1
|
Wu Y, Meng L, Zhan S, Li M, Huang J, Chen X, Chen L, Gao X, Chen H, Chen H, Zhong Y, Xu L, Xu Y. ITIH5-mediated fibroblast/macrophage crosstalk exacerbates cardiac remodelling after myocardial infarction. J Transl Med 2025; 23:224. [PMID: 39994656 PMCID: PMC11852866 DOI: 10.1186/s12967-025-06244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) and subsequent ischaemic cardiomyopathy (ICM) are the primary causes of heart failure. Inter-α trypsin inhibitor heavy chain 5 (ITIH5) is an extracellular matrix (ECM) protein and has been identified as a myocardial marker of ICM. However, its diagnostic value in patients with ICM and its function and molecular mechanism in regulating cardiac repair and remodelling after MI remain unknown. METHODS Three microarray datasets including 117 ICM and 152 non-failing (NF) myocardial tissue samples were merged and analysed. Peripheral blood and clinical information were collected from 53 patients with ICM and 40 NF controls. The effects of ITIH5 on cellular interactions and cardiac remodelling was studied using ITIH5 RNAi adeno-associated virus and mouse MI model in vivo and in fibroblast-macrophage co-culture model in vitro. RESULTS ITIH5 was upregulated in the myocardial tissue and peripheral blood of patients with ICM and could be an independent risk factor for ICM. Experiments in mice suggested that ITIH5 promotes cardiac fibrotic remodelling at all phases after MI. Downregulation of ITIH5 increased the risk of death within 7 d after MI but inhibited ventricular remodelling and improved cardiac function on the long-term. ITIH5 promotes the primary cardiac fibroblasts (CFs) proliferation, migration, and improves survival rather than activiation. Morover, ITIH5 directly promotes macrophage tissue infiltration, maturation, and profibrotic phenotype transformation, thereby promoting fibrotic remodelling. By using fibroblast-macrophage co-culture model, we demonstrated ITIH5 enhanced the fibroblast/macrophage crosstalk manifest as macrophage profibrotic phenotype transformation and CFs activation, mainly by enhancing the hyaluronan stability, the ability of ITIH5 to bind macrophage CD44 receptors and the downstream activation of the signal transduction and activator of transcription 3 pathway in macrophages. CONCLUSIONS ITIH5 could be used as a diagnostic marker for ICM. Moreover, ITIH5 expression was upregulated after MI, which accelerated ECM-fibroblast-macrophage interaction, thereby promoting macrophage profibrotic phenotype transformation, CFs activation, and cardiac fibrotic remodelling.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Li Meng
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuechun Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Xiaofei Gao
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Hao Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huimin Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Dreyer VJ, Shi JX, Rose M, Onyuro MT, Steib F, Hilgers L, Seillier L, Dietrich J, Riese J, Meurer SK, Weiskirchen R, Neumann U, Heij L, Luedde T, Loosen SH, Lurje I, Lurje G, Gaisa NT, Jonigk D, Bednarsch J, Dahl E, Brüchle NO. High Expression of the Tumor Suppressor Protein ITIH5 in Cholangiocarcinomas Correlates with a Favorable Prognosis. Cancers (Basel) 2024; 16:3647. [PMID: 39518085 PMCID: PMC11545166 DOI: 10.3390/cancers16213647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cholangiocarcinoma (CCA) are aggressive bile duct cancers with a poor prognosis for which there are only few established prognostic biomarkers and molecular targets available. The gene ITIH5, a known class II tumor suppressor gene (C2TSG), encodes a secreted protein of the extracellular matrix mediating tumor suppressive properties. Recently, it was surprisingly found that the ITIH5 protein is specifically upregulated in CCAs and that ITIH5 detection in blood could be an excellent liquid biopsy marker for indicating the presence of a CCA tumor in a patient. We therefore investigated whether patients with CCAs with abundant versus low ITIH5 protein expression also differ in their prognosis. Methods: To clarify this question, a large CCA cohort (n = 175) was examined using immunohistochemistry on a tissue microarray (TMA). Results: Abundant ITIH5 expression in CCA was associated with favorable survival, a low UICC stage and the absence of perineural invasion (PNI). Conclusions: ITIH5 has biomarker potential not only for the early detection of CCA from blood-based liquid biopsies but also as a prognostic tissue biomarker for risk stratification. Our results suggest that the upregulation of ITIH5 is particularly abundant in intrahepatic CCAs (iCCA). The mechanisms mediating the strong initial upregulation of ITIH5 during the oncogenic transformation of bile duct cells are still unclear.
Collapse
Affiliation(s)
- Verena J. Dreyer
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Jia-Xin Shi
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Michael Rose
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- Institute of Pathology, University Hospital, University of Ulm, 89081 Ulm, Germany
| | - Maureen T. Onyuro
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Florian Steib
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Lars Hilgers
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Lancelot Seillier
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Jana Dietrich
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Janik Riese
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (S.K.M.); (R.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (S.K.M.); (R.W.)
| | - Ulf Neumann
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
| | - Lara Heij
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
- Department of Pathology, University Hospital Essen, 45147 Essen, Germany
- Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.L.); (S.H.L.)
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.L.); (S.H.L.)
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Nadine T. Gaisa
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- Institute of Pathology, University Hospital, University of Ulm, 89081 Ulm, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
- German Center for Lung Research (DZL), BREATH, 30625 Hanover, Germany
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital Essen, 45147 Essen, Germany; (U.N.); (L.H.); (J.B.)
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Nadina Ortiz Brüchle
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.J.D.); (J.-X.S.); (M.R.); (M.T.O.); (F.S.); (L.H.); (L.S.); (J.D.); (J.R.); (N.T.G.); (D.J.); (N.O.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| |
Collapse
|
3
|
Sessler TM, Beier JP, Villwock S, Jonigk D, Dahl E, Ruhl T. Genetic deletion of ITIH5 leads to increased development of adipose tissue in mice. Biol Res 2024; 57:58. [PMID: 39198923 PMCID: PMC11360682 DOI: 10.1186/s40659-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5+/+ wildtype with ITIH5-/- knockout mice. RESULTS Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5-/- cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5-/- animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs. CONCLUSIONS Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.
Collapse
Affiliation(s)
- Thomas M Sessler
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophia Villwock
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Danny Jonigk
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hanover, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Chen M, Ma J, Xie X, Su M, Zhao D. Serum ITIH5 as a novel diagnostic biomarker in cholangiocarcinoma. Cancer Sci 2024; 115:1665-1679. [PMID: 38475675 PMCID: PMC11093185 DOI: 10.1111/cas.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Cholangiocarcinoma often remains undetected until advanced stages due to the lack of reliable diagnostic markers. Our goal was to identify a unique secretory protein for cholangiocarcinoma diagnosis and differentiation from other malignancies, benign hepatobiliary diseases, and chronic liver conditions. We conducted bulk RNA-seq analysis to identify genes specifically upregulated in cholangiocarcinoma but not in most other cancers, benign hepatobiliary diseases, and chronic liver diseases focusing on exocrine protein-encoding genes. Single-cell RNA sequencing examined subcellular distribution. Immunohistochemistry and enzyme-linked immunosorbent assays assessed tissue and serum expression. Diagnostic performance was evaluated via receiver-operating characteristic (ROC) analysis. Inter-alpha-trypsin inhibitor heavy chain family member five (ITIH5), a gene encoding an extracellular protein, is notably upregulated in cholangiocarcinoma. This elevation is not observed in most other cancer types, benign hepatobiliary diseases, or chronic liver disorders. It is specifically expressed by malignant cholangiocytes. ITIH5 expression in cholangiocarcinoma tissues exceeded that in nontumorous bile duct, hepatocellular carcinoma, and nontumorous hepatic tissues. Serum ITIH5 levels were elevated in cholangiocarcinoma compared with controls (hepatocellular carcinoma, benign diseases, chronic hepatitis B, and healthy individuals). ITIH5 yielded areas under the ROC curve (AUCs) from 0.839 to 0.851 distinguishing cholangiocarcinoma from controls. Combining ITIH5 with carbohydrate antigen 19-9 (CA19-9) enhanced CA19-9's diagnostic effectiveness. In conclusion, serum ITIH5 may serve as a novel noninvasive cholangiocarcinoma diagnostic marker.
Collapse
Affiliation(s)
- Meiru Chen
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
- Department of GastroenterologyHengshui People's HospitalHengshuiHebei ProvinceChina
| | - Jinghan Ma
- Department of Rheumatology and immunologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Xiaoli Xie
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
| | - Miao Su
- Department of GastroenterologyHengshui People's HospitalHengshuiHebei ProvinceChina
| | - Dongqiang Zhao
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
| |
Collapse
|
5
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Jiang J, Zhao J, Wang Y, Liu D, Zhang M. Urine inter‐alpha‐trypsin inhibitor family‐related proteins may serve as biomarkers for disease activity of lupus. J Clin Lab Anal 2022; 36:e24622. [PMID: 35870194 PMCID: PMC9459346 DOI: 10.1002/jcla.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic inflammatory disease involving multiple tissues. Inter‐Alpha‐Trypsin Inhibitor (ITI) family proteins have a role in maintaining tissue homeostasis, but their possible clinical significance in the SLE patients has not been reported. The aim of this study was to analyze and verify the expression of ITI‐related proteins in the urine of SLE patients, further explore the features of these proteins in disease activity. Methods Based on label‐free proteomics technology and bioinformatics technology, we analyzed the expression of ITI family‐related proteins in the urine of lupus. Subsequently, Western‐blot and targeted proteomics were used to qualitatively and quantitatively verify the expression of these proteins, respectively. Results A total of seven ITI family‐related proteins were screened and identified; and six of these proteins were differentially expressed in the urine of SLE patients. Further quantitative analysis showed that the expressions of ITIH2, ECM1, and ITIH5 in urine between active SLE group and stable SLE group were consistent with the preliminary screening results. The expression of ITIH2 and ECM1 in the renal damage group were also consistent with the screening results. Moreover, ITIH2 and ECM1 have a good correlation with disease activity and have a certain correlation with renal damage. Conclusions In this exploratory study, we evaluated the expression of ITI family‐related proteins in the urine of SLE and found that urine ITIH2 and ECM1 were closely related to SLE activity, especially kidney damage, providing an experimental basis for further exploration of the potential roles in monitoring lupus and lupus nephritis activity.
Collapse
Affiliation(s)
- Jun Jiang
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
| | - Jin Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Yuhua Wang
- Department of Rheumatology and Clinical Immunology, Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Dan Liu
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
| | - Man Zhang
- Clinical Laboratory Medicine Peking University Ninth School of Clinical Medicine Beijing China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics Beijing China
| |
Collapse
|
7
|
Evrard C, Lambert de Rouvroit C, Poumay Y. Epidermal Hyaluronan in Barrier Alteration-Related Disease. Cells 2021; 10:3096. [PMID: 34831319 PMCID: PMC8618819 DOI: 10.3390/cells10113096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
In skin, although the extracellular matrix (ECM) is highly developed in dermis and hypodermis, discrete intercellular spaces between cells of the living epidermal layers are also filled with ECM components. Herein, we review knowledge about structure, localization and role of epidermal hyaluronan (HA), a key ECM molecule. HA is a non-sulfated glycosaminoglycan non-covalently bound to proteins or lipids. Components of the basal lamina maintain some segregation between the epidermis and the underlying dermis, and all epidermal HA is locally synthesized and degraded. Functions of HA in keratinocyte proliferation and differentiation are still controversial. However, through interactions with partners, such as the TSG-6 protein, HA is involved in the formation, organization and stabilization of the epidermal ECM. In addition, epidermal HA is involved in the formation of an efficient epidermal barrier made of cornified keratinocytes. In atopic dermatitis (AD) with profuse alterations of the epidermal barrier, HA is produced in larger amounts by keratinocytes than in normal skin. Epidermal HA inside AD lesional skin is located in enlarged intercellular spaces, likely as the result of disease-related modifications of HA metabolism.
Collapse
Affiliation(s)
| | | | - Yves Poumay
- Research Unit for Molecular Physiology (URPhyM), Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium; (C.E.); (C.L.d.R.)
| |
Collapse
|
8
|
Bhattacharya A, Santhoshkumar A, Kurahara H, Harihar S. Metastasis Suppressor Genes in Pancreatic Cancer: An Update. Pancreas 2021; 50:923-932. [PMID: 34643607 DOI: 10.1097/mpa.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), has for long remained a deadly form of cancer characterized by high mortality rates resulting from metastasis to multiple organs. Several factors, including the late manifestation of the disease, partly amplified by lack of efficient screening methods, have hampered the drive to design an effective therapeutic strategy to treat this deadly cancer. Understanding the biology of PDAC progression and identifying critical genes regulating these processes are essential to overcome the barriers toward effective treatment. Metastasis suppressor genes have been shown to inhibit multiple steps in the metastatic cascade without affecting primary tumor formation and are considered to hold promise for treating metastatic cancers. In this review, we catalog the bona fide metastasis suppressor genes reported in PDAC and discuss their known mechanism of action.
Collapse
Affiliation(s)
- Arnav Bhattacharya
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anirudh Santhoshkumar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
9
|
ITIH5, a p53-responsive gene, inhibits the growth and metastasis of melanoma cells by downregulating the transcriptional activity of KLF4. Cell Death Dis 2021; 12:438. [PMID: 33935281 PMCID: PMC8089095 DOI: 10.1038/s41419-021-03707-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
ITIH5, a member of the inter-α-trypsin inhibitory (ITI) gene family, acts as a putative tumour-suppressor gene in many cancers. However, its role and the regulatory mechanism in melanoma are still unclear. Here, we found that the expression of ITIH5 was decreased in melanoma tissues compared with normal skin tissues. Decreased expression of ITIH5 was correlated with clinicopathological features and predicted poor prognosis in patients with melanoma. Forced expression of ITIH5 significantly inhibited melanoma cell proliferation and metastasis in vitro and ex vivo while knockdown of ITIH5 expression enhanced the malignant behaviour of melanoma cells. In further mechanistic studies, we showed that p53 can directly bind to the promoter of ITIH5 and thus promotes transcription of ITIH5 in melanoma cells. Additionally, we found that ITIH5 interacted with Krüppel-like factor 4 (KLF4) and inhibited its transcriptional activity. Collectively, our data not only identified a tumour-suppressive role of ITIH5 in melanoma but also revealed that upregulation of ITIH5 by p53 suppressed melanoma cell growth and migration likely by downmodulating the transcriptional activity of KLF4.
Collapse
|
10
|
Rose M, Noetzel E, Kistermann J, Eschenbruch J, Rushrush S, Gan L, Knüchel R, Gaisa NT, Dahl E. The ECM Modulator ITIH5 Affects Cell Adhesion, Motility and Chemotherapeutic Response of Basal/Squamous-Like (BASQ) Bladder Cancer Cells. Cells 2021; 10:cells10051038. [PMID: 33924987 PMCID: PMC8146567 DOI: 10.3390/cells10051038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
This study aims at characterizing the role of the putative tumor suppressor ITIH5 in basal-type bladder cancers (BLCA). By sub-classifying TCGA BLCA data, we revealed predominant loss of ITIH5 expression in the basal/squamous-like (BASQ) subtype. ITIH5 expression inversely correlated with basal-type makers such as KRT6A and CD44. Interestingly, Kaplan–Meier analyses showed longer recurrence-free survival in combination with strong CD44 expression, which is thought to mediate ITIH-hyaluronan (HA) binding functions. In vitro, stable ITIH5 overexpression in two basal-type BLCA cell lines showing differential CD44 expression levels, i.e., with (SCaBER) and without squamous features (HT1376), demonstrated clear inhibition of cell and colony growth of BASQ-type SCaBER cells. ITIH5 further enhanced HA-associated cell-matrix attachment, indicated by altered size and number of focal adhesion sites resulting in reduced cell migration capacities. Transcriptomic analyses revealed enrichment of pathways and processes involved in ECM organization, differentiation and cell signaling. Finally, we provide evidence that ITIH5 increase sensitivity of SCaBER cells to chemotherapeutical agents (cisplatin and gemcitabine), whereas responsiveness of HT1376 cells was not affected by ITIH5 expression. Thus, we gain further insights into the putative role of ITIH5 as tumor suppressor highlighting an impact on drug response potentially via the HA-CD44 axis in BASQ-type BLCA.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion
- Cell Proliferation
- Cisplatin/administration & dosage
- DNA Methylation
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Gene Expression Regulation, Neoplastic
- Humans
- Neoplasms, Basal Cell/drug therapy
- Neoplasms, Basal Cell/genetics
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/pathology
- Prognosis
- Promoter Regions, Genetic
- Proteinase Inhibitory Proteins, Secretory/genetics
- Proteinase Inhibitory Proteins, Secretory/metabolism
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Gemcitabine
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
- Correspondence: (M.R.); (E.D.); Tel.: +49-241-80-89715 (M.R.); +49-241-80-88431 (E.D.); Fax: +49-241-8082439 (M.R. & E.D.)
| | - Erik Noetzel
- Institute of Biological Information Processing 2 (IBI-2), Mechanobiology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (E.N.); (J.E.)
| | - Jennifer Kistermann
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
| | - Julian Eschenbruch
- Institute of Biological Information Processing 2 (IBI-2), Mechanobiology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (E.N.); (J.E.)
| | - Sandra Rushrush
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
| | - Lin Gan
- IZKF Aachen, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Ruth Knüchel
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
| | - Nadine T. Gaisa
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (J.K.); (S.R.); (R.K.); (N.T.G.)
- Correspondence: (M.R.); (E.D.); Tel.: +49-241-80-89715 (M.R.); +49-241-80-88431 (E.D.); Fax: +49-241-8082439 (M.R. & E.D.)
| |
Collapse
|
11
|
Kottyan LC, Trimarchi MP, Lu X, Caldwell JM, Maddox A, Parameswaran S, Lape M, D'Mello RJ, Bonfield M, Ballaban A, Mukkada V, Putnam PE, Abonia P, Ben-Baruch Morgenstern N, Eapen AA, Wen T, Weirauch MT, Rothenberg ME. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol 2021; 147:255-266. [PMID: 33446330 PMCID: PMC8082436 DOI: 10.1016/j.jaci.2020.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an emerging, chronic, rare allergic disease associated with marked eosinophil accumulation in the esophagus. Previous genome-wide association studies have provided strong evidence for 3 genome-wide susceptibility loci. OBJECTIVE We sought to replicate known and suggestive EoE genetic risk loci and conduct a meta-analysis of previously reported data sets. METHODS An EoE-Custom single-nucleotide polymophism (SNP) Chip containing 956 candidate EoE risk single-nucleotide polymorphisms was used to genotype 627 cases and 365 controls. Statistical power was enhanced by adding 1959 external controls and performing meta-analyses with 2 independent EoE genome-wide association studies. RESULTS Meta-analysis identified replicated association and genome-wide significance at 6 loci: 2p23 (2 independent genetic effects) and 5q22, 10p14, 11q13, and 16p13. Seven additional loci were identified at suggestive significance (P < 10-6): 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, and 22q13. From these risk loci, 13 protein-coding EoE candidate risk genes were expressed in a genotype-dependent manner. EoE risk genes were expressed in disease-relevant cell types, including esophageal epithelia, fibroblasts, and immune cells, with some expressed as a function of disease activity. The genetic risk burden of EoE-associated genetic variants was markedly larger in cases relative to controls (P < 10-38); individuals with the highest decile of genetic burden had greater than 12-fold risk of EoE compared with those within the lowest decile. CONCLUSIONS This study extends the genetic underpinnings of EoE, highlighting 13 genes whose genotype-dependent expression expands our etiologic understanding of EoE and provides a framework for a polygenic risk score to be validated in future studies.
Collapse
Affiliation(s)
- Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Michael P Trimarchi
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael Lape
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Graduate Program in Biomedical Informatics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rahul J D'Mello
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Immunology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Madeline Bonfield
- Immunology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Adina Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Amy A Eapen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
12
|
Hughes TK, Wadsworth MH, Gierahn TM, Do T, Weiss D, Andrade PR, Ma F, de Andrade Silva BJ, Shao S, Tsoi LC, Ordovas-Montanes J, Gudjonsson JE, Modlin RL, Love JC, Shalek AK. Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. Immunity 2020; 53:878-894.e7. [PMID: 33053333 PMCID: PMC7562821 DOI: 10.1016/j.immuni.2020.09.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 05/21/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
High-throughput single-cell RNA-sequencing (scRNA-seq) methodologies enable characterization of complex biological samples by increasing the number of cells that can be profiled contemporaneously. Nevertheless, these approaches recover less information per cell than low-throughput strategies. To accurately report the expression of key phenotypic features of cells, scRNA-seq platforms are needed that are both high fidelity and high throughput. To address this need, we created Seq-Well S3 ("Second-Strand Synthesis"), a massively parallel scRNA-seq protocol that uses a randomly primed second-strand synthesis to recover complementary DNA (cDNA) molecules that were successfully reverse transcribed but to which a second oligonucleotide handle, necessary for subsequent whole transcriptome amplification, was not appended due to inefficient template switching. Seq-Well S3 increased the efficiency of transcript capture and gene detection compared with that of previous iterations by up to 10- and 5-fold, respectively. We used Seq-Well S3 to chart the transcriptional landscape of five human inflammatory skin diseases, thus providing a resource for the further study of human skin inflammation.
Collapse
Affiliation(s)
- Travis K Hughes
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - Todd M Gierahn
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Tran Do
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Weiss
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Priscila R Andrade
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Feiyang Ma
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno J de Andrade Silva
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shuai Shao
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Robert L Modlin
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - J Christopher Love
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Huth S, Huth L, Marquardt Y, Fietkau K, Dahl E, Esser PR, Martin SF, Heise R, Merk HF, Baron JM. Inter-α-Trypsin Inhibitor Heavy Chain 5 (ITIH5) Is a Natural Stabilizer of Hyaluronan That Modulates Biological Processes in the Skin. Skin Pharmacol Physiol 2020; 33:198-206. [PMID: 32799206 DOI: 10.1159/000509371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hyaluronan (HA) is a major component of the skin that exerts a variety of biological functions. Inter-α-trypsin inhibitor heavy chain (ITIH) proteins comprise a family of hyaladherins of which ITIH5 has recently been described in skin, where it plays a functional role in skin morphology and inflammatory skin diseases including allergic contact dermatitis (ACD). OBJECTIVE The current study focused on the ITIH5-HA interaction and its potential clinical and functional impact in extracellular matrix (ECM) stabilization. METHODS Studying the molecular effects of ITIH5 in skin, we established skin models comprising murine skin cells of Itih5 knockout mice and corresponding wild-type controls. In addition, human dermal fibroblasts with an ITIH5 knockdown as well as a murine recombinant Itih5 protein were established to examine the interaction between ITIH5 and HA using in vitro adhesion and HA degradation assays. To understand more precisely the role of ITIH5 in inflammatory skin diseases such as ACD, we generated ITIH5 knockout cells of the KeratinoSens® cell line. RESULTS Using murine skin models, ITIH5 knockdown fibroblasts, and a reactive oxygen species (ROS)-mediated HA degradation assay, we proved that ITIH5 binds to HA, thereby acting as a stabilizer of HA. Moreover, microarray profiling revealed the impact of ITIH5 on biological processes such as skin development and ECM homeostasis. Performing the in vitro KeratinoSens skin sensitization assay, we detected that ITIH5 decreases the sensitizing potential of moderate and strong contact sensitizers. CONCLUSION Taken together, our experiments revealed that ITIH5 forms complexes with HA, thereby on the one hand stabilizing HA and facilitating the formation of ECM structures and on the other hand modulating inflammatory responses.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany,
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hans F Merk
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Abstract
Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.
Collapse
|
15
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Kim B, De La Monte S, Hovanesian V, Patra A, Chen X, Chen RH, Miller MC, Pinar MH, Lim YP, Stopa EG, Stonestreet BS. Ontogeny of inter-alpha inhibitor protein (IAIP) expression in human brain. J Neurosci Res 2019; 98:869-887. [PMID: 31797408 DOI: 10.1002/jnr.24565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.
Collapse
Affiliation(s)
- Boram Kim
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Suzanne De La Monte
- Department of Neurology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Aparna Patra
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Ray H Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Miles C Miller
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mehmet Halit Pinar
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.,ProThera Biologics, Inc., Providence, RI, USA
| | - Edward G Stopa
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
17
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
18
|
Weidle UH, Birzele F, Tiefenthaler G. Potential of Protein-based Anti-metastatic Therapy with Serpins and Inter α-Trypsin Inhibitors. Cancer Genomics Proteomics 2018; 15:225-238. [PMID: 29976628 DOI: 10.21873/cgp.20081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize the principles of anti-metastatic therapy with selected serpin family proteins, such as pigment epithelial-derived factor (PEDF) and maspin, as well as inter α-trypsin inhibitor (IαIs) light chains (bikunin) and heavy chains (ITIHs). Case-by-case, antimetastatic activity may be dependent or independent of the protease-inhibitory activity of the corresponding proteins. We discuss the incidence of target deregulation in different tumor entities, mechanisms of deregulation, context-dependent functional issues as well as in vitro and in vivo target validation studies with transfected tumor cells or recombinant protein as anti-metastatic agents. Finally, we comment on possible clinical evaluation of these proteins in adjuvant therapy.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Basel, Switzerland
| | - Georg Tiefenthaler
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
19
|
Ding S, Chen J, Zeng Q, Lu J, Tan L, Guo A, Kang J, Yang S, Xiang Y, Zuo C, Huang J. Chronic sun exposure is associated with distinct histone acetylation changes in human skin. Br J Dermatol 2018; 179:110-117. [PMID: 29150847 DOI: 10.1111/bjd.16129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Photoageing is attributed to continuous sunlight or artificial ultraviolet exposure and manifests as clinical and histological changes in skin. Epigenetic changes have been found to be involved in the pathogenesis of photoageing. However, the underlying mechanisms are unclear. OBJECTIVES To analyse histone modification patterns in sun-exposed and nonexposed skin, and to identify the abnormally histone-modified genes related to photoageing. METHODS Skin biopsies were collected from both the outer forearm (sun-exposed area) and the buttock (sun-protected area) in 20 healthy middle-aged female volunteers. Global histone H3/H4 acetylation and H3K4/H3K9 methylation statuses were assessed by enzyme-linked immunosorbent assay. Expression levels of histone acetyltransferases and histone deacetylases were measured by reverse-transcriptase quantitative polymerase chain reaction (qPCR) and Western blot. Chromatin immunoprecipitation combined with DNA microarray (ChIP-chip) assay with anti-acetyl-histone H3 antibody in a sun-exposed pool (combining six sun-exposed skin samples) and a nonexposed pool (combining six nonexposed skin samples) was conducted to explore the abnormally acetylated histone H3 genes related to photoageing; ChIP-qPCR was then used to verify the results of ChIP-chip. RESULTS We observed higher global histone H3 acetylation levels increased EP300 and decreased HDAC1 and SIRT1 expression in sun-exposed skin compared with matched nonexposed skin. Furthermore, the ChIP-chip assay showed that 227 genes displayed significant hyperacetylation of histone H3, and 81 genes displayed significant hypoacetylation of histone H3 between the two groups. Histone H3 acetylation levels on the promoters of PDCD5, ITIH5, MMP1 and AHR were positively correlated with the mRNA expression of the corresponding gene. CONCLUSIONS Chronic sun exposure-induced histone H3 hyperacetylation may play a critical role in the pathogenesis of skin photoageing.
Collapse
Affiliation(s)
- S Ding
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Chen
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Q Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Lu
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - L Tan
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - A Guo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Kang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - S Yang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Y Xiang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - C Zuo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Huang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| |
Collapse
|
20
|
Rose M, Kloten V, Noetzel E, Gola L, Ehling J, Heide T, Meurer SK, Gaiko-Shcherbak A, Sechi AS, Huth S, Weiskirchen R, Klaas O, Antonopoulos W, Lin Q, Wagner W, Veeck J, Gremse F, Steitz J, Knüchel R, Dahl E. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol Cancer 2017; 16:44. [PMID: 28231808 PMCID: PMC5322623 DOI: 10.1186/s12943-017-0610-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. Methods ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. Results ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards β1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. Conclusions Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0610-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Erik Noetzel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lukas Gola
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Timon Heide
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Aljona Gaiko-Shcherbak
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio S Sechi
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Oliver Klaas
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Division of Medical Oncology, Department of Internal Medicine, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felix Gremse
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
21
|
Hennies HC. All is balanced: inter-α-trypsin inhibitors as unseen extracellular matrix proteins in epidermal morphology and differentiation. Exp Dermatol 2016; 24:661-2. [PMID: 26014118 DOI: 10.1111/exd.12771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hans Christian Hennies
- Center for Dermatogenetics, Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Martin J, Midgley A, Meran S, Woods E, Bowen T, Phillips AO, Steadman R. Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation. J Biol Chem 2016; 291:13789-801. [PMID: 27143355 DOI: 10.1074/jbc.m115.670521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Fibroblasts are central to wound healing and fibrosis through TGFβ1-triggered differentiation into contractile, α-smooth muscle actin (α-SMA)-positive myofibroblasts. This is mediated by accumulation of a pericellular matrix of hyaluronan (HA) and the HA-dependent co-localization of CD44 with the epidermal growth factor receptor (EGFR). Interactions of HA with hyaladherins, such as inter-α-inhibitor (IαI) and tumor necrosis factor-stimulated gene-6 (TSG-6), are also essential for differentiation. This study investigated the mechanisms involved. TSG-6 and α-SMA had different kinetics of induction by TGFβ1, with TSG-6 peaking before α-SMA Si CD44 or EGFR inhibition prevented differentiation but had no effect on TSG-6 expression. TSG-6 was essential for differentiation, and mAb A38 (preventing IαI heavy chain (HC) transfer), HA-oligosaccharides, cobalt, or Si bikunin prevented TSG-6 activity, preventing differentiation. A38 also prevented the EGFR/CD44 association. This suggested that TSG-6/IαI HC interaction was necessary for the effect of TSG-6 and that HC stabilization of HA initiated the CD44/EGFR association. The newly described HC5 was shown to be the principal HC expressed, and its cell surface expression was prevented by siRNA inhibition of TSG-6 or bikunin. HC5 was released by hyaluronidase treatment, confirming its association with cell surface HA. Finally, HC5 knockdown by siRNA confirmed its role in myofibroblast differentiation. The current study describes a novel mechanism linking the TSG-6 transfer of the newly described HC5 to the HA-dependent control of cell phenotype. The interaction of HC5 with cell surface HA was essential for TGFβ1-dependent differentiation of fibroblasts to myofibroblasts, highlighting its importance as a novel potential therapeutic target.
Collapse
Affiliation(s)
- John Martin
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Adam Midgley
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Soma Meran
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Emma Woods
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Timothy Bowen
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Aled O Phillips
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Robert Steadman
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|