1
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ha J, Kim K. Neighborhood-Regularized Matrix Factorization for lncRNA-Disease Association Identification. Int J Mol Sci 2025; 26:4283. [PMID: 40362520 PMCID: PMC12072303 DOI: 10.3390/ijms26094283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be integral in a variety of biological processes and significantly influence the progression of several human diseases. Their involvement in disease mechanisms makes them crucial targets for research in disease biomarker identification. Understanding the intricate relationships between lncRNAs and diseases can offer valuable insights for advancing diagnostic, prognostic and therapeutic strategies. In light of this, we propose a recommendation-system-based model utilizing matrix factorization with disease neighborhood regularization to effectively infer disease-related lncRNAs (NRMFLDA). This approach leverages the power of matrix factorization techniques while incorporating disease neighborhood regularization to enhance the accuracy and reliability of lncRNA-disease association predictions. Consequently, NRMFLDA exhibits outstanding performance, achieving AUC scores of 0.9143 and 0.8993 in both leave-one-out and five-fold cross-validation, surpassing the performance of four previous models. This demonstrates its effectiveness and robustness in accurately predicting disease-related lncRNAs. We believe that NRMFLDA will not only provide innovative approaches for uncovering lncRNA-disease associations but also contribute significantly to the identification of novel biomarkers for various diseases, thereby advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jihwan Ha
- Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Kwangsu Kim
- Department of Scientific Computing, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Zhao S, Liu Y, Wang H, Wang J, Zhang J, Liu Y, Ma D. Mechanisms and progress of LncRNAs in prostate cancer development and diagnostic therapy. Int Urol Nephrol 2025:10.1007/s11255-025-04497-z. [PMID: 40266504 DOI: 10.1007/s11255-025-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men worldwide. Despite advancements in diagnosis and treatment, challenges such as late-stage detection, therapeutic resistance, and the complexity of castration-resistant prostate cancer (CRPC) persist. Long non-coding RNAs (LncRNAs) play critical roles in PCa progression through epigenetic regulation, transcriptional and post-transcriptional modulation, and immune response regulation. This review highlights the molecular mechanisms by which LncRNAs influence PCa development, treatment resistance, and immune regulation, emphasizing their potential as biomarkers and therapeutic targets. We also discuss future research directions to advance precision medicine in PCa.
Collapse
Affiliation(s)
- Shihan Zhao
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Han Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jiayi Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jihong Zhang
- The Pathology Department of Affiliated Hospital, Beihua University, Jilin, 132013, China
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China.
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Kharitonova A, Patel RS, Osborne B, Krause-Hauch M, Lui A, Vidyarthi G, Li S, Cai J, Patel NA. NPC86 Increases LncRNA Gas5 In Vivo to Improve Insulin Sensitivity and Metabolic Function in Diet-Induced Obese Diabetic Mouse Model. Int J Mol Sci 2025; 26:3695. [PMID: 40332318 PMCID: PMC12027414 DOI: 10.3390/ijms26083695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
In the United States, an estimated 38 million individuals (10% of the population) have type 2 diabetes mellitus (T2D), while approximately 97.6 million adults (38%) have prediabetes. Long noncoding RNAs (lncRNAs) are critical regulators of gene expression and metabolism. We were the first to demonstrate that lncRNA Growth Arrest-Specific Transcript 5 (GAS5 (human)/gas5 (mouse)) is decreased in the serum of T2D patients and established GAS5 as a biomarker for T2D diagnosis and onset prediction, now validated by other groups. We further demonstrated that GAS5 depletion impaired glucose uptake, decreased insulin receptor levels, and inhibited insulin signaling in human adipocytes, highlighting its potential as a therapeutic target in T2D. To address this, we developed NPC86, a small-molecule compound that stabilizes GAS5 by disrupting its interaction with UPF-1, an RNA helicase involved in nonsense-mediated decay (NMD) that regulates RNA stability. NPC86 increased GAS5 and insulin receptor (IR) levels, enhanced insulin signaling, and improved glucose uptake in vitro. In this study, we tested the efficacy of NPC86 in vivo in a diet-induced obese diabetic (DIOD) mouse model, and NPC86 treatment elevated gas5 levels, improved glucose tolerance, and enhanced insulin sensitivity, with no observed toxicity or weight changes. A transcriptomics analysis of adipose tissue revealed the upregulation of insulin signaling and metabolic pathways, including oxidative phosphorylation and glycolysis, while inflammatory pathways were downregulated. These findings highlight NPC86's therapeutic potential in T2D.
Collapse
MESH Headings
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- Insulin Resistance/genetics
- Humans
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/drug therapy
- Disease Models, Animal
- Male
- Mice, Obese
- Obesity/metabolism
- Mice, Inbred C57BL
- Diet, High-Fat/adverse effects
- Signal Transduction/drug effects
- Insulin/metabolism
- Glucose/metabolism
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- Anna Kharitonova
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA; (S.L.); (J.C.)
| | - Rekha S. Patel
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
| | - Brenna Osborne
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
| | - Meredith Krause-Hauch
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
| | - Ashley Lui
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Gitanjali Vidyarthi
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
| | - Sihao Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA; (S.L.); (J.C.)
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA; (S.L.); (J.C.)
| | - Niketa A. Patel
- James A. Haley Veteran’s Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.K.); (R.S.P.); (B.O.); (M.K.-H.); (G.V.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Degirmencioglu S, Öğüt S, Bahtiyar N, Aydemir B, Karaçetin D, Cinemre FB, Hacıosmanoğlu Aldoğan E, Güneş ME, Kural A, Bektaş M. Exploring the interplay of selenoproteins and mir-675 in breast cancer: a focus on radiotherapy effects. Int J Radiat Biol 2025; 101:572-580. [PMID: 40043235 DOI: 10.1080/09553002.2025.2473962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVES The present study aims to investigate the changes in the expression levels of miR-675 and some selenoproteins (Sel K, Sel W, and Sel P) in patients with breast cancer, before and after radiotherapy. SUBJECTS AND METHODS This study included 35 breast cancer patients who applied to the Department of Radiation Oncology for radiotherapy and 25 healthy female controls. miR-675 expressions were analyzed by using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Western blot was conducted to determine Sel K, Sel W, and Sel P expression levels. Biochemical parameters and complete blood count were analyzed by autoanalyzer system and automatic cell counter, respectively. RESULTS Plasma Sel K protein expression levels were decreased in the after-radiotherapy group compared to the control and before-radiotherapy groups, but plasma miR-675 expression levels were lower in both before and after radiotherapy groups compared to the control group. CONCLUSION Our findings showed that miR-675 and Sel K expression levels changed after radiotherapy in breast cancer patients. These changes may have the potential to be biomarkers for the effectiveness of radiotherapy in breast cancer.
Collapse
Affiliation(s)
- Sevgin Degirmencioglu
- Department of Medical Biochemistry, Faculty of Medicine, Kırklareli University, Kırklareli, Turkiye
| | - Selim Öğüt
- Department of Biophysics, Faculty of Medicine, Bandirma Onyedi Eylul University, Balıkesir, Turkiye
| | - Nurten Bahtiyar
- Department of Biophysics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkiye
| | - Birsen Aydemir
- Department of Biophysics, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | - Didem Karaçetin
- Department of Radiation Oncology, University of Health Sciences/Bakirkoy Sadi Konuk Training and Research Hospital, Istanbul, Turkiye
| | - Fatma Behice Cinemre
- Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | | | - Mehmet Emin Güneş
- Department of Medical Services And Techniques, Vocational School of Health Services, Istanbul Esenyurt University, Istanbul, Turkiye
| | - Alev Kural
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkiye
| | - Muhammet Bektaş
- Department of Biophysics, Faculty of Medicine, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
6
|
Zhu F, Liu H, Cao Y, Dai B, Wu H, Zhu Y, Li W. Taohong Siwu Decoction Combined With the LncRNA H19/miR-675-5p Axis Repairs Limb Ischemia-Reperfusion Injury Through the Regulation of the Wnt3a/Ca 2+ Signaling Pathway. Mediators Inflamm 2025; 2025:3096848. [PMID: 40034562 PMCID: PMC11873300 DOI: 10.1155/mi/3096848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Taohong Siwu decoction (THSWT) has shown therapeutic effects on ischemia/reperfusion injury (IRI). This study tended to investigate the role of THSWT combined with the long non-coding RNA (LncRNA) H19 (H19)/miR-675-5p axis in improving limb IRI (LIRI). Methods: Hind LIRI rats and simulated IRI skeletal myoblasts models were constructed to evaluate the therapeutic effects of THSWT. The mechanism of THSWT treatment on LIRI was investigated by the regulation of the H19/miR-675-5p axis and the wingless/integrated (Wnt)/Ca2+ signaling pathway. Various assessments, such as H&E staining, TUNEL staining, flow cytometry, cell counting kit-8 (CCK-8) assay, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), biochemical assay, and calcium fluorescence imaging, were conducted to observe skeletal muscle injury, cell apoptosis, skeletal myoblast proliferation, gene and protein expressions, cytokine levels, glucose (Glu) uptake, and Ca2+ concentration. Results: THSWT intervention effectively improved skeletal muscle injury in LIRI rats, as evidenced by reduced muscle fiber damage and decreased cell apoptosis, accompanied by downregulation of H19, miR-675-5p, cleaved-Caspase3, Bax, PLC, and PKC expressions and upregulation of Bcl2 expression. Furthermore, silencing of H19 inhibited cell apoptosis of skeletal muscle and reduced IL-1β, IL-6, and TNF-α levels in LIRI rats. Notably, THSWT intervention combined with the silencing of H19 synergistically promoted the repair of skeletal muscle injury in LIRI rats. Mechanistically, THSWT intervention combined with regulation of the H19/miR-675-5p axis promoted the proliferation of skeletal myoblasts damaged by IRI through the Wnt3a/Ca2+ signaling pathway, increasing the levels of intracellular Bcl2, while decreasing the levels of Ca2+, CaMKⅡ, PLC, PKC, cleaved-Caspase3, Bax, TNF-α, IL-1β, IL-6, Wnt3a, and β-catenin. Conclusions: THSWT combined with the regulation of the H19/miR-675-5p axis effectively improved LIRI by modulating the Wnt3a/Ca2+ signaling pathway, providing insights for potential therapeutic strategies for LIRI.
Collapse
Affiliation(s)
- Fuping Zhu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Hui Liu
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yinsheng Cao
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Bing Dai
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Hang Wu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Yutong Zhu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Wuping Li
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| |
Collapse
|
7
|
Doghish AS, Mageed SSA, Zaki MB, Abd-Elmawla MA, Sayed GA, Hatawsh A, Aborehab NM, Moussa R, Mohammed OA, Abdel-Reheim MA, Elimam H. Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways. Funct Integr Genomics 2025; 25:16. [PMID: 39821470 DOI: 10.1007/s10142-025-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, CairoE, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
8
|
Zhao T, Ma F. Roles of Long Noncoding RNA in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2024; 22:102213. [PMID: 39357460 DOI: 10.1016/j.clgc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer stands as the most common cancer in men, and research into its genesis and spread is still vital. The idea that the human genome's transcriptional activity is more widespread than previously thought has received empirical validation through the application of deep sequencing-based transcriptome profiling techniques. An assortment of noncoding transcripts longer than 200 nucleotides is referred to as long noncoding RNAs (lncRNAs). Transposable elements comprise a substantial portion of the human genome, with projections indicating that their prospective proportion may reach 90%. Considering they can interact directly with proteins, alter the transcriptional activity of coding genes, and perhaps encode proteins, lncRNAs possess the capability to regulate a variety of biological processes. LncRNAs have been recognized to be key factors in the development of several types of human cancers, including lung, colorectal, and breast cancers, alongside other pathological processes that have a significant impact on the diagnosis and survival of cancer individuals. Furthermore, lncRNAs' discernible expression patterns throughout various cancer scenarios significantly raise their potential as biomarkers and therapeutic targets. We conducted an extensive analysis of the prevailing academic literature on the interaction between lncRNAs and prostate cancer in order to present a solid foundation for potential future studies on the prevention and intervention of prostate cancer. The discourse additionally expands on lncRNAs' prospective applications as targets and biomarkers for medical therapies.
Collapse
Affiliation(s)
- Tongyue Zhao
- Department of Clinical Medicine, Chengdu Medical College, Chengdu City, Sichuan, China
| | - Feng Ma
- Department of Medical Oncology, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing City, China.
| |
Collapse
|
9
|
Hu SL, Chen YL, Zhang LQ, Bai H, Yang JH, Li QZ. LncSTPred: a predictive model of lncRNA subcellular localization and decipherment of the biological determinants influencing localization. Front Mol Biosci 2024; 11:1452142. [PMID: 39301172 PMCID: PMC11411566 DOI: 10.3389/fmolb.2024.1452142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) play crucial roles in genetic markers, genome rearrangement, chromatin modifications, and other biological processes. Increasing evidence suggests that lncRNA functions are closely related to their subcellular localization. However, the distribution of lncRNAs in different subcellular localizations is imbalanced. The number of lncRNAs located in the nucleus is more than ten times that in the exosome. Methods In this study, we propose a new oversampling method to construct a predictive dataset and develop a predictive model called LncSTPred. This model improves the Adaboost algorithm for subcellular localization prediction using 3-mer, 3-RF sequence, and minimum free energy structure features. Results and Discussion By using our improved Adaboost algorithm, better prediction accuracy for lncRNA subcellular localization was obtained. In addition, we evaluated feature importance by using the F-score and analyzed the influence of highly relevant features on lncRNAs. Our study shows that the ANA features may be a key factor for predicting lncRNA subcellular localization, which correlates with the composition of stems and loops in the secondary structure of lncRNAs.
Collapse
Affiliation(s)
- Si-Le Hu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Ying-Li Chen
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Lu-Qiang Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Hui Bai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Jia-Hong Yang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
10
|
Qi Y, Zhao P. Influence of H19 polymorphisms on breast cancer: risk assessment and prognostic implications via LincRNA H19/miR-675 and downstream pathways. Front Oncol 2024; 14:1436874. [PMID: 39267845 PMCID: PMC11390531 DOI: 10.3389/fonc.2024.1436874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Breast cancer, as the most prevalent malignancy among women globally, continues to exhibit rising incidence rates, particularly in China. The disease predominantly affects women aged 40 to 60 and is influenced by both genetic and environmental factors. This study focuses on the role of H19 gene polymorphisms, investigating their impact on breast cancer susceptibility, clinical outcomes, and response to treatment. Methods We engaged 581 breast cancer patients and 558 healthy controls, using TaqMan assays and DNA sequencing to determine genotypes at specific loci (rs11042167, rs2071095, rs2251375). We employed in situ hybridization and immunohistochemistry to measure the expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in formalin-fixed, paraffin-embedded samples. Statistical analyses included chi-squared tests, logistic regression, and Kaplan-Meier survival curves to evaluate associations between genetic variations, gene expression, and clinical outcomes. Results Genotypes AG at rs11042167, GT at rs2071095, and AC at rs2251375 were significantly associated with increased risk of breast cancer. Notably, the AA genotype at rs11042167 and TT genotype at rs2071095 were linked to favorable prognosis. High expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in cancer tissues correlated with advanced disease stages and poorer survival rates. Spearman correlation analysis revealed significant positive correlations between the expression of LincRNA H19 and miR-675 and specific genotypes, highlighting their potential regulatory roles in tumor progression. Discussion The study underscores the critical roles of LincRNA H19 and miR-675 as prognostic biomarkers in breast cancer, with their overexpression associated with disease progression and adverse outcomes. The H19/LincRNA H19/miR-675/MRP3-HOXA1-MMP16 axis offers promising targets for new therapeutic strategies, reflecting the complex interplay between genetic markers and breast cancer pathology. Conclusion The findings confirm that certain H19 SNPs are associated with heightened breast cancer risk and that the expression profiles of related genetic markers can significantly influence prognosis and treatment response. These biomarkers hold potential as targets for personalized therapy and early detection strategies in breast cancer, underscoring the importance of genetic research in understanding and managing this disease.
Collapse
Affiliation(s)
- Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Huang H, Tang Q, Li S, Qin Y, Zhu G. TGFBI: A novel therapeutic target for cancer. Int Immunopharmacol 2024; 134:112180. [PMID: 38733822 DOI: 10.1016/j.intimp.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
TGFBI, an extracellular matrix protein induced by transforming growth factor β, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Pecci V, Troisi F, Aiello A, De Martino S, Carlino A, Fiorentino V, Ripoli C, Rotili D, Pierconti F, Martini M, Porru M, Pinto F, Mai A, Bassi PF, Grassi C, Gaetano C, Pontecorvi A, Strigari L, Farsetti A, Nanni S. Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer. Cancer Cell Int 2024; 24:56. [PMID: 38317193 PMCID: PMC10845766 DOI: 10.1186/s12935-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and β4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and β4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
Collapse
Affiliation(s)
- Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | - Fabiola Troisi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | | | - Sara De Martino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- National Research Council (CNR)-IASI, Rome, Italy
| | - Angela Carlino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Vincenzo Fiorentino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Ripoli
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Francesco Pierconti
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS- Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pinto
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Pier Francesco Bassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Claudio Grassi
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, S. Orsola, Malpighi University Hospital, Bologna, Italy
| | | | - Simona Nanni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy.
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy.
| |
Collapse
|
13
|
Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C, Liu Z, Wang F, Du J. Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis. Technol Cancer Res Treat 2024; 23:15330338241273239. [PMID: 39110070 PMCID: PMC11307360 DOI: 10.1177/15330338241273239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Yunxiu Xia
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Zhiqiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, P.R. China
- Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
14
|
Xiao Y, Hu Y, Liu S. Non-coding RNAs: a promising target for early metastasis intervention. Chin Med J (Engl) 2023; 136:2538-2550. [PMID: 37442775 PMCID: PMC10617820 DOI: 10.1097/cm9.0000000000002619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion-metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Stomatology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yijun Hu
- Clinical Research Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
16
|
Ning H, Tao H. Small RNA sequencing of exosomal microRNAs reveals differential expression of microRNAs in preeclampsia. Medicine (Baltimore) 2023; 102:e35597. [PMID: 37861520 PMCID: PMC10589583 DOI: 10.1097/md.0000000000035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now clear that the placenta is central to disease progression. Exosomal microRNAs (miRNAs) are possible mediators that regulate placenta-related physiological and pathological processes. Placental mesenchymal stem cells have considerable potential to help us understand the pathogenesis and treatment of pregnancy-related diseases. Here, we investigate the exosomal miRNA profiles of human placenta-derived mesenchymal stem cells between healthy pregnant women and those with PE. We performed small RNA sequencing to obtain miRNA profiles, and conducted enrichment analysis of the miRNA target genes to identify differentially expressed miRNAs associated with PE. Overall, we detected 1795 miRNAs; among them, 206 were differentially expressed in women with PE, including 35 upregulated and 171 downregulated miRNAs, when compared with healthy pregnant women. Moreover, we identified possible functions and pathways associated with PE, including angiogenesis, cell proliferation, migration and invasion, and the coagulation-fibrinolysis balance. Eventually, we proposed hsa-miR-675-5p, hsa-miR-3614-5p, and hsa-miR-615-5p as potential regulators of the pathogenesis of PE, and constructed a miRNA-target gene network. Our study identifies possible candidate biomarkers for the diagnosis of PE, and introduces a new direction for further understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Hui Ning
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| | - Hong Tao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
17
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
18
|
Semik-Gurgul E, Gurgul A, Szmatoła T. Transcriptome and methylome sequencing reveals altered long non-coding RNA genes expression and their aberrant DNA methylation in equine sarcoids. Funct Integr Genomics 2023; 23:268. [PMID: 37552338 PMCID: PMC10409845 DOI: 10.1007/s10142-023-01200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Recent publications confirmed that long non-coding RNAs (lncRNAs) perform an essential function in gene-specific transcription regulation. Nevertheless, despite its important role, lncRNA has not yet been described in equine sarcoids, the skin neoplasia of horses. Therefore, the aim of this study is to deepen the knowledge about lncRNA expression in the pathogenesis of equine sarcoids and provide new insight into the regulatory function of lncRNA in the bovine papillomavirus-dependent neoplasia of horse dermal tissues. RNA sequencing (RNA-seq) data from 12 equine sarcoid samples and the corresponding controls were reanalyzed in this study. A total of 3396 differentially expressed (DE) lncRNAs and 128 DElncRNA-DE genes (DEGs) pairs were identified. Differentially expressed lncRNAs predicted target genes were enriched in pathways associated with inter alia the extracellular matrix disassembly and cancer pathways. Furthermore, methylation data from the same samples were integrated into the analysis, and 12 DElncRNAs were described as potentially disturbed by aberrant methylation. In conclusion, this study presents novel data about lncRNA's role in the pathogenesis of equine sarcoids.
Collapse
Affiliation(s)
- Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St., 32-083, Krakow, Balice, Poland.
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St., 32-083, Krakow, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| |
Collapse
|
19
|
Li J, Huang X, Chen H, Gu C, Ni B, Zhou J. LINC01088/miR-22/CDC6 Axis Regulates Prostate Cancer Progression by Activating the PI3K/AKT Pathway. Mediators Inflamm 2023; 2023:9207148. [PMID: 37501932 PMCID: PMC10371595 DOI: 10.1155/2023/9207148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023] Open
Abstract
Background Prostate cancer (PCa) harms the male reproductive system, and lncRNA may play an important role in it. Here, we report that the LINC01088/microRNA- (miRNA/miR-) 22/cell division cycle 6 (CDC6) axis regulated through the phosphatidylinositide 3-kinases- (PI3K-) protein kinase B (AKT) signaling pathway controls the development of PCa. Methods lncRNA/miRNA/mRNA associated with PCa was downloaded and analyzed by Gene Expression Omnibus. The expression and correlation of LINC01088/miR-22/CDC6 in PCa were analyzed and verified by RT-qPCR. Dual-luciferase was used to analyze the binding between miR-22 and LINC01088 or CDC6. Cell Counting Kit-8 and Transwell were used to analyze the effects of LINC01088/miR-22/CDC6 interactions on PCa cell viability or migration/invasion ability. Localization of LINC01088 in cells was analyzed by nuclear cytoplasmic separation. The effect of LINC01088/miR-22/CDC6 interaction on downstream PI3K/AKT signaling was analyzed by Western blot. Results LINC01088 or CDC6 was upregulated in prostate tumor tissues or cells, whereas miR-22 was downregulated, miR-22 directly targets both LINC01088 and CDC6. si-LINC01088 inhibits the PCa process by suppressing the PI3K/AKT pathway. CDC6 reverses si-linc01088-mediated cell growth inhibition and reduction of PI3K and AKT protein levels. Conclusion Our results demonstrate that the LINC01088/miR-22/CDC6 axis functions in PCa progression and provide a promising diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Xinghua Huang
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Haodong Chen
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Caifu Gu
- Department of Thyroid and Breast Surgery, Longgang Central Hospital, Shenzhen, Guangdong 518000, China
| | - Binyu Ni
- Department of Pediatrics, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, China
| | - Jianhua Zhou
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| |
Collapse
|
20
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
21
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
22
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
23
|
Yan L, Wu X, Zhang Y, Tan Q, Xu J, Wang Y, Wang R, Li Y, Zhao J. LncRNA ENST00000370438 promotes cell proliferation by upregulating DHCR24 in breast cancer. Mol Carcinog 2023; 62:855-865. [PMID: 36946578 DOI: 10.1002/mc.23529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Long noncoding RNAs (lncRNAs) are critically involved in the occurrence and development of breast cancer (BC). In this study, we performed RNA sequencing, and the results revealed an increase in the expression level of novel lncRNA ENST00000370438 in tissues of patients with BC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results showed an increase in lncRNA ENST00000370438 expression level in 23 pairs of BC tissues. Next, we determined the effect of ENST00000370438 on BC cell proliferation, and the results showed that ENST00000370438 promotes cell proliferation in BC. The proteomic analysis showed a decrease in DHCR24 expression level in BC cells transfected with ENST00000370438 small interfering RNA. Western blot and qRT-PCR assay results showed that ENST00000370438 regulated DHCR24 expression. Furthermore, the rescue experiment showed that the interference with ENST00000370438 expression could restore the effect of DHCR24 overexpression on BC cell proliferation, demonstrating that ENST00000370438 could promote cell proliferation by upregulating DHCR24. Finally, we showed that lncRNA ENST000000370438 could promote tumor growth by overexpressing DHCR24 in nude mice. Our results demonstrated that lncRNA ENST00000370438 promotes BC cell proliferation by upregulating DHCR24 expression.
Collapse
Affiliation(s)
- Liang Yan
- The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Xu Wu
- The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Yuan Zhang
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Qiuyu Tan
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Jinwen Xu
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Ying Wang
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Ruodan Wang
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Yulei Li
- Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, Anhui, China
| | - Jun Zhao
- The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
24
|
Li Y, Wei C, Huang C, Ling Q, Zhang L, Huang S, Liao N, Liang W, Cheng J, Wang F, Mo L, Mo Z, Li L. Long noncoding RNA as a potential diagnostic tool for prostate cancer: a systematic review and meta-analysis. Biomarkers 2023; 28:1-10. [PMID: 36323640 DOI: 10.1080/1354750x.2022.2142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE To identify consistently expressed lncRNAs and suitable lncRNAs with high sensitivity and specificity from multiple independent studies as potential biomarkers for PCa diagnostics. METHODS We searched multiple electronic databases including PubMed, Web of Science, EMBASE, Cochrane Library, CNKI, CQVIP, Wanfang, and CBMdisc for studies published up to July 2022. The quality of the included studies was assessed by two independent reviewers based on the QUADAS-2 tool using Review Manager 5.3. A vote-counting method was used based on the ranking of potential molecular biomarkers. The top-ranked lncRNAs were further assessed for diagnostic value using Meta-disc version 1.4 software. RESULTS Among the 26 included studies, 2 circulating lncRNAs (PCA3 and MALAT-1) were reported 3 or more times in PCa patients versus non-PCa patients. In further analysis, the areas under the curve of the summary receiver operating characteristic curves for PCA3 and MALAT-1 distinguishing PCa patients were 0.775 and 0.771, respectively. CONCLUSIONS Based on the current evidence, PCA3 and MALAT-1 are reliable lncRNAs for the diagnosis of PCa.
Collapse
Affiliation(s)
- Yexin Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Caihong Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiang Ling
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Naikai Liao
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weixia Liang
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 2023; 13:317. [PMID: 36609440 PMCID: PMC9822944 DOI: 10.1038/s41598-022-27126-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Collapse
Affiliation(s)
- Rekha S. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Ashley Lui
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Charles Hudson
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Lauren Moss
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Robert P. Sparks
- Present Address: UMass Chan Medical School, Worcester, MA 01655 USA
| | - Shannon E. Hill
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Yan Shi
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Jianfeng Cai
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Laura J. Blair
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Paula C. Bickford
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Niketa A. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
26
|
Maroni P, Gomarasca M, Lombardi G. Long non-coding RNAs in bone metastasis: progresses and perspectives as potential diagnostic and prognostic biomarkers. Front Endocrinol (Lausanne) 2023; 14:1156494. [PMID: 37143733 PMCID: PMC10153099 DOI: 10.3389/fendo.2023.1156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In a precision medicine perspective, among the biomarkers potentially useful for early diagnosis of cancers, as well as to define their prognosis and eventually to identify novel and more effective therapeutic targets, there are the long non-coding RNAs (lncRNAs). The term lncRNA identifies a class of non-coding RNA molecules involved in the regulation of gene expression that intervene at the transcriptional, post-transcriptional, and epigenetic level. Metastasis is a natural evolution of some malignant tumours, frequently encountered in patients with advanced cancers. Onset and development of metastasis represents a detrimental event that worsen the patient's prognosis by profoundly influencing the quality of life and is responsible for the ominous progression of the disease. Due to the peculiar environment and the biomechanical properties, bone is a preferential site for the secondary growth of breast, prostate and lung cancers. Unfortunately, only palliative and pain therapies are currently available for patients with bone metastases, while no effective and definitive treatments are available. The understanding of pathophysiological basis of bone metastasis formation and progression, as well as the improvement in the clinical management of the patient, are central but challenging topics in basic research and clinical practice. The identification of new molecular species that may have a role as early hallmarks of the metastatic process could open the door to the definition of new, and more effective, therapeutic and diagnostic approaches. Non-coding RNAs species and, particularly, lncRNAs are promising compounds in this setting, and their study may bring to the identification of relevant processes. In this review, we highlight the role of lncRNAs as emerging molecules in mediating the formation and development of bone metastases, as possible biomarkers for cancer diagnosis and prognosis, and as therapeutic targets to counteract cancer spread.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- *Correspondence: Marta Gomarasca,
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
27
|
LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther 2023; 30:209-218. [PMID: 36195720 PMCID: PMC9842505 DOI: 10.1038/s41417-022-00537-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023]
Abstract
Malignant progression such as bone metastasis, which is associated with pathologic fractures, pain and reduced survival frequently occurs in prostate cancer (PCa) patients at advanced stages. Accumulating evidence has supported that long non-coding RNAs (lncRNAs) participate in multiple biological processes. Nevertheless, the functions of most lncRNAs in PCa malignant progression remain largely unclear. Our current study is to elucidate the influence of lncRNA lncNAP1L6 on PCa malignant progression and uncover the possible regulatory mechanism. Firstly, RT-qPCR analysis was to detect lncNAP1L6 expression and suggested that lncNAP1L6 was markedly upregulated in PCa cells. Functional assays manifested that silencing of lncNAP1L6 hampered cell migration, invasion, and epithelial-mesenchymal transition (EMT) while overexpression of lncNAP1L6 exacerbated cell migration, invasion and EMT. In addition, mechanism assays were to determine the latent regulatory mechanism of lncNAP1L6. It turned out that METTL14/METTL3 complex mediated m6A methylation of NAP1L2 mRNA. Besides, lncNAP1L6 recruited HNRNPC to m6A-modified NAP1L2, leading to stabilization of NAP1L2 mRNA. Moreover, NAP1L6 interacted with YY1 to promote the transcription of MMP2 and MMP9 and activate MMP signaling pathway. In summary, lncNAP1L6 was identified as an oncogene in PCa, which revealed that lncNAP1L6 might be used as potential therapeutic target in PCa.
Collapse
|
28
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
29
|
Li W, Wang YY, Xiao L, Ding J, Wang L, Wang F, Sun T. Mysterious long noncoding RNAs and their relationships to human disease. Front Mol Biosci 2022; 9:950408. [PMID: 36406273 PMCID: PMC9666423 DOI: 10.3389/fmolb.2022.950408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Increasingly studies have shown that the formation mechanism of many human diseases is very complex, which is determined by environmental factors and genetic factors rather than fully following Mendel's genetic law of inheritance. Long non-coding RNA (lncRNA) is a class of endogenous non-protein coding RNA with a length greater than 200 nt, which has attracted much attention in recent years. Studies have shown that lncRNAs have a wide range of biological functions, such as roles in gene imprinting, cell cycle progression, apoptosis, senescence, cell differentiation, and stress responses, and that they regulate the life processes of mammals at various levels, such as epigenetic transcription, processing, modification, transport, translation and degradation. Analyzing the characteristics of lncRNAs and revealing their internal roles can not only deepen our understanding of human physiological and pathological processes, but also provide new ideas and solutions for the diagnosis, prevention and treatment of some diseases. This article mainly reviews the biological characteristics of lncRNAs and their relationship with some diseases, so as to provide references for the related research of lncRNAs.
Collapse
Affiliation(s)
- Wenchao Li
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yang Yang Wang
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Tao Sun, ; Feng Wang,
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China,*Correspondence: Tao Sun, ; Feng Wang,
| |
Collapse
|
30
|
Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M, Salimimoghadam S, Gunduz ES, Taheriazam A, Mirzaei S, Samarghandian S. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol Res 2022; 184:106418. [PMID: 36038043 DOI: 10.1016/j.phrs.2022.106418] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, β-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Sadat Moosavi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hedyeh Maghareh Abed
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Aalipour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ali Heydari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
31
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
32
|
Non-Coding RNAs and Prediction of Preeclampsia in the First Trimester of Pregnancy. Cells 2022; 11:cells11152428. [PMID: 35954272 PMCID: PMC9368389 DOI: 10.3390/cells11152428] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) is a major cause of maternal and perinatal morbidity and mortality. The only fundamental treatment for PE is the termination of pregnancy. Therefore, not only severe maternal complications but also perinatal complications due to immaturity of the infant associated with early delivery are serious issues. The treatment and prevention of preterm onset preeclampsia (POPE) are challenging. In 2017, the ASPRE trial showed that a low oral dose of aspirin administered to POPE high-risk women in early pregnancy reduced POPE by 62%. A prediction algorithm at 11–13 weeks of gestation identifies POPE with 75% sensitivity when the false positive rate is set at 10%. New biomarkers to increase the accuracy of the prediction model for POPE high-risk women in early pregnancy are needed. In this review, we focused on non-coding RNAs (ncRNAs) as potential biomarkers for the prediction of POPE. Highly expressed ncRNAs in the placenta in early pregnancy may play crucial roles in placentation. Furthermore, placenta-specific ncRNAs have been detected in maternal blood. In this review, we summarized ncRNAs that were highly expressed in the primary human placenta in early pregnancy. We also presented highly expressed ncRNAs in the placenta that were associated with or predictive of the development of PE in an expression analysis of maternal blood during the first trimester of pregnancy. These previous studies showed that the chromosome 19 microRNA (miRNA) -derived miRNAs (e.g., miR-517-5p, miR-518b, and miR-520h), the hypoxia-inducible miRNA (miR-210), and long non-coding RNA H19, were not only highly expressed in the early placenta but were also significantly up-regulated in the blood at early gestation in pregnant women who later developed PE. These maternal circulating ncRNAs in early pregnancy are expected to be possible biomarkers for POPE.
Collapse
|
33
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
34
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Li J, Zhang Y, Sun L, Liu S, Zhao M, Luo B. LMP1 Induces p53 Protein Expression via the H19/miR-675-5p Axis. Microbiol Spectr 2022; 10:e0000622. [PMID: 35674441 PMCID: PMC9241841 DOI: 10.1128/spectrum.00006-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous oncogenic herpesvirus, infects more than 90% of the adult population worldwide. The long noncoding RNA H19 is downregulated in EBV-positive gastric cancer (EBVaGC) and nasopharyngeal cancer (NPC). In this study, we found that loss of H19 is caused by hypermethylation status of the H19 promoter in EBV-positive GC and NPC cell lines. Furthermore, latent membrane protein 1 (LMP1), encoded by EBV, induced H19 promoter hypermethylation and deregulated the expression of H19 by upregulating DNMT1 expression. Transwell assays showed that H19 promoted cell migration. Furthermore, H19 promoted cell proliferation and inhibited apoptosis in CCK-8 and flow cytometry assays, respectively. p53, a well-known tumor suppressor, was upregulated in EBVaGC and NPC cell lines. miR-675-5p derived from H19 inhibited p53 protein expression by targeting the 3' untranslated region of the gene. Overall, we found that LMP1 induced p53 protein expression via the H19/miR-675-5p axis in EBVaGC and NPC. LMP1 induced H19 promoter hypermethylation, which repressed the expression of H19 and miR-675-5p and caused p53 protein overexpression in EBVaGC and NPC cells. IMPORTANCE Epstein-Barr virus (EBV) is the first virus to be known to have direct association with human cancer and to be considered as an important DNA tumor virus. The EBV life cycle consists of both latent and lytic modes of infection in B lymphocytes and epithelial cells. The persistence of EBV genomes in malignant cells promoted cell growth. p53, acting as a critical gatekeeper tumor suppressor, is involved in multiple virus-mediated tumorigeneses. Overexpression of p53 inhibits the ability of BZLF1 (EBV-encoded immediate early gene) to disrupt viral latency. In our study, we found LMP1 induces H19 promoter hypermethylation, which represses the expression of H19 and miR-675-5p and results in p53 protein overexpression in EBVaGC and NPC cells. These observations suggest a new mechanism of aberrant expression of p53 by LMP1, which facilitates EBV latency.
Collapse
Affiliation(s)
- Jun Li
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Lingling Sun
- Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Liu
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao, Shandong Province, China
| | - Menghe Zhao
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
36
|
Yang Y, Shi L, Zhang J, Zheng Y, Wu G, Sun J, Liu M, Chen Z, Wang Y, Ji R, Guo Q, Zhou Y. A Novel Matrisomal-Related LncRNA Signature Associated With Survival Outcome and Immune Evasion in Patients With Gastric Cancer. Front Oncol 2022; 12:926404. [PMID: 35814410 PMCID: PMC9263572 DOI: 10.3389/fonc.2022.926404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Different matrisomal patterns are shared across carcinomas. However, little is known about whether there exists a unique tumor matrisome that modulates GC progression and immune regulation. Methods We conducted a genome-wide analysis based on matrisomal-related lncRNAs (MRLs) in 375 patients with GC from the Cancer Genome Atlas (TCGA) database. Patients were split into the training set and validation set at a ratio of 1:1 using the R package cart. Pearson correlation analysis (PCA) was performed to identify lncRNAs that correlated with matrisome based on differential expression genes. Subsequently, we performed univariate Cox regression analyses and lasso Cox analysis on these lncRNAs to construct a risk model. Considering the primary effect of GRASLND on the GC prognosis, we chose it for further validation in an experimental setting. Results We identified a 15-MRL signature to predict overall survival and immune cell infiltration of patients with GC. The AUC values to predict 5-year outcome in three sets were 0.89, 0.65, and 0.78, respectively. Further analyses suggested that the high-risk group showed more obvious immune cell infiltration, and demonstrated an immunologically “cold” profile. In vitro, knockdown of GRASLND could inhibit the invasion capability of GC cells, and downregulate the protein expression of crucial matrisomal-related gene MMP9. Conclusions The 15-MRL gene signature might serve as a relatively good predictive tool to manage patients with GC.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Li Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Jun Zhang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Digestive Endoscopic Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Jie Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Yongning Zhou,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Yongning Zhou,
| |
Collapse
|
37
|
Kano J, Wang H, Zhang H, Noguchi M. Roles of DKK3 in cellular adhesion, motility, and invasion through extracellular interaction with TGFBI. FEBS J 2022; 289:6385-6399. [DOI: 10.1111/febs.16529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Junko Kano
- Department of Diagnostic Pathology, Faculty of Medicine University of Tsukuba Japan
| | - Hongxin Wang
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science Tsukuba Japan
| | - Han Zhang
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science Tsukuba Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine University of Tsukuba Japan
| |
Collapse
|
38
|
Li R, Gao X, Sun H, Sun L, Hu X. Expression characteristics of long non-coding RNA in colon adenocarcinoma and its potential value for judging the survival and prognosis of patients: bioinformatics analysis based on The Cancer Genome Atlas database. J Gastrointest Oncol 2022; 13:1178-1187. [PMID: 35837189 DOI: 10.21037/jgo-22-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the expression characteristics of long non-coding RNA (lncRNA) in colon adenocarcinoma (COAD) and its potential value in predicting the prognosis of patient survival. Methods We downloaded COAD-related RNA sequencing (RNA-seq) data and patient survival data from The Cancer Genome Atlas (TCGA). The data were analyzed for lncRNA expression differences, subjected to Cox regression analysis for survival rate, and Kaplan-Meier (KM) survival curves were plotted to analyze the role of the key genes related to prognostic survival by pathway enrichment analysis. Results The data of 494 COAD clinical samples from TCGA were analyzed; 204 lncRNAs were differentially expressed, 156 were up-regulated, and 48 were down-regulated. The 10 genes with the most significant expression differences were Linc02418, Blacat1, ELFN1-AS1, CRNDE, AC002384.1, AL353801.1, LINC01645, AC073283.2, AC087379.1, and LINC00484. Cox regression analysis of 204 lncRNA genes showed that 23 lncRNA genes with significant effects on the prognosis and survival rate of COAD patients were obtained when P<0.05 was used as the threshold. With P≤0.001 as the threshold, the KM curves of 4 genes (Linc02257, Linc02474, Ac010789.1, Ac083967.1) were statistically significant (P<0.05). The gene Linc02257 was selected for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and it was revealed that the inheritance of Linc02257-regulated gene expression was closely related to tumor development, such as collagen-containing extracellular matrix, organogenesis, activity of membrane protein receptors, and ion channel activity. The signaling pathways regulated by Linc02257 were also closely related to tumors, such as neuroactive ligand-receptor interaction, the PI3K-AKT signaling pathway, calcium signaling pathway, and protein digestion and absorption. Conclusions In COAD, lncRNA is differentially expressed and plays an important role in the disease regulation. It has potential application value in the diagnosis, targeted therapy, and prognosis of COAD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xu Gao
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Lixin Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xiaojian Hu
- Department of Urology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| |
Collapse
|
39
|
Zhong B, Zhao Z, Jiang X. RP1-59D14.5 triggers autophagy and represses tumorigenesis and progression of prostate cancer via activation of the Hippo signaling pathway. Cell Death Dis 2022; 13:458. [PMID: 35562348 PMCID: PMC9106715 DOI: 10.1038/s41419-022-04865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the major malignant tumors among men worldwide. Long noncoding RNAs (lncRNAs) have been documented as important modulators in human cancers, including PCa. In our study, we investigated the role and potential mechanism of RP1-59D14.5 in PCa. RP1-59D14.5 expressed at a low level in PCa cells. Gain-of-function assays including colony formation and transwell assays displayed that RP1-59D14.5 overexpression repressed PCa cell proliferation, migration, and invasion. Besides, RP1-59D14.5 up-regulation induced autophagy in PCa cells. Mechanically, luciferase reporter assays and western blot verified that RP1-59D14.5 activated the Hippo pathway in PCa cells. Through RNA-binding protein immunoprecipitation (RIP) and RNA pull-down assays, we validated that RP1-59D14.5 functioned as a competing endogenous RNA (ceRNA) to regulate large tumor suppressor kinase 1/2 (LATS1/2) via targeting miR-147a. Moreover, RP1-59D14.5 recruited HUR to promote casein kinase 1 (CK1) expression. Collectively, RP1-59D14.5 promoted yes-associated protein (YAP) degradation to activate the Hippo pathway in PCa progression via targeting the miR-147a/LATS1/2 axis and recruiting HUR to promote the interaction of CK1 and β-transducin repeat-containing protein (βTrCP). These results implied that RP1-59D14.5 acted as a tumor suppressor in PCa, which might be a target for PCa treatment.
Collapse
Affiliation(s)
- Bing Zhong
- grid.89957.3a0000 0000 9255 8984Department of Urology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| | - Zexue Zhao
- grid.89957.3a0000 0000 9255 8984Department of Orthopedics, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| | - Xi Jiang
- grid.89957.3a0000 0000 9255 8984Department of Urology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| |
Collapse
|
40
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
41
|
Giridharan M, Rupani V, Banerjee S. Signaling Pathways and Targeted Therapies for Stem Cells in Prostate Cancer. ACS Pharmacol Transl Sci 2022; 5:193-206. [PMID: 35434534 PMCID: PMC9003388 DOI: 10.1021/acsptsci.2c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Collapse
Affiliation(s)
- Madhuvanthi Giridharan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Vasu Rupani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| |
Collapse
|
42
|
Abdi E, Latifi-Navid S. LncRNA polymorphisms and urologic cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:190-203. [PMID: 35178782 DOI: 10.1002/em.22472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Urologic cancers involve nearly one-quarter of all cancers and include the prostate, bladder, and kidney cancers. Long non-coding RNAs (LncRNAs) are expressed in a tissue-specific manner and affect cell proliferation, apoptosis, and differentiation. LncRNAs expression is misregulated in urologic cancers, as their aberrant expression may make them capable of being utilized in the diagnosis, prognosis, and treatment of cancers. LncRNAs polymorphisms can affect their structure, expression, and function by interfering with the associated target mRNAs. As a result, lncRNA polymorphisms may be linked to the mechanism driving cancer susceptibility. Therefore, SNPs in lncRNAs may be a beneficial biomarker for early diagnosis and prognosis of cancers, as they affect lncRNA role in tumorigenesis and cancer progression. Moreover, the genetic heredity of lncRNA SNPs affects the personal therapeutic response to drugs. In this study, the lncRNAs polymorphism is summarized in relation to urologic cancers. It is proposed that lncRNA-related polymorphisms, as an individual or combined genotypes, can predict urologic cancer risk, even clinical and prognostic outcomes. However, large-scale population-based prospective studies and comprehensive meta-analyses should be conducted to validate and use these lncRNAs SNPs as the indicators of urologic cancers. Future research should examine the function of these SNPs to explain their associations with urologic cancers.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
43
|
Role of MicroRNAs in Neuroendocrine Prostate Cancer. Noncoding RNA 2022; 8:ncrna8020025. [PMID: 35447888 PMCID: PMC9029336 DOI: 10.3390/ncrna8020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC/NEPC) is an aggressive variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC) under the selective pressure of androgen receptor (AR)-targeted therapies. This variant is extremely aggressive, metastasizes to visceral organs, tissues, and bones despite low serum PSA, and is associated with poor survival rates. It arises via a reversible trans-differentiation process, referred to as ‘neuroendocrine differentiation’ (NED), wherein PCa cells undergo a lineage switch and exhibit neuroendocrine features, characterized by the expression of neuronal markers such as enolase 2 (ENO2), chromogranin A (CHGA), and synaptophysin (SYP). The molecular and cellular mechanisms underlying NED in PCa are complex and not clearly understood, which contributes to a lack of effective molecular biomarkers for diagnosis and therapy of this variant. NEPC is thought to derive from prostate adenocarcinomas by clonal evolution. A characteristic set of genetic alterations, such as dual loss of retinoblastoma (RB1) and tumor protein (TP53) tumor suppressor genes and amplifications of Aurora kinase A (AURKA), NMYC, and EZH2, has been reported to drive NEPC. Recent evidence suggests that microRNAs (miRNAs) are important epigenetic players in driving NED in advanced PCa. In this review, we highlight the role of miRNAs in NEPC. These studies emphasize the diverse role that miRNAs play as oncogenes and tumor suppressors in driving NEPC. These studies have unveiled the important role of cellular processes such as the EMT and cancer stemness in determining NED in PCa. Furthermore, miRNAs are involved in intercellular communication between tumor cells and stromal cells via extracellular vesicles/exosomes that contribute to lineage switching. Recent studies support the promising potential of miRNAs as novel diagnostic biomarkers and therapeutic targets for NEPC.
Collapse
|
44
|
Zhao Z, Wang Z, Pei L, Zhou X, Liu Y. Long non-coding ribonucleic acid AFAP1-AS1 promotes chondrocyte proliferation via the miR-512-3p/matrix metallopeptidase 13 (MMP-13) axis. Bioengineered 2022; 13:5386-5395. [PMID: 35188875 PMCID: PMC8973689 DOI: 10.1080/21655979.2022.2031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-chain non-coding RNAs are reported to be involved in cartilage damage. However, less research on the role of actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) in osteoarthritis. To investigate AFAP1-AS1 function in osteoarthritis development, AFAP1-AS1 and miR-512-3p expression levels in osteoarthritis cartilage and cells were evaluated using RT-qPCR. The downstream target genes of AFAP1-AS1 and miR-512-3p were predicted and validated using luciferase reporter assays. Moreover, a knee osteoarthritis model was established by injecting monoiodoacetate into the knee joints of mice. The effects of AFAP1-AS1 and miR-512-3p on osteoarthritis chondrocyte proliferation and MMP-13, collagen II, and collagen IV expressions were detected in vivo using CCK-8 assay and Western blotting and RT-qPCR, respectively. AFAP1-AS1 expression was upregulated in osteoarthritis cartilage and cells. MiR-512-3p expression was downregulated in osteoarthritis cartilage. AFAP1-AS1 overexpression inhibited miR-512-3p expression in chondrocytes. Furthermore, AFAP1-AS1 over-expression promoted chondrocyte proliferation, and miR-512-3p mimic inhibited chondrocyte proliferation in vivo. AFAP1-AS1 overexpression reduced type II and type IV collagen expression, while miR-512-3p overexpression promoted type II and type IV collagen in vivo. AFAP1-AS1 overexpression enhanced MMP-13 expression in vivo. AFAP1-AS1 overexpression regulated chondrocyte proliferation by inhibiting miR-512-3p expression in vivo. AFAP1-AS1 could be a potential target to treat osteoarthritis by inhibiting miR-512-3p and subsequently inducing chondrocyte proliferation and regulating matrix synthesis.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Zhiyan Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Lijia Pei
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Xinshe Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| |
Collapse
|
45
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
46
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
47
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
48
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
49
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
50
|
Long Non-Coding RNAs at the Chromosomal Risk Loci Identified by Prostate and Breast Cancer GWAS. Genes (Basel) 2021; 12:genes12122028. [PMID: 34946977 PMCID: PMC8701176 DOI: 10.3390/genes12122028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key players in a variety of cellular processes. Deregulation of the lncRNAs has been implicated in prostate and breast cancers. Recently, germline genetic variations associated with cancer risk have been correlated with lncRNA expression and/or function. In addition, single nucleotide polymorphisms (SNPs) at well-characterized cancer-associated lncRNAs have been analyzed for their association with cancer risk. These SNPs may occur within the lncRNA transcripts or spanning regions that may alter the structure, function, and expression of these lncRNA molecules and contribute to cancer progression and may have potential as therapeutic targets for cancer treatment. Additionally, some of these lncRNA have a tissue-specific expression profile, suggesting them as biomarkers for specific cancers. In this review, we highlight some of the cancer risk-associated SNPs that modulated lncRNAs with a potential role in prostate and breast cancers and speculate on how these lncRNAs may contribute to cancer development.
Collapse
|