting). Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatomical ‘states’ that mediate the carry‐over effects of cumulative environmental experiences on phenotypes across different time periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes. Learning and non‐learning plasticity interact whenever cumulative prior experience causes a modification in the reaction norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory] and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environments can also be accommodated within this approach. A common reaction norm approach should thus encourage productive cross‐fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we model the evolution of plasticity with and without learning under different levels of environmental estimation error to show how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments. Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.
Collapse
Affiliation(s)
- Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
| | - Thomas R. Haaland
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians University of Munich (LMU) 82152 Planegg‐Martinsried Germany
| | - David F. Westneat
- Department of Biology University of Kentucky 101 Morgan Building Lexington KY 40506‐0225 USA
| |
Collapse
|
16
|
Mathot KJ, Arteaga-Torres JD, Wijmenga JJ. Individual risk-taking behaviour in black-capped chickadees ( Poecile atricapillus) does not predict annual survival. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220299. [PMID: 35911194 PMCID: PMC9326292 DOI: 10.1098/rsos.220299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Within species, individuals often show repeatable differences in behaviours, called 'animal personality'. One behaviour that has been widely studied is how quickly an individual resumes feeding after a disturbance, referred to as boldness or risk-taking. Depending on the mechanism(s) shaping risk-taking behaviour, risk-taking could be positively, negatively, or not associated with differences in overall survival. We studied risk-taking and survival in a population of free-living black-capped chickadees (Poecile atricapillus) in which we previously showed repeatable among-individual differences in risk-taking over the course of several months. We found no evidence that variation in risk-taking is associated with differences in annual survival. We suggest that variation in risk-taking is likely shaped by multiple mechanisms simultaneously, such that the net effect on survival is small or null. For example, among-individual differences in energy demand may favour greater risk-taking without imposing an overall mortality cost if higher energy demand covaries with escape flight performance. We propose directions for future work, including using a multi-trait, multi-year approach to study risk-taking, to allow for stronger inferences regarding the mechanisms shaping these behavioural decisions.
Collapse
Affiliation(s)
- Kimberley J. Mathot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
- Canada Research Chair in Integrative Ecology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | - Jan J. Wijmenga
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
17
|
Decomposing phenotypic skew and its effects on the predicted response to strong selection. Nat Ecol Evol 2022; 6:774-785. [PMID: 35422480 DOI: 10.1038/s41559-022-01694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022]
Abstract
The major frameworks for predicting evolutionary change assume that a phenotype's underlying genetic and environmental components are normally distributed. However, the predictions of these frameworks may no longer hold if distributions are skewed. Despite this, phenotypic skew has never been decomposed, meaning the fundamental assumptions of quantitative genetics remain untested. Here we demonstrate that the substantial phenotypic skew in the body size of juvenile blue tits (Cyanistes caeruleus) is driven by environmental factors. Although skew had little impact on our predictions of selection response in this case, our results highlight the impact of skew on the estimation of inheritance and selection. Specifically, the nonlinear parent-offspring regressions induced by skew, alongside selective disappearance, can strongly bias estimates of heritability. The ubiquity of skew and strong directional selection on juvenile body size imply that heritability is commonly overestimated, which may in part explain the discrepancy between predicted and observed trait evolution.
Collapse
|
18
|
Hutfluss A, Bermúdez-Cuamatzin E, Mouchet A, Briffa M, Slabbekoorn H, Dingemanse NJ. Male song stability shows cross-year repeatability but does not affect reproductive success in a wild passerine bird. J Anim Ecol 2022; 91:1507-1520. [PMID: 35509187 DOI: 10.1111/1365-2656.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
Predictable behaviour (or "behavioural stability") might be favoured in certain ecological contexts, e.g. when representing a quality signal. Costs associated with producing stable phenotypes imply selection should favour plasticity in stability when beneficial. Repeatable among-individual differences in degree of stability are simultaneously expected if individuals differ in ability to pay these costs, or in how they resolve cost-benefit trade-offs. Bird song represents a prime example, where stability may be costly yet beneficial when stable singing is a quality signal favoured by sexual selection. Assuming energetic costs, ecological variation (e.g. in food availability) should result in both within- and among-individual variation in stability. If song stability represents a quality signal, we expect directional selection favouring stable singers. For a three-year period, we monitored 12 nest box plots of great tits Parus major during breeding. We recorded male songs during simulated territory intrusions, twice during their mate's laying stage, and twice during incubation. Each preceding winter, we manipulated food availability. Assuming that stability is costly, we expected food-supplemented males to sing more stable songs. We also expected males to sing more stable songs early in the breeding season (when paternity is not decided), and stable singers to have increased reproductive success. We found strong support for plasticity in stability for two key song characteristics: minimum frequency and phrase length. Males were plastic because they became more stable over the season, contrary to expectations. Food-supplementation did not affect body condition but increased stability in minimum frequency. This treatment effect occurred only in one year, implying that food supplementation affected stability only in interaction with (unknown) year-specific ecological factors. We found no support for directional, correlational, or fluctuating selection on the stability in minimum frequency (i.e., the song trait whose stability exhibited cross-year repeatability): stable singers did not have higher reproductive success. Our findings imply that stability in minimum frequency is not a fitness quality indicator unless males enjoy fitness benefits via pathways not studied here. Future studies should thus address the mechanisms shaping and maintaining individual repeatability of song stability in the wild.
Collapse
Affiliation(s)
- Alexander Hutfluss
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| | | | - Alexia Mouchet
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany.,Laboratoire Evolution Génomes Comportement et Ecologie (EGCE), UMR Université Paris-Saclay-CNRS-IRD, Gif-sur-Yvette, France
| | - Mark Briffa
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, BE, Leiden, The Netherlands
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| |
Collapse
|
19
|
Martin JS, Jaeggi AV. Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes. J Evol Biol 2022; 35:520-538. [PMID: 34233047 PMCID: PMC9292565 DOI: 10.1111/jeb.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Collapse
Affiliation(s)
- Jordan S. Martin
- Human Ecology GroupInstitute of Evolutionary MedicineUniversity of ZurichZurichSwitzerland
| | - Adrian V. Jaeggi
- Human Ecology GroupInstitute of Evolutionary MedicineUniversity of ZurichZurichSwitzerland
| |
Collapse
|
20
|
Biquet J, Bonamour S, de Villemereuil P, de Franceschi C, Teplitsky C. Phenotypic plasticity drives phenological changes in a Mediterranean blue tit population. J Evol Biol 2021; 35:347-359. [PMID: 34669221 DOI: 10.1111/jeb.13950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/14/2023]
Abstract
Earlier phenology induced by climate change, such as the passerines' breeding time, is observed in many natural populations. Understanding the nature of such changes is key to predict the responses of wild populations to climate change. Genetic changes have been rarely investigated for laying date, though it has been shown to be heritable and under directional selection, suggesting that the trait could evolve. In a Corsican blue tit population, the birds' laying date has significantly advanced over 40 years, and we here determine whether this response is of plastic or evolutionary origin, by comparing the predictions of the breeder's and the Robertson-Price (STS) equations, to the observed genetic changes. We compare the results obtained for two fitness proxies (fledgling and recruitment success), using models accounting for their zero inflation. Because the trait appears heritable and under directional selection, the breeder's equation predicts that genetic changes could drive a significant part of the phenological change observed. We, however, found that fitness proxies and laying date are not genetically correlated. The STS, therefore, predicts no evolution of the breeding time, predicting correctly the absence of trend in breeding values. Our results also emphasize that when investigating selection on a plastic trait under fluctuating selection, part of the fitness-trait phenotypic covariance can be due to within individual covariance. In the case of repeated measurements, splitting within and between individual covariance can shift our perspective on the actual intensity of selection over multiple selection episodes, shedding light on the potential for the trait to evolve.
Collapse
Affiliation(s)
- Juliette Biquet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Suzanne Bonamour
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Pierre de Villemereuil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
| | | | | |
Collapse
|
21
|
Branston CJ, Capilla-Lasheras P, Pollock CJ, Griffiths K, White S, Dominoni DM. Urbanisation weakens selection on the timing of breeding and clutch size in blue tits but not in great tits. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03096-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Urbanisation is a globally occurring phenomenon and is predicted to continue increasing rapidly. Urban ecosystems present novel environments and challenges which species must acclimate or adapt to. These novel challenges alter existing or create new selection pressures on behaviours which provide an opportunity to investigate eco-evolutionary responses to contemporary environmental change. We used 7 years of breeding data from urban and forest populations of blue and great tits to understand whether selection for timing of breeding or clutch size differed between the two habitats and species. We found that urban great tits laid eggs earlier than their forest counterparts, but there was no evidence of a difference in selection for earlier breeding. Blue tits, however, did not differ in timing of egg laying between the two habitats, but selection for earlier laying was weaker in the urban environment. Both species laid smaller clutches in the urban site and had positive selection for larger clutch sizes which did not differ in strength for the great tits but did for blue tits, with weaker selection in the urban population. Our results suggest that food availability for nestlings may be constraining urban birds, and that the temporal cues females use to time breeding correctly, such as tree budburst and food availability, may be absent or reduced in urban areas due to lower caterpillar availability. These results have implications for our understanding of the adaptation of wild animals to city life.
Significance statement
Urbanisation is expanding rapidly and changing the environment many species live in. A key challenge is to understand how species adapt to the urban environment, why some species can adapt, why others cannot and what we can do to ensure that cities are ecologically sustainable and biodiversity rich. Here we show that the strength of natural selection for early breeding and larger clutch size is weaker in urban than non-urban blue tits, likely due to reduced and irregular availability of natural insect food in urban areas. This effect was not found in great tits. Thus, urbanisation can alter the selection pressures wild animals are exposed to, but this effect may differ between species, even when closely related. This has implications for our understanding of how species adapt to urban life.
Collapse
|