1
|
Yu E, Oh SW, Park SH, Kwon K, Han SB, Kang SH, Lee JH, Ha H, Yoon D, Jung E, Song M, Cho JY, Lee J. The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3-TRPV1. J Invest Dermatol 2025; 145:908-918.e6. [PMID: 39241981 DOI: 10.1016/j.jid.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. Calcium ion induced the activation of calcium/calmodulin-dependent protein kinase II and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between clusterin and LC3B but the expression of activating transcription factor family. These findings demonstrate that the pigmenting effects of blue light are mediated by calcium/calmodulin-dependent protein kinase II- and MAPK-mediated signaling as well as clusterin-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting, to our knowledge, a previously unreported signaling pathway through which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and clusterin could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.
Collapse
Affiliation(s)
- Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City, Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Hyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Jung Hyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Donghoon Yoon
- Myeloma Center, Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seongnam, Korea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
2
|
Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12953. [PMID: 38353352 DOI: 10.1111/phpp.12953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND /PURPOSE Melasma and solar lentigo (SL) are major benign hyperpigmented lesions, and both have been shown to involve the dermal vasculature. This review discusses current knowledge regarding the clinical characteristics of dermal vascularity in melasma and SL, as well as the results of relevant molecular biological investigations. METHODS PubMed and Google Scholar were searched in December 2023 to identify articles related to melasma, SL, and the dermal vasculature in these lesions. RESULTS Vascular morphologies in melasma and SL have been detected by histological and non-invasive methods, including modalities such as optical coherence tomography. Biological studies have indicated that factors secreted from vascular endothelial cells, such as stem cell factor and endothelin-1, can promote melanogenesis. With respect to phototherapy, blood vessel-targeting laser treatments are expected to provide long-term suppression of pigmentation, but this regimen is only effective when dilated capillaries are visible. CONCLUSION In both melasma and SL, clinical and experimental investigations are revealing the contributions of dermal vascularity to hyperpigmentation. More effective treatment may require identification of hyperpigmentation subtypes. In the future, knowledge of treatment (including phototherapy) is expected to accumulate through reliable and validated non-invasive measurements.
Collapse
Affiliation(s)
- Yusuke Hara
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Takako Shibata
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| |
Collapse
|
3
|
Massri M, Toonen EJ, Sarg B, Kremser L, Grasse M, Fleischer V, Torres-Quesada O, Hengst L, Skjoedt MO, Bayarri-Olmos R, Rosbjerg A, Garred P, Orth-Höller D, Prohászka Z, Würzner R. Complement C7 and clusterin form a complex in circulation. Front Immunol 2024; 15:1330095. [PMID: 38333209 PMCID: PMC10850381 DOI: 10.3389/fimmu.2024.1330095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum‑purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size‑exclusion chromatography. Results Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Sarg
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marco Grasse
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Fleischer
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Immunology & Microbiology , University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
- MB-LAB Clinical Microbiology Laboratory, Innsbruck, Austria
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Chen J, Zheng Y, Hu C, Jin X, Chen X, Xiao Y, Wang C. Hair Graying Regulators Beyond Hair Follicle. Front Physiol 2022; 13:839859. [PMID: 35283766 PMCID: PMC8908028 DOI: 10.3389/fphys.2022.839859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hair graying is an interesting physiological alteration associated with aging and certain diseases. The occurrence is due to depigmentation of the hair caused by depletion and dysfunction of melanocyte stem cells (MeSCs). However, what causes the depletion and dysfunction of MeSCs remains unclear. MeSCs reside in the hair follicle bulge which provides the appropriate niche for the homeostasis of various stem cells within hair follicle including MeSCs. In addition to local signaling from the cells composed of hair follicle, emerging evidences have shown that nerves, adipocytes and immune cells outside of hair follicle per se also play important roles in the regulation of MeSCs. Here, we review the recent studies on different cells in the MeSCs microenvironment beyond the hair follicle per se, discuss their function in regulating hair graying and potentially novel treatments of hair graying.
Collapse
Affiliation(s)
- Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yixin Zheng
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Chen Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Chen
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Ying Xiao,
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
- *Correspondence: Chaochen Wang,
| |
Collapse
|
5
|
Farag AGA, Badr EAE, El-Shafey AESS, Elshaib ME. Fatty acid-binding protein 4 circulating levels in non-segmental vitiligo. An Bras Dermatol 2021; 97:28-36. [PMID: 34839983 PMCID: PMC8799849 DOI: 10.1016/j.abd.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Vitiligo is an acquired and progressive mucocutaneous disease resulting from the loss of active epidermal melanocytes. Metabolic syndrome (MetS) affects about 25% of the world’s population and is linked to inflammatory skin diseases including vitiligo. Fatty Acid-Binding Protein 4 (FABP4) is an intracellular lipid chaperone. FABP4 is closely associated with MetS. Objectives To evaluate the serum level of FABP4 in vitiligo patients and its relation to MetS in the investigated cases. Methods This case control study was conducted on 45 patients having non segmental vitiligo and 45 matched controls. Their lipid profile, blood glucose and serum FABP4 levels were measured. Results There were significant elevations in FABP4 (p < 0.001), cholesterol (p < 0.001), triglycerides (p = 0.005), and glucose (fasting [p = 0.001] and 2 hours post prandial [p < 0.001]) levels in patients in comparison with controls. MetS was significantly more prevalent among vitiligo patients (p < 0.001) and associated with high FABP4 serum levels (p = 0.037). In vitiligo patients, there were significant positive correlations between FABP4 serum levels and triglycerides (p = 0.047), cholesterol (p = 0.001) and LDL (p = 0.001) levels and negative correlation regarding HDL level (p = 0.009). FABP4 level was a significantly good diagnostic test for early detection of vitiligo (p < 0.001). Study limitations The small number of studied subjects. Conclusions FABP4 may play an active role in the disease process of vitiligo that could be mediated through associated dyslipidemia and hyperglycemia. FABP4 may be a marker of vitiligo helping in its early diagnosis, but it does not appear to be useful for determining vitiligo severity, activity or associated MetS.
Collapse
Affiliation(s)
| | - Eman A E Badr
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin AlKom, Egypt
| | | | | |
Collapse
|
6
|
Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res 2021; 34:800-813. [PMID: 34048137 DOI: 10.1111/pcmr.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.
Collapse
Affiliation(s)
- Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Lee JW, Kim TH, Park TJ, Kang HY. p16 ink4a Positivity of Melanocytes in Non-Segmental Vitiligo. Diagnostics (Basel) 2020; 10:diagnostics10110878. [PMID: 33126704 PMCID: PMC7694005 DOI: 10.3390/diagnostics10110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is induced in response to cellular stressors such as increased levels of reactive oxygen species. The chronic accumulation of senescent cells is currently recognized as a contributor to the pathologic processes of diverse degenerative diseases. Vitiligo is characterized by the disappearance of melanocytes driven by cellular stress within melanocytes and autoimmune processes. In this study, we examined p16INK4A positivity in the lesional and perilesional skin of 54 non-segmental vitiligo patients to explore cellular senescence in vitiligo. There were more p16INK4A-positive melanocytes in the perilesional vitiligo skin samples than in control samples. It was also found that p16INK4A immunoreactivity was not restricted to melanocytes but also existed in fibroblasts; the number of p16INK4A-positive fibroblasts was significantly increased in lesional skin compared to perilesional skin and normal controls. However, in the subgroup analysis of sun-exposed and non-exposed samples, this outcome was only found at sun-exposed sites, suggesting that fibroblast senescence is an epiphenomenon related to the loss of pigment in skin with vitiligo. In summary, exploring p16INK4A positivity in vitiligo revealed melanocyte senescence in perilesional skin, which may play a role in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Tae Hyung Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon 443–721, Korea;
| | - Tae Jun Park
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443–721, Korea
- Institute on Ageing, Ajou University Medical Center, Suwon 443–721, Korea
- Correspondence: (T.J.P.); (H.Y.K.); Tel.: +82-31-219-5055 (T.J.P.); +82-31-219-5188 (H.Y.K.)
| | - Hee Young Kang
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Dermatology, Ajou University School of Medicine, Suwon 443–721, Korea;
- Correspondence: (T.J.P.); (H.Y.K.); Tel.: +82-31-219-5055 (T.J.P.); +82-31-219-5188 (H.Y.K.)
| |
Collapse
|
8
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
9
|
Kim Y, Kang B, Kim JC, Park TJ, Kang HY. Senescent Fibroblast-Derived GDF15 Induces Skin Pigmentation. J Invest Dermatol 2020; 140:2478-2486.e4. [PMID: 32416083 DOI: 10.1016/j.jid.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Senescent fibroblasts play a role in aging pigmentation. In this study, we found that GDF15 expression levels are increased in UV-irradiated senescent fibroblasts and photoaged hyperpigmented skin. To investigate the effects of GDF15 on melanogenesis, normal human melanocytes were cocultured with fibroblasts infected with the GDF15 lentivirus or GDF15 short hairpin RNA. It was found that GDF15 stimulates melanogenesis in melanocytes through MITF/tyrosinase upregulation via β-catenin signaling. The stimulatory action of GDF15 during pigmentation was further confirmed in ex vivo cultured skin and in a reconstituted human skin sample. These results suggest that senescent fibroblast-derived GDF15 stimulates skin pigmentation and may play a role in aging-associated pigmentation.
Collapse
Affiliation(s)
- Yeongeun Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea
| | - Bogyeong Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea
| | - Jin Cheol Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Tae Jun Park
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea; Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| |
Collapse
|
10
|
Klyuchareva SV, Ponomarev IV, Topchiy SB, Pushkareva AE, Andrusenko YN. Treatment of Basal Cell Cancer With a Pulsed Copper Vapor Laser: A Case Series. J Lasers Med Sci 2019; 10:350-354. [PMID: 31875131 PMCID: PMC6885912 DOI: 10.15171/jlms.2019.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Basal cell carcinoma (BCC) is the most prevalent form of non-melanoma skin cancer commonly arising in elderly patients. Currently, many laser systems are applied for the treatment of BCC. However, up to the present, there have been several reports concerning ocular side effects due to the laser procedure in the borders of the periorbital area. This determines the feasibility of testing new laser surgical modes for the management of periorbital BCC. This stuay aimed to estimate both the efficacy, the early post-radiated side effects and long-term outcomes of the CVL treatment of periorbital BCC. Patients and Methods: Two men and 6 women aged 50 to 77 years were diagnosed with periorbital BCC according to the data of both the clinical evaluation and histological examination of the tissue samples taken from the involved area. Six months after the laser treatment, the histological examination of skin samples from the borderline of the irradiated area was made again. All patients were followed for 24 months after the laser treatment of BCC. The laser treatment was administered during one session of copper vapor laser (CVL) (Yakhroma-Med model). The treatment included CVL radiation with a wavelength of 511 nm and 578 nm, in the ratio of 3:2. The power level was set up to 3 W, and the exposure time was equal from 200 to 600 ms. The pulse duration accounted for 15 ns. The diameter of the light spot on the skin surface amounted to 1 mm. Results: Dual-wavelengths CVL treatment of periorbital BCC provided a complete elimination of malignant cells and dysplastic vessels during one procedure. The duration of skin healing amounted to 2-4 weeks. There were neither ocular injuries or pronounced skin side effects nor relapses within 24 months after the laser procedure. Conclusion: CVL treatment of periorbital BCC provides relevant cosmetic results without ocular injuries and relapses.
Collapse
Affiliation(s)
- Svetlana V. Klyuchareva
- Department of Dermatovenereology, I.I. Mechnikov North-Western State Medical University, 47, Piskarevkiy Prospect, St. Petersburg, 195067, Russian Federation
| | - Igor V. Ponomarev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53, Leninskiy Prospect, Moscow, 119991, Russian Federation
| | - Sergey B. Topchiy
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53, Leninskiy Prospect, Moscow, 119991, Russian Federation
| | - Alexandra E. Pushkareva
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 49, Kronverkskiy Prospect, St. Petersburg, 197101, Russian Federation
| | | |
Collapse
|
11
|
Kim M, Shibata T, Kwon S, Park TJ, Kang HY. Ultraviolet-irradiated endothelial cells secrete stem cell factor and induce epidermal pigmentation. Sci Rep 2018. [PMID: 29523807 PMCID: PMC5844989 DOI: 10.1038/s41598-018-22608-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultraviolet (UV)-associated hyperpigmented skins are characterized with increased vasculature underlying pigmentation, suggestive of the possible biological role of endothelial cells in the regulation of skin pigmentation during UV irradiation. In this study, we showed that UV-irradiated endothelial cells significantly increased the pigmentation of melanocytes through epithelial-mesenchymal crosstalk. The stimulatory effect of endothelial cells was further demonstrated using ex vivo human skin. RNA sequence analysis and enzyme-linked immunosorbent assay showed that endothelial cells secrete more stem cell factor (SCF) upon UV irradiation than non-irradiated cells. The increased pigmentation elicited by endothelial cells was abrogated following inhibition of SCF/c-KIT signaling. Together these results suggest that endothelial cells are activated upon UV exposure to release melanogenic factors such as SCF, which contributes to the development of skin hyperpigmentation during chronic sun exposure.
Collapse
Affiliation(s)
- Misun Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | | | - Soohyun Kwon
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea. .,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| |
Collapse
|