1
|
Park H, Kim B, Kang Y, Kim W. Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts. Curr Issues Mol Biol 2024; 46:2133-2143. [PMID: 38534753 PMCID: PMC10969706 DOI: 10.3390/cimb46030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Guava (Psidium guajava) is a plant widely distributed in tropical and subtropical regions. Its leaves contain a large amount of physiological molecules such as flavonoid, sesquiterpene, triterpenoid, coumarin, alkaloid, and tannin molecules with antioxidative and anti-inflammatory effects. In this study, the use of concentrated P. guajava leaf extract molecules as a functional natural material was evaluated by confirming the extract's antioxidative, antibacterial, tyrosinase activity inhibition, and collagenase activity inhibition effects and its trans-2-nonenal removal ability. As a result of the analysis of the antioxidant and antibacterial components of concentrated P. guajava leaf extract molecules through GC-MS, a large amount of aromatic hydrocarbon molecules were detected. When different concentrations of ethanol were used for extraction, the leaf extract concentrated with 70% ethanol showed the most effective active molecules. As a result of measuring DPPH radical scavenging activity, a concentration-dependent antioxidant activity was confirmed. The antioxidant activity tended to increase when the ethanol content used for extraction was increased. Molecules such as 2,4-di-tert-butylphenol, caryophyllene oxide, and γ-muurolene in P. guajava leaf extract concentrate appeared to have antibacterial activities against S. aureus bacteria known to cause atopy. As ethanol content increased, the inhibitory effect on tyrosinase activity was increased. In addition, when ethanol content was 50%, the concentrated leaf extract was able to remove trans-2-nonenal by 52.4%. As a result of determining the concentrated leaf extract's collagenase inhibition activity, an inhibition rate close to that of ascorbic acid, a positive control, was confirmed. The concentrated guajava leaf extract molecules were confirmed to have whitening and wrinkle-improving functionality. Thus, the P. guajava leaf extract has high potential as a food and natural cosmetic material.
Collapse
Affiliation(s)
- Hyonam Park
- Department of Cosmetic Science, Hannam University, Daejeon 305-811, Republic of Korea;
| | - Bohee Kim
- Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea; (B.K.); (Y.K.)
| | - Yuri Kang
- Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea; (B.K.); (Y.K.)
| | - Woonjung Kim
- Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea; (B.K.); (Y.K.)
| |
Collapse
|
2
|
Sam Arul Raj M, Amalraj S, Alarifi S, Kalaskar MG, Chikhale R, Santhi VP, Gurav S, Ayyanar M. Nutritional Composition, Mineral Profiling, In Vitro Antioxidant, Antibacterial and Enzyme Inhibitory Properties of Selected Indian Guava Cultivars Leaf Extract. Pharmaceuticals (Basel) 2023; 16:1636. [PMID: 38139763 PMCID: PMC10747950 DOI: 10.3390/ph16121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/24/2023] Open
Abstract
Psidium guajava L. is a small evergreen tree known for its magnificent medicinal and nutritional value. This study aimed to evaluate the nutritional profile and in vitro pharmacological potentialities of the different leaf extracts of four cultivars of Psidium guajava namely Surka chitti, Allahabad safeda, Karela, and Lucknow-49. The standard procedures of the Association of Official Analytical Chemists (AOAC) were followed to carry out the nutritional analysis and all of the cultivars recorded the presence of elements at a nominal range. The highest presence of phenols (125.77 mg GAE/g) and flavonoids (92.38 mg QE/g) in the methanolic leaf extract of the Karela cultivar was recorded. A wide range of minerals such as sodium, phosphorus, magnesium, zinc, and boron were recorded with a higher percentage in the Karela cultivar of Psidium guajava. In the enzyme inhibitory assays, Allahabad safeda showed potential inhibition with an IC50 of 113.31 ± 1.07, 98.2 ± 0.66 and 95.73 ± 0.39 μg/mL in α-amylase, α-glucosidase, and tyrosinase inhibition assays, respectively. The strong antioxidant effect was established by Lucknow-49 (IC50 of 74.43 ± 1.86 μg/mL) and Allahabad safeda (IC50 of 78.93 ± 0.46 μg/mL) for ABTS and DPPH assays, respectively. The ethyl acetate and methanolic leaf extracts of the Allahabad safeda cultivar showed better inhibition against Pseudomonas aeruginosa with an MIC of 14.84 and 28.69 µg/mL, respectively. A decent mean zone of inhibition was recorded in methanolic leaf extract that ranged from 21-25 mm in diameter against the tested bacterial strains (Proteus vulgaris, Bacillus subtilis, and P. aeruginosa). This is the first scientific report on the comparative and comprehensive analysis of indigenous guava cultivars to evidently shortlist the elite cultivars with enriched dietary nutrition and biological activities.
Collapse
Affiliation(s)
- Moses Sam Arul Raj
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur 613 503, India;
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi 683 104, India;
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohan G. Kalaskar
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, India;
| | - Rupesh Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Veerasamy Pushparaj Santhi
- Department of Horticulture, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Navalur Kuttappattu, Tiruchirappalli 620 027, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji 403 001, India;
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur 613 503, India;
| |
Collapse
|
3
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022; 27:molecules27144360. [PMID: 35889231 PMCID: PMC9324663 DOI: 10.3390/molecules27144360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
- Correspondence:
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
5
|
Phan HTL, Nam YR, Kim HJ, Woo JH, NamKung W, Nam JH, Kim WK. In-vitro and in-vivo anti-allergic effects of magnolol on allergic rhinitis via inhibition of ORAI1 and ANO1 channels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115061. [PMID: 35114342 DOI: 10.1016/j.jep.2022.115061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Magnoliae (the dried flower buds of Magnolia biondii Pamp, FM) is a known herbal traditional medicine used for the symptomatic relief of nasal congestion and rhinorrhea caused by rhinitis and sinusitis. Magnolol, a neolignan from the magnolia family, is a secondary metabolite known to have anti-allergic and anti-inflammatory effects. However, the underlying mechanisms and therapeutic effect of magnolol in the treatment of allergic rhinitis (AR) remain elusive. AIMS OF THE STUDY Anoctamin 1 (ANO1), a calcium-activated anion channel, mediates mucus and electrolyte secretion in nasal airway epithelial cells, whereas calcium release-activated calcium channel protein 1 (ORAI1) participates in the activation of T-lymphocytes and mast cells. The aim of our study is to understand the mechanisms of action of magnolol against AR, i.e., whether it acts through the modulation of ANO1 and ORAI1 channels that are expressed in nasal epithelial cells and T-lymphocytes, respectively. MATERIALS AND METHODS Whole-cell patch clamp was used to record the activity of ORAI1 and ANO1 ion channels in ORAI1 or ANO1 overexpressed HEK293T cells, while the Ussing chamber apparatus was used to measure electrolyte transport via the epithelium, in Calu-3 cells cultured in an air-liquid interface. Additionally, calcium imaging of Jurkat T-lymphocytes was used to assess changes in the intracellular calcium concentration. Magnolol toxicity was assessed using the CCK-8 assay, and its effect on T-lymphocyte proliferation was measured by labeling human primary T-lymphocytes with carboxyfluorescein succinimidyl ester. Finally, OVA-induced Balb/c mice were employed to evaluate the effect of magnolol on nasal symptoms, as well as cytokine and eosinophil infiltration in AR. RESULTS Magnolol inhibits ORAI1 and ANO1 channels in a concentration-dependent manner. Magnolol (30 μM) inhibits anti-CD3 induced cellular proliferation and production of IL-2 via ORAI1 channels in T-lymphocytes. Further, ATP-induced electrolyte transport mediated by ANO1 channels is significantly inhibited by magnolol in IL-4 sensitized Calu-3 cells. Notably, 300 μM magnolol significantly attenuates cytokine and eosinophil infiltration, thus alleviating AR symptoms in mice OVA-induced AR. CONCLUSION Magnolol may be a promising therapeutic agent for the treatment and prevention of AR.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Yu Ran Nam
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun Jong Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Joo Han Woo
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea
| | - Wan NamKung
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea; Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
6
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
7
|
Uptake of Vitamins D 2, D 3, D 4, D 5, D 6, and D 7 Solubilized in Mixed Micelles by Human Intestinal Cells, Caco-2, an Enhancing Effect of Lysophosphatidylcholine on the Cellular Uptake, and Estimation of Vitamins D' Biological Activities. Nutrients 2021; 13:nu13041126. [PMID: 33805560 PMCID: PMC8067314 DOI: 10.3390/nu13041126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamins D have various biological activities, as well as intestinal calcium absorption. There has been recent concern about insufficient vitamin D intake. In addition to vitamins D2 and D3, there are lesser-known vitamins D4–D7. We synthesized vitamins D5–D7, which are not commercially available, and then evaluated and compared the mixed micelles-solubilized vitamins D uptake by Caco-2 cells. Except for vitamin D5, the uptake amounts of vitamins D4–D7 by differentiated Caco-2 cells were similar to those of vitamins D2 and D3. The facilitative diffusion rate in the ezetimibe inhibited pathway was approximately 20% for each vitamin D type, suggesting that they would pass through the pathway at a similar rate. Lysophosphatidylcholine enhanced each vitamin D uptake by approximately 2.5-fold. Lysophosphatidylcholine showed an enhancing effect on vitamin D uptake by reducing the intercellular barrier formation of Caco-2 cells by reducing cellular cholesterol, suggesting that increasing the uptakes of vitamins D and/or co-ingesting them with lysophosphatidylcholine, would improve vitamin D insufficiency. The various biological activities in the activated form of vitamins D4–D7 were estimated by Prediction of Activity Spectra for Substances (PASS) online simulation. These may have some biological activities, supporting the potential as nutritional components.
Collapse
|
8
|
Woo JH, Nam DY, Kim HJ, Hong PTL, Kim WK, Nam JH. Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:87-94. [PMID: 33361541 PMCID: PMC7756533 DOI: 10.4196/kjpp.2021.25.1.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at –60 mV and ORAI1 current by 97% ± 1% at –120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.
Collapse
Affiliation(s)
- Joo Han Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | | | - Hyun Jong Kim
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Phan Thi Lam Hong
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
9
|
Picardo M, Taïeb A. Focus Theme Issue: "Vitiligo and other pigmentary disorders". Exp Dermatol 2020; 28:639-641. [PMID: 31215722 DOI: 10.1111/exd.13974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Alain Taïeb
- INSERM U 1035, University of Bordeaux, Bordeaux, France
| |
Collapse
|
10
|
Wolf P, de Gruijl F. Focus theme issue December 2016: Photobiology & photodermatology: "Photobiology first". Exp Dermatol 2018; 25:935-936. [PMID: 27897336 DOI: 10.1111/exd.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Frank de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade. Int J Mol Sci 2017; 18:ijms18040897. [PMID: 28441777 PMCID: PMC5412476 DOI: 10.3390/ijms18040897] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Today, there is increasing interest in discovering new bioactive compounds derived from ethnomedicine. Preparations of guava (Psidium guajava L.) leaves have traditionally been used to manage several diseases. The pharmacological research in vitro as well as in vivo has been widely used to demonstrate the potential of the extracts from the leaves for the co-treatment of different ailments with high prevalence worldwide, upholding the traditional medicine in cases such as diabetes mellitus, cardiovascular diseases, cancer, and parasitic infections. Moreover, the biological activity has been attributed to the bioactive composition of the leaves, to some specific phytochemical subclasses, or even to individual compounds. Phenolic compounds in guava leaves have been credited with regulating blood-glucose levels. Thus, the aim of the present review was to compile results from in vitro and in vivo studies carried out with guava leaves over the last decade, relating the effects to their clinical applications in order to focus further research for finding individual bioactive compounds. Some food applications (guava tea and supplementary feed for aquaculture) and some clinical, in vitro, and in vivo outcomes are also included.
Collapse
|
12
|
Nam Y, Kim HJ, Kim YM, Chin YW, Kim YK, Bae HS, Nam JH, Kim WK. Activation of transient receptor potential vanilloid 3 by the methanolic extract of Schisandra chinensis fruit and its chemical constituent γ-schisandrin. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:309-316. [PMID: 28461773 PMCID: PMC5409111 DOI: 10.4196/kjpp.2017.21.3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 01/12/2023]
Abstract
Transient receptor potential vanilloid 3 (TRPV3) is a non-selective cation channel with modest permeability to calcium ions. It is involved in intracellular calcium signaling and is therefore important in processes such as thermal sensation, skin barrier formation, and wound healing. TRPV3 was initially proposed as a warm temperature sensor. It is activated by synthetic small-molecule chemicals and plant-derived natural compounds such as camphor and eugenol. Schisandra chinensis (Turcz.) Baill (SC) has diverse pharmacological properties including antiallergic, anti-inflammatory, and wound healing activities. It is extensively used as an oriental herbal medicine for the treatment of various diseases. In this study, we investigated whether SC fruit extracts and seed oil, as well as four compounds isolated from the fruit can activate the TRPV3 channel. By performing whole-cell patch clamp recording in HEK293T cells overexpressing TRPV3, we found that the methanolic extract of SC fruit has an agonistic effect on the TRPV3 channel. Furthermore, electrophysiological analysis revealed that γ-schisandrin, one of the isolated compounds, activated TRPV3 at a concentration of 30 µM. In addition, γ-schisandrin (~100 µM) increased cytoplasmic Ca2+ concentrations by approximately 20% in response to TRPV3 activation. This is the first report to indicate that SC extract and γ-schisandrin can modulate the TRPV3 channel. This report also suggests a mechanism by which γ-schisandrin acts as a therapeutic agent against TRPV3-related diseases.
Collapse
Affiliation(s)
- Yuran Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea
| | - Yung Kyu Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Hyo Sang Bae
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| |
Collapse
|