1
|
Nyström A. Dystrophic epidermolysis bullosa - From biochemistry to interventions. Matrix Biol 2025; 136:111-126. [PMID: 39922469 DOI: 10.1016/j.matbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium -the epidermis to its mesenchyme - the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology - spanning its synthesis, assembly into suprastructures, and regulatory roles - enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstrasse 7, 79140 Freiburg, Germany.
| |
Collapse
|
2
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Knuutila JS, Riihilä P, Nissinen L, Heiskanen L, Kallionpää RE, Pellinen T, Kähäri VM. Cancer-associated fibroblast activation predicts progression, metastasis, and prognosis of cutaneous squamous cell carcinoma. Int J Cancer 2024; 155:1112-1127. [PMID: 38648387 DOI: 10.1002/ijc.34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer and the metastatic disease is associated with poor prognosis. Cancer-associated fibroblasts (CAFs) promote progression of cancer, but their role in cSCC is largely unknown. We examined the potential of CAF markers in the assessment of metastasis risk and prognosis of primary cSCC. We utilized multiplexed fluorescence immunohistochemistry for profiling CAF landscape in metastatic and non-metastatic primary human cSCCs, in metastases, and in premalignant epidermal lesions. Quantitative high-resolution image analysis was performed with two separate panels of antibodies for CAF markers and results were correlated with clinical and histopathological parameters including disease-specific mortality. Increased stromal expression of fibroblast activation protein (FAP), α-smooth muscle actin, and secreted protein acidic and rich in cysteine (SPARC) were associated with progression to invasive cSCC. Elevation of FAP and platelet-derived growth factor receptor-β (PDGFRβ) expression was associated with metastasis risk of primary cSCCs. High expression of PDGFRβ and periostin correlated with poor prognosis. Multimarker combination defined CAF subset, PDGFRα-/PDGFRβ+/FAP+, was associated with invasion and metastasis, and independently predicted poor disease-specific survival. These results identify high PDGFRβ expression alone and multimarker combination PDGFRα-/PDGFRβ+/FAP+ by CAFs as potential biomarkers for risk of metastasis and poor prognosis.
Collapse
Affiliation(s)
- Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Lauri Heiskanen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Ragot H, Gaucher S, Bonnet des Claustres M, Basset J, Boudan R, Battistella M, Bourrat E, Hovnanian A, Titeux M. Citrullinated Histone H3, a Marker for Neutrophil Extracellular Traps, Is Associated with Poor Prognosis in Cutaneous Squamous Cell Carcinoma Developing in Patients with Recessive Dystrophic Epidermolysis Bullosa. Cancers (Basel) 2024; 16:2476. [PMID: 39001538 PMCID: PMC11240819 DOI: 10.3390/cancers16132476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare severe hereditary skin disease characterized by skin and mucosa fragility, resulting in blister formation. The most severe complication in RDEB patients is the development of cutaneous squamous cell carcinoma (SCC), leading to premature death. There is a great deal of evidence suggesting a permissive tumor microenvironment (TME) as a driver of SCC development in RDEB patients. In a cohort of RDEB patients, we characterized the immune profiles of RDEB-SCCs and compared them with clinical, histopathological, and prognostic features. RDEB-SCCs were subdivided into four groups based on their occurrence (first onset or recurrences) and grading according to clinical, histopathological parameters of aggressiveness. Thirty-eight SCCs from 20 RDEB patients were analyzed. Five RDEB patients experienced an unfavorable course after the diagnosis of the first SCC, with early recurrence or metastasis, whereas 15 patients developed multiple SCCs without metastasis. High-risk primary RDEB-SCCs showed a higher neutrophil-to-lymphocyte ratio in the tumor microenvironment and an increased proportion of neutrophil extracellular traps (NETs). Additionally, citrullinated histone H3, a marker of NETs, was increased in the serum of RDEB patients with high-risk primary SCC, suggesting that this modified form of histone H3 may serve as a potential blood marker of unfavorable prognosis in RDEB-SCCs.
Collapse
Affiliation(s)
- Hélène Ragot
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Sonia Gaucher
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | | | - Justine Basset
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Rose Boudan
- Reference Center for Genodermatoses ("Maladies Génétiques à Expression Cutanée", MAGEC), Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), 75010 Paris, France
| | - Maxime Battistella
- Department of Pathology, Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), Université Paris Cité, 75010 Paris, France
| | - Emmanuelle Bourrat
- Reference Center for Genodermatoses ("Maladies Génétiques à Expression Cutanée", MAGEC), Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), 75010 Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
- Department of Genomic Medicine of Rare Diseases, Necker Hospital for Sick Children (Assistance Publique-Hôpitaux de Paris), Université Paris Cité, 75015 Paris, France
| | - Matthias Titeux
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| |
Collapse
|
5
|
Patel JR, Joel MZ, Lee KK, Kambala A, Cornman H, Oladipo O, Taylor M, Imo BU, Ma EZ, Manjunath J, Kollhoff AL, Deng J, Parthasarathy V, Cravero K, Marani M, Szeto M, Zhao R, Sankararaman S, Li R, Henry S, Pritchard T, Rebecca V, Kwatra MM, Ho WJ, Dong X, Kang S, Kwatra SG. Single-Cell RNA Sequencing Reveals Dysregulated POSTN+WNT5A+ Fibroblast Subclusters in Prurigo Nodularis. J Invest Dermatol 2024; 144:1568-1578.e5. [PMID: 38246584 DOI: 10.1016/j.jid.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Prurigo nodularis (PN) is an intensely pruritic, inflammatory skin disease with a poorly understood pathogenesis. We performed single-cell transcriptomic profiling of 28,695 lesional and nonlesional PN cells. Lesional PN has increased dysregulated fibroblasts (FBs) and myofibroblasts. FBs in lesional PN were shifted toward a cancer-associated FB-like phenotype, with POSTN+WNT5A+ cancer-associated FBs increased in PN and similarly so in squamous cell carcinoma. A multicenter cohort study revealed an increased risk of squamous cell carcinoma and cancer-associated FB-associated malignancies (breast and colorectal) in patients with PN. Systemic fibroproliferative diseases (renal sclerosis and idiopathic pulmonary fibrosis) were upregulated in patients with PN. Ligand-receptor analyses demonstrated an FB neuronal axis with FB-derived WNT5A and periostin interactions with neuronal receptors melanoma cell adhesion molecule and ITGAV. These findings identify a pathogenic and targetable POSTN+WNT5A+ FB subpopulation that may predispose cancer-associated FB-associated malignancies in patients with PN.
Collapse
Affiliation(s)
- Jay R Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Z Joel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brenda Umenita Imo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaya Manjunath
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander L Kollhoff
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - June Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Cravero
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mindy Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Zhao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sreenidhi Sankararaman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruixiang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanae Henry
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vito Rebecca
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
7
|
Patel JR, Joel MZ, Lee KK, Kambala A, Cornman H, Oladipo O, Taylor M, Deng J, Parthasarathy V, Cravero K, Marani M, Zhao R, Sankararam S, Li R, Pritchard T, Rebecca V, Kwatra MM, Ho WJ, Dong X, Kang S, Kwatra SG. Single-cell RNA sequencing reveals dysregulated fibroblast subclusters in prurigo nodularis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526050. [PMID: 36778229 PMCID: PMC9915465 DOI: 10.1101/2023.01.29.526050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prurigo nodularis (PN) is an intensely pruritic, chronic inflammatory skin disease that disproportionately affects black patients. However, the pathogenesis of PN is poorly understood. We performed single-cell transcriptomic profiling, ligand receptor analysis and cell trajectory analysis of 28,695 lesional and non-lesional PN skin cells to uncover disease-identifying cell compositions and genetic characteristics. We uncovered a dysregulated role for fibroblasts (FBs) and myofibroblasts as a key pathogenic element in PN, which were significantly increased in PN lesional skin. We defined seven unique subclusters of FBs in PN skin and observed a shift of PN lesional FBs towards a cancer-associated fibroblast (CAF)-like phenotype, with WNT5A+ CAFs increased in the skin of PN patients and similarly so in squamous cell carcinoma (SCC). A multicenter PN cohort study subsequently revealed an increased risk of SCC as well as additional CAF-associated malignancies in PN patients, including breast and colorectal cancers. Systemic fibroproliferative diseases were also upregulated in PN patients, including renal sclerosis and idiopathic pulmonary fibrosis. Ligand receptor analyses demonstrated increased FB1-derived WNT5A and periostin interactions with neuronal receptors MCAM and ITGAV, suggesting a fibroblast-neuronal axis in PN. Type I IFN responses in immune cells and increased angiogenesis/permeability in endothelial cells were also observed. As compared to atopic dermatitis (AD) and psoriasis (PSO) patients, increased mesenchymal dysregulation is unique to PN with an intermediate Th2/Th17 phenotype between atopic dermatitis and psoriasis. These findings identify a pathogenic role for CAFs in PN, including a novel targetable WNT5A+ fibroblast subpopulation and CAF-associated malignancies in PN patients.
Collapse
Affiliation(s)
- Jay R. Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marina Z. Joel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin K. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - June Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Zhao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreenidhi Sankararam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixiang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vito Rebecca
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Khatun M, Siddique AE, Wahed AS, Haque N, Tony SR, Islam J, Alam S, Sarker MK, Kabir I, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Association between serum periostin levels and the severity of arsenic-induced skin lesions. PLoS One 2023; 18:e0279893. [PMID: 36598904 PMCID: PMC9812306 DOI: 10.1371/journal.pone.0279893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a potent environmental toxicant and human carcinogen. Skin lesions are the most common manifestations of chronic exposure to arsenic. Advanced-stage skin lesions, particularly hyperkeratosis have been recognized as precancerous diseases. However, the underlying mechanism of arsenic-induced skin lesions remains unknown. Periostin, a matricellular protein, is implicated in the pathogenesis of many forms of skin lesions. The objective of this study was to examine whether periostin is associated with arsenic-induced skin lesions. A total of 442 individuals from low- (n = 123) and high-arsenic exposure areas (n = 319) in rural Bangladesh were evaluated for the presence of arsenic-induced skin lesions (Yes/No). Participants with skin lesions were further categorized into two groups: early-stage skin lesions (melanosis and keratosis) and advanced-stage skin lesions (hyperkeratosis). Drinking water, hair, and nail arsenic concentrations were considered as the participants' exposure levels. The higher levels of arsenic and serum periostin were significantly associated with skin lesions. Causal mediation analysis revealed the significant effect of arsenic on skin lesions through the mediator, periostin, suggesting that periostin contributes to the development of skin lesions. When skin lesion was used as a three-category outcome (none, early-stage, and advanced-stage skin lesions), higher serum periostin levels were significantly associated with both early-stage and advanced-stage skin lesions. Median (IQR) periostin levels were progressively increased with the increasing severity of skin lesions. Furthermore, there were general trends in increasing serum type 2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and immunoglobulin E (IgE) levels with the progression of the disease. The median (IQR) of IL-4, IL-5, IL-13, eotaxin, and IgE levels were significantly higher in the early-and advanced-stage skin lesions compared to the group of participants without skin lesions. The results of this study suggest that periostin is implicated in the pathogenesis and progression of arsenic-induced skin lesions through the dysregulation of type 2 immune response.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abdus S. Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahnur Alam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
9
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
10
|
Yang M, Wang F, Lu G, Cheng M, Zhao W, Zou C. Single-cell transcriptome analysis reveals T-cell exhaustion in denosumab-treated giant cell tumor of bone. Front Immunol 2022; 13:934078. [PMID: 36172351 PMCID: PMC9510370 DOI: 10.3389/fimmu.2022.934078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/19/2022] [Indexed: 12/05/2022] Open
Abstract
Denosumab (DMAB), a human monoclonal antibody against the receptor activator of the nuclear factor-kappa B ligand, is used for the treatment for unresectable giant cell tumor of bone (GCTB). However, little is known about the molecular and functional characteristics of GCTB-infiltrating lymphocytes after DMAB treatment. Here, we performed single-cell RNA sequencing and immunostaining assays to delineate the immune landscape of GCTB in the presence and absence of DMAB. We found that exhausted CD8+ T cells were preferentially enriched in DMAB-treated GCTB. A distinct M2-skewed type of tumor-associated macrophages (TAMs) comprises the majority of GCTB TAMs. We identified cytokines, including interleukin-10, and inhibitory receptors of M2 TAMs as important mediators of CD8+ T cell exhaustion. We further revealed that DMAB treatment notably increased the expression levels of periostin (POSTN) in GCTB cells. Furthermore, POSTN expression was transcriptionally regulated by c-FOS signaling and correlated with GCTB recurrence in patients after DMAB treatment. Collectively, our findings reveal that CD8+ T-cells undergo unappreciated exhaustion during DMAB therapy and that GCTB cell-derived POSTN educates TAMs and establishes a microenvironmental niche that facilitates GCTB recurrence.
Collapse
Affiliation(s)
- Meiling Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fen Wang
- Pathologica Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guohao Lu
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Mingzhe Cheng
- Musculoskeletal Oncology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
- *Correspondence: Wei Zhao, ; Changye Zou,
| | - Changye Zou
- Musculoskeletal Oncology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Wei Zhao, ; Changye Zou,
| |
Collapse
|
11
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
12
|
Vokurka M, Lacina L, Brábek J, Kolář M, Ng YZ, Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int J Mol Sci 2022; 23:964. [PMID: 35055153 PMCID: PMC8778626 DOI: 10.3390/ijms23020964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
Collapse
Affiliation(s)
- Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic;
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| | - Yi Zhen Ng
- A*STAR Skin Research Labs (A*SRL)—Biopolis, Skin Research Institute of Singapore, 8A Biomedical Grove #06-06 Immunos Singapore, Singapore 138665, Singapore;
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
13
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
14
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|