1
|
Wang M, Li Y, Lai X, Shi C, Yan Y. The clinical effects and skin histological changes induced by a novel insulated radiofrequency microneedle: a pilot study. Lasers Med Sci 2025; 40:98. [PMID: 39960528 DOI: 10.1007/s10103-025-04354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025]
Abstract
Radiofrequency microneedle (RFMN) could mechanically penetrates the epidermis and emits radiofrequency energy to the target skin layer. This innovative system offers the capability to deliver precisely controlled radiofrequency energy at varying depths within the skin in a single insertion. We hypothesized that the new RFMN could improve both pore size and skin laxity simultaneously by single insertion and multiple discharges, thus reducing the number of treatment passes and improving the treatment efficiency. Therefore, we carried out this pilot study to confirm the clinical effects and corresponding histological changes. In clinical part, 3 subjects received a single RFMN treatment. Subjects' faces were randomly divided into superficial base-energy and deep high-energy side or superficial high-energy and deep base-energy side. Facial characteristics were documented using standardized photographic techniques at various points in the study. In animal experiment, the abdomen of Bama miniature pig was divided into 4 treatment zones: the blank control group; superficial base-energy and deep high-energy group; superficial high-energy and deep base-energy group; no energy control group. Skin samples were collected immediately and 1 month post-treatment for histological analysis to observe the corresponding histological changes. Immediately after treatment, we found that the severity of erythema and petechiae may be related to the parameter settings. 1 month after treatment, improvement in skin laxity and facial pore size on both sides of the face was observed. The treatment resulted in a more significant improvement in relaxation on the superficial base-energy and deep high-energy side, but the pore improvement appeared to be more pronounced on the superficial high-energy and deep base-energy side. A trend of decreasing intensity in vascular dilatation was observed across the treatment groups, with the superficial high-energy and deep base-energy group exhibiting the most pronounced dilation. Histological observations immediately after treatment revealed that 2 seperated injury zones, which was caused by the same needle discharged electric twice, and one charge in the deep and one in the shallow. Immediate post-treatment dilation of blood vessels in all treatment groups was observed. A trend of decreasing intensity in vascular dilatation was observed across the treatment groups, with the superficial high-energy and deep base-energy group exhibiting the most pronounced dilation. 1 month post-treatment, histological analysis revealed an increase in dermal thickness, elastin, collagen fiber thickness and density, perivascular inflammatory cell infiltration across all treatment groups. Overall, our study demonstrated that variations in energy delivered at different depths by a new RFMN could induce distinct histological changes and corresponding clinical efficacy. This finding holds promise for optimizing the clinical application of RFMN. By tailoring the depth and energy settings in one insertion, specific concerns such as enlarged pores or facial laxity can be addressed more efficiently.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Shijingshan District, Beijing, 100144, China
| | - Yi Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Shijingshan District, Beijing, 100144, China
| | - Xiaodong Lai
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Shijingshan District, Beijing, 100144, China
| | - Congqi Shi
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Shijingshan District, Beijing, 100144, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
2
|
Lin F, Song J, Hua Y, Pan L, Guo Y, Hu G, Yang B. Therapeutic Effectiveness of Microneedling Radio Frequency in Different Areas of Periorbital Static Wrinkles: A Self-Controlled Study. J Cosmet Dermatol 2025; 24:e16645. [PMID: 39600078 PMCID: PMC11743244 DOI: 10.1111/jocd.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Periocular static wrinkles, which are common cosmetic concerns, lack an established effective treatment. Microneedling radio frequency (MNRF) has shown promise in skin rejuvenation; however, there is limited objective information on its long-term effectiveness with regard to periocular static wrinkles. AIMS This study aimed to evaluate the clinical efficacy and safety of MNRF treatment for periocular static wrinkles. METHOD Eighteen participants with moderate to severe wrinkles were enrolled in this study. MNRF treatment was applied to the periocular skin using MicroRF9 microneedles, which have a depth of 0.5-1.5 mm and a pulse width of 200-300 ms. MNRF treatment was administered twice with a 1-month interval, and the participants were followed up for 6 months. The evaluation included four areas, namely the outer canthi, lower eyelid, inner canthi, and upper eyelid, by using clinical assessments and Antera 3D measurements by digitalized images and grading by clinicians. RESULTS The results showed significant improvement in all four areas assessed. Participants expressed high satisfaction with the treatment, and any adverse events, such as mild pain and redness, were temporary and resolved within a week. CONCLUSION These findings confirm that MNRF is a safe and effective method for reducing periocular static wrinkles.
Collapse
Affiliation(s)
- Feiyan Lin
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinru Song
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ying Hua
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liangli Pan
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yao Guo
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Gang Hu
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Bin Yang
- Dermatology HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Zhang C, Jin H, Kang Y, Wu Y, Zheng R, Zhang Z, Xu H, Cai W, Gao X, Liu H, Mao N, Yang J. IL-17A-neutralizing antibody ameliorates inflammation and fibrosis in rosacea by antagonizing the CXCL5/CXCR2 axis. FASEB J 2024; 38:e70096. [PMID: 39370827 DOI: 10.1096/fj.202400006r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Rosacea is a chronic inflammatory skin disorder that can lead to fibrosis. However, the mechanisms underlying fibrosis in the later stages of rosacea have been less thoroughly investigated. Interleukin-17A (IL-17A) has been implicated in both inflammation and organ fibrosis; however, the effectiveness and mechanism of IL-17A-neutralizing antibodies in the later stages of rosacea-related fibrosis remain unclear. In this study, we induced rosacea-like lesions in mice using LL-37 and administered IL-17A-neutralizing antibodies. The results indicated that the IL-17A-neutralizing antibodies alleviated skin damage, reduced skin thickness, and decreased the secretion of inflammatory factors (TNF-α, CAMP, TLR4, P-NF-kB), angiogenesis-related factors (CD31, VEGF), and the TGF-β1 signaling pathway, along with factors associated with epithelial-mesenchymal transition and the deposition of fibrosis-related proteins (COL1) in the rosacea-like mouse models. Furthermore, the IL-17A-neutralizing antibodies effectively diminished the expression of IL-17, IL-17R, CXCL5, and CXCR2 in the skin. Our findings demonstrate that IL-17A-neutralizing antibodies inhibit the activation of the CXCL5/CXCR2 axis in rosacea-like skin tissue, thereby ameliorating inflammation and fibrosis associated with the condition.
Collapse
Affiliation(s)
- Chuanxi Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Hui Jin
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yumeng Kang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Yiling Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Ruiping Zheng
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Ziyan Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
- National Health Commission (NHC) Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemin Gao
- School of Public Health, North China University of Science and Technology, Tangshan, China
- National Health Commission (NHC) Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jie Yang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
Li D, Li Y, Yang Z, Chen J, Yang D, Wang J, Xiong H. Efficacy of fractional radiofrequency in the treatment of erythematous capillary rosacea: A split-face study. J Cosmet Dermatol 2024; 23:2895-2904. [PMID: 38943266 DOI: 10.1111/jocd.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE To assess the effectiveness and safety of treating erythematotelangiectatic rosacea using fractional radiofrequency (FRF). METHODS Twenty patients with a confirmed diagnosis of erythema capillaris rosacea were selected, and one side of each patient's face was randomly assigned to receive FRF treatments for three to six times, with an interval of 2 weeks between each treatment. VISIA, dermoscopy, and the Clinician's Erythema Evaluation Scale (CEA) were applied to evaluate the efficacy of the treatment before and after the treatment, to record the VAS scores and adverse reactions, and to conduct a patient satisfaction survey. RESULTS The characteristic counts and scores of red zone and porphyrin as assessed by VISIA test were significantly decreased, and the difference between the treated side and the pretreatment side was statistically significant (p < 0.05), and the efficacy of the treatment was statistically insignificant compared with the control side, except for the red zone and porphyrin which were statistically significant before and after the treatment (p > 0.05). By CEA score, the difference between the treated side after treatment and the control side was statistically significant (p < 0.05), and the difference between the treated side before and after treatment was statistically significant (p < 0.05); the difference between the control side before and after treatment was not statistically significant (p > 0.05). Dermatoscopic observation showed reduction in pore size, reduction of yellowish-white and black horn plugs within the pores, lightening of the red background and thinning and blurring of the capillary structure on the treated side of the skin compared to the control side, and the skin on the treated side showed the above mentioned changes before and after the treatment as well. The mean pain score of the subjects was obtained by VAS score 3.67 ± 0.90. Adverse effects included mild edema, erythema, and microscopic crusting; no long-term adverse effects were seen in all patients. The efficacy of FRF treatment was evaluated 1 month after the final treatment, and 85% of the subjects rated it as satisfactory, very satisfactory, and very satisfactory. CONCLUSION FRF for the treatment of erythematous capillary dilatation rosacea is effective, safe, and suitable for clinical promotion.
Collapse
Affiliation(s)
- Dongqing Li
- Department of Dermatology, Qujing Hospital, Kunming Medical University, Qujing, Yunnan, China
| | - Yujing Li
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zhi Yang
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Jiaoyu Chen
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Dengrong Yang
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Jinlai Wang
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Huang X, Zheng S, Chen P, Zhu M, Guo J, Li Q, Zeng K, He S. Effective treatment of corticosteroid-induced facial erythema using fractional radiofrequency microneedling. Lasers Surg Med 2024; 56:466-473. [PMID: 38693708 DOI: 10.1002/lsm.23787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES To investigate the efficacy of Fractional Radiofrequency Microneedling (FRM) in treating corticosteroid-induced facial erythema. METHODS A retrospective study was conducted involving eight patients diagnosed as corticosteroid-induced facial erythema. Each patient underwent a single session of FRM. Evaluative measures included Clinician's Erythema Assessment (CEA), Patient's Self-Assessment (PSA), assessment of telangiectasia severity, procedure-associated pain (10-point scale), patient satisfaction (3-point scale) and secondary outcomes. RESULTS The study found a 75% success rate and 100% effectiveness rate in alleviating erythema symptoms. CEA and PSA scores decreased by 67.7% and 78.1%, respectively. No cases of erythema rebound were recorded during the 3-month follow-up period. CONCLUSIONS FRM demonstrated effectiveness and safety in treating facial erythema, offering promising advancement in dermatologic therapeutics.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Guo
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijin He
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Liu Y, Zhou Y, Chu C, Jiang X. The role of macrophages in rosacea: implications for targeted therapies. Front Immunol 2023; 14:1211953. [PMID: 37691916 PMCID: PMC10484341 DOI: 10.3389/fimmu.2023.1211953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Rosacea, a widespread chronic skin condition, may be influenced by macrophages, key immune cells in the skin, although their exact role is not yet fully understood. This review delves into the function of macrophages, their potential contribution to rosacea pathogenesis, current treatments, and promising macrophage-targeted therapies. It concludes by identifying knowledge gaps and potential areas for future rosacea research. Method Leveraging systematic and narrative literature review techniques, we conducted a comprehensive search of databases such as PubMed, Embase, and Web of Science. Utilizing keywords like "rosacea" and "macrophages", we targeted English articles from the last 5 years (2018-2023). We manually checked reference lists of relevant articles for additional studies. We included only articles emphasizing macrophages' role in rosacea and/or the development of related therapies and published within the specified timeframe. Results The systematic search of electronic databases yielded a total of 4,263 articles. After applying the inclusion and exclusion criteria, 156 articles were selected for inclusion in this review. These articles included original research studies, review articles, and clinical trials that focused on the role of macrophages in rosacea and/or the development of macrophage-targeted therapies for the disease. The selected articles provided a comprehensive and up-to-date overview of the current state of research on macrophages in rosacea, including their function in the skin, the potential mechanisms through which they may contribute to rosacea pathogenesis, and the current treatments and therapies available for the disease. Additionally, the articles identified gaps in knowledge regarding the role of macrophages in rosacea and suggested potential areas for future research. Conclusion This literature review emphasizes the important role that macrophages, vital immune cells in the skin, may play in the pathogenesis of rosacea, a common chronic inflammatory skin disorder. The selected studies suggest potential mechanisms by which these cells might contribute to rosacea progression, although these mechanisms are not yet fully understood. The studies also spotlight current rosacea treatments and illuminate the promising potential of new macrophage-focused therapies. Despite these insights, significant gaps persist in our understanding of the precise role of macrophages in rosacea. Future research in this area could provide further insights into the pathogenesis of rosacea and contribute to the development of more effective, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Yin Zhou
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chenyu Chu
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Chen C, Wang P, Zhang L, Liu X, Zhang H, Cao Y, Wang X, Zeng Q. Exploring the Pathogenesis and Mechanism-Targeted Treatments of Rosacea: Previous Understanding and Updates. Biomedicines 2023; 11:2153. [PMID: 37626650 PMCID: PMC10452301 DOI: 10.3390/biomedicines11082153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease characterized by recurrent erythema, flushing, telangiectasia, papules, pustules, and phymatous changes in the central area of the face. Patients with this condition often experience a significant negative impact on their quality of life, self-esteem, and overall well-being. Despite its prevalence, the pathogenesis of rosacea is not yet fully understood. Recent research advances are reshaping our understanding of the underlying mechanisms of rosacea, and treatment options based on the pathophysiological perspective hold promise to improve patient outcomes and reduce incidence. In this comprehensive review, we investigate the pathogenesis of rosacea in depth, with a focus on emerging and novel mechanisms, and provide an up-to-date overview of therapeutic strategies that target the diverse pathogenic mechanisms of rosacea. Lastly, we discuss potential future research directions aimed at enhancing our understanding of the condition and developing effective treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| |
Collapse
|
8
|
Oh S, Seo SB, Kim G, Batsukh S, Son KH, Byun K. Poly-D,L-Lactic Acid Stimulates Angiogenesis and Collagen Synthesis in Aged Animal Skin. Int J Mol Sci 2023; 24:ijms24097986. [PMID: 37175693 PMCID: PMC10178436 DOI: 10.3390/ijms24097986] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis promotes rejuvenation in multiple organs, including the skin. Heat shock protein 90 (HSP90), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) are proangiogenic factors that stimulate the activities of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase 1/2 (ERK1/2). Poly-D,L-lactic acid (PDLLA), polynucleotide (PN), and calcium hydroxyapatite (CaHA) are dermal fillers that stimulate the synthesis of dermal collagen. However, it is not yet known whether these compounds promote angiogenesis, which leads to skin rejuvenation. Here, we evaluated whether PDLLA, PN, and CaHA stimulate angiogenesis and skin rejuvenation using H2O2-treated senescent macrophages and endothelial cells as an in vitro model for skin aging, and we used young and aged C57BL/6 mice as an in vivo model. Angiogenesis was evaluated via endothelial cell migration length, proliferation, and tube formation after conditioned media (CM) from senescent macrophages was treated with PDLLA, PN, or CaHA. Western blot showed decreased expression levels of HSP90, HIF-1α, and VEGF in senescent macrophages, but higher expression levels of these factors were found after treatment with PDLLA, PN, or CaHA. In addition, after exposure to CM from senescent macrophages treated with PDLLA, PN, or CaHA, senescent endothelial cells expressed higher levels of VEGF receptor 2 (VEGFR2), PI3K, phosphorylated AKT (pAKT), and phosphorylated ERK1/2 (pERK1/2) and demonstrated greater capacities for cell migration, cell proliferation, and tube formation. Based on the levels of 4-hydroxy-2-nonenal, the oxidative stress level was lower in the skin of aged mice injected with PDLLA, PN, or CaHA, while the tumor growth factor (TGF)-β1, TGF-β2, and TGF-β3 expression levels; the density of collagen fibers; and the skin elasticity were higher in the skin of aged mice injected with PDLLA, PN, or CaHA. These effects were greater in PDLLA than in PN or CaHA. In conclusion, our results are consistent with the hypothesis that PDLLA stimulates angiogenesis, leading to the rejuvenation of aged skin. Our study is the first to show that PDLLA, PN, or CaHA can result in angiogenesis in the aged skin, possibly by increasing the levels of HSP90, HIF-1α, and VEGF and increasing collagen synthesis.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Suk Bae Seo
- SeoAh Song Dermatologic Clinic, Seoul 05557, Republic of Korea
| | - Gunpoong Kim
- VAIM Co., Ltd., Okcheon 29055, Republic of Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
9
|
Kim J, Kim K. Elucidating the potential pharmaceutical mechanism of Gyejibokryeong-hwan on rosacea using network analysis. Medicine (Baltimore) 2023; 102:e33023. [PMID: 36862896 PMCID: PMC9981404 DOI: 10.1097/md.0000000000033023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Rosacea is a chronic erythematous disease with telangiectasia that affects the central area of the face. However, because of the ambiguity in the pathophysiology of rosacea, its treatment has not been clearly elucidated; therefore, new therapeutic options need to be developed. Gyejibokryeong-hwan (GBH) is widely used in clinical practice for various blood circulation disorders, including hot flushes. Therefore, we explored the potential pharmaceutical mechanism of GBH on rosacea and investigated the therapeutic points exclusive to GBH through comparative analysis with chemical drugs recommended in 4 guidelines for rosacea based on network analysis. The active compounds in GBH were identified, and the proteins targeted by these compounds and the genes related to rosacea were searched. Additionally, the proteins targeted by the guideline drugs were also searched to compare their effects. And the pathway/term analysis of common genes was conducted. Ten active compounds were obtained for rosacea. There were 14 rosacea-related genes targeted by GBH, with VEGFA, TNF, and IL-4, which were suggested as core genes. The pathway/term analysis of the 14 common genes revealed that GBH could potentially act on rosacea via 2 pathways: the "interleukin 17 signaling pathway" and the "neuroinflammatory response." Comparison and analysis of the protein targets between GBH and guideline drugs revealed that only GBH separately acts on the "vascular wound healing pathway." GBH has the potential to act on IL-17 signaling pathway, neuroinflammatory response and vascular wound healing pathway. Further studies are needed to determine the potential mechanism of GBH in rosacea.
Collapse
Affiliation(s)
- Jundong Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
- *Correspondence: Kyuseok Kim, Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea (e-mail address: )
| |
Collapse
|
10
|
Angiogenesis in Chronic Inflammatory Skin Disorders. Int J Mol Sci 2021; 22:ijms222112035. [PMID: 34769465 PMCID: PMC8584589 DOI: 10.3390/ijms222112035] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels from preexisting vessels, is associated with inflammation in various pathological conditions. Well-known angiogenetic factors include vascular endothelial growth factor (VEGF), angiopoietins, platelet-derived growth factor, transforming growth factor-β, and basic fibroblast growth factor. Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) have recently been added to an important angiogenic factor. Accumulating evidence indicates associations between angiogenesis and chronic inflammatory skin diseases. Angiogenesis is deeply involved in the pathogenesis of psoriasis. VEGF, angiopoietins, tumor necrosis factor-a, interleukin-8, and interleukin-17 are unregulated in psoriasis and induce angiogenesis. Angiogenesis may be involved in the pathogenesis of atopic dermatitis, and in particular, mast cells are a major source of VEGF expression. Angiogenesis is an essential process in rosacea, which is induced by LL-37 from a signal cascade by microorganisms, VEGF, and MMP-3 from mast cells. In addition, angiogenesis by increased VEGF has been reported in chronic urticaria and hidradenitis suppurativa. The finding that VEGF is expressed in inflammatory skin lesions indicates that inhibition of angiogenesis is a useful strategy for treatment of chronic, inflammatory skin disorders.
Collapse
|
11
|
Fang Y, Liu Y, Yan Y, Shen Y, Li Z, Li X, Zhang Y, Xue Z, Peng C, Chen X, Cao K, Zhou J. Differential Expression Profiles and Function Predictions for tRFs & tiRNAs in Skin Injury Induced by Ultraviolet Irradiation. Front Cell Dev Biol 2021; 9:707572. [PMID: 34447751 PMCID: PMC8383935 DOI: 10.3389/fcell.2021.707572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Ultraviolet (UV) radiation is a major environmental factor contributing skin damage. As UV exposure is inevitable, it is necessary to pay attention to the underlying molecular mechanisms of UV-induced skin damage to develop effective therapies. tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs) are tRNA-derived small RNAs (tsRNAs) that are a novel class of short, non-coding RNAs. However, the functions behind tRFs & tiRNAs in UV-induced skin injury are not yet clear. Firstly, the animal model of ultraviolet irradiation induced skin damage was established. Then the skin samples were preserved for the follow-up experiment. Sequencing was used to screen expression profiles and predict target genes. Compared with normal skin, a total of 31 differentially expressed tRFs & tiRNAs were screened. Among these, 10 tRFs & tiRNAs were shown to be significantly different in expression levels, where there were 4 up-regulated and 6 down-regulated target genes. Bioinformatics analyses revealed potential up-regulated tsRNAs (tRF-Val-AAC-012, tRF-Pro-AGG-012, tRF-Val-CAC-018, tRF-Val-AAC-031) and down-regulated tsRNAs (tRF-Arg-CCT-002, tRF-Trp-TCA-001, tiRNA-Ser-GCT-001, tRF-Gly-CCC-019, tRF-Ala-TGC-001, tRF-Ala-TGC-002). In summary, it was speculated that tRF-Gly-CCC-019 plays an important role in acute skin injury induced by UVB radiation by regulating the ras-related C3 botulinum toxin substrate 1 (Rac1) gene in the WNT signaling pathway. This study provides new insights into the mechanisms and therapeutic targets of UV-induced skin injury.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Liu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiyu Shen
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenan Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xu Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yufang Zhang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhigang Xue
- Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Peng
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Xiang Chen
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Ke Cao
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Böhm M. In search of the needle in a haystack: Finding a suitable serum biomarker for monitoring disease activity of systemic sclerosis. Exp Dermatol 2021; 30:880-886. [PMID: 34121239 DOI: 10.1111/exd.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Zhang H, Zhang M, Wang Y, Zheng Q, Tang K, Liu R, Li X, Fang R, Sun Q. Murine models of rosacea: a review. J Cosmet Dermatol 2021; 21:905-909. [PMID: 33872453 DOI: 10.1111/jocd.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Rosacea is a chronic inflammatory disease characterized by facial flushing, erythema, telangiectasia, papules, and pustules. Its pathogenesis has not been fully understood. In 2017, the global ROSacea COnsensus (ROSCO) panel updated the diagnosis, classification, and assessment of rosacea. Phenotype-based treatments and long-term managements have also been recommended. Murine models are a powerful tool in unveiling and dissecting the mechanisms of human diseases. Here, we summarized murine models of rosacea developed or used in previous research, including LL-37 intradermal injection model, KLK-5-induced inflammation model, croton oil inflammation model, 12-O-Tetradecanoylphorbol-13-acetate inflammation model, arachidonic acid inflammation model, RTX-induced vasodilation model, and UVB-induced model. LL-37 injection model has become the most intensively used model in rosacea research. Each model could show the pathophysiological and clinical features of rosacea to some extent. However, no model can show the full picture of the characteristics of rosacea. Improving existed murine models, developing new murine models, and applying them to pathogenesis and treatment research on rosacea are highly warranted in the future.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Menglu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Yuanzhuo Wang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Qingyue Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Keyun Tang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Runzhu Liu
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Xianmei Li
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Rouyu Fang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Qiuning Sun
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
14
|
Kim J, Lee J, Choi H. Intense Pulsed Light Attenuates UV-Induced Hyperimmune Response and Pigmentation in Human Skin Cells. Int J Mol Sci 2021; 22:ijms22063173. [PMID: 33804685 PMCID: PMC8003787 DOI: 10.3390/ijms22063173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
The skin of an organism is affected by various environmental factors and fights against aging stress via mechanical and biochemical responses. Photoaging induced by ultraviolet B (UVB) irradiation is common and is the most vital factor in the senescence phenotype of skin, and so, suppression of UVB stress-induced damage is critical. To lessen the UVB-induced hyperimmune response and hyperpigmentation, we investigated the ameliorative effects of intense pulsed light (IPL) treatment on the photoaged phenotype of skin cells. Normal human epidermal keratinocytes and human epidermal melanocytes were exposed to 20 mJ/cm2 of UVB. After UVB irradiation, the cells were treated with green (525–530 nm) and yellow (585–592 nm) IPL at various time points prior to the harvest step. Subsequently, various signs of excessive immune response, including expression of proinflammatory and melanogenic genes and proteins, cellular oxidative stress level, and antioxidative enzyme activity, were examined. We found that IPL treatment reduced excessive cutaneous immune reactions by suppressing UVB-induced proinflammatory cytokine expression. IPL treatment prevented hyperpigmentation, and combined treatment with green and yellow IPL synergistically attenuated both processes. IPL treatment may exert protective effects against UVB injury in skin cells by attenuating inflammatory cytokine and melanogenic gene overexpression, possibly by reducing intracellular oxidative stress. IPL treatment also preserves antioxidative enzyme activity under UVB irradiation. This study suggests that IPL treatment is a useful strategy against photoaging, and provides evidence supporting clinical approaches with non-invasive light therapy.
Collapse
|
15
|
Radiofrequency Irradiation Modulates TRPV1-Related Burning Sensation in Rosacea. Molecules 2021; 26:molecules26051424. [PMID: 33800730 PMCID: PMC7961329 DOI: 10.3390/molecules26051424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.
Collapse
|
16
|
Atwood SX, Plikus MV. Fostering a healthy culture: Biological relevance of in vitro and ex vivo skin models. Exp Dermatol 2021; 30:298-303. [PMID: 33565670 DOI: 10.1111/exd.14296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|