1
|
Zhang X, Li Y, Wang K, Yin J, Du Y, Yang Z, Pan X, You J, Rao Z. Construction of antibiotic-free riboflavin producer in Escherichia coli by metabolic engineering strategies with a plasmid stabilization system. Synth Syst Biotechnol 2025; 10:346-355. [PMID: 39811763 PMCID: PMC11731478 DOI: 10.1016/j.synbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free Escherichia coli riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system. Initially, competitive pathways and feedback inhibition were attenuated to enhance the metabolic flux towards riboflavin. Key genes in the purine pathway were overexpressed to boost the availability of riboflavin precursors. Subsequently, a plasmid stabilization system based on toxin was screened and characterized, achieving a plasmid retention rate of 84.9% after 10 days of passaging. Finally, transcriptomic analysis at the genome-wide level revealed several rate-limiting genes, including pgl, gnd, and yigB, which were subsequently upregulated, leading to a 26% improvement in riboflavin production. With optimization of the culture medium, the final strain allowed the production of 11.5 g/L of riboflavin with a yield of 90.4 mg/g glucose in 5 L bioreactors without antibiotics. These strategies can be extended to other plasmid-based riboflavin derivative production systems.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yanan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhen Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
2
|
Crielaard S, Peters CFM, Slivkov A, van den Homberg DAL, Velema WA. Chemotranscriptomic profiling with a thiamine monophosphate photoaffinity probe. Chem Sci 2025; 16:4725-4731. [PMID: 39968280 PMCID: PMC11831223 DOI: 10.1039/d4sc06189f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
RNA is a multifaceted biomolecule with numerous biological functions and can interact with small molecule metabolites as exemplified by riboswitches. Here, we profile the Escherichia coli transcriptome on interactions with the metabolite Thiamine Monophosphate (TMP). We designed and synthesized a photoaffinity probe based on the scaffold of TMP and applied it to chemotranscriptomic profiling. Using next-generation RNA sequencing, several potential interactions between bacterial transcripts and the probe were identified. A remarkable interaction between the TMP probe and the well-characterized Flavin Mononucleotide (FMN) riboswitch was validated by RT-qPCR, and further verified with competition assays. Localization of the photocrosslinked nucleotides using reverse transcription and docking predictions of the probe suggested binding to the riboswitch aptamer. After examining binding of unmodified TMP to the riboswitch using SHAPE, we found selective yet moderate binding interactions, potentially mediated by the phosphate group of TMP. Lastly, TMP appeared to enhance gene expression of a reporter gene that is under riboswitch control, while the natural ligand FMN displayed an inhibitory effect, hinting at a potential biological role of TMP. This work showcases the possibility of chemotranscriptomic profiling to identify new RNA-small molecule interactions.
Collapse
Affiliation(s)
- Stefan Crielaard
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Casper F M Peters
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Alexandar Slivkov
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Daphne A L van den Homberg
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Willem A Velema
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| |
Collapse
|
3
|
Gong S, Wang Y, Du C. Gene Regulation by a Kinetic Riboswitch with Negative Feedback Loop. J Phys Chem B 2025; 129:2348-2358. [PMID: 39993152 DOI: 10.1021/acs.jpcb.4c06581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Understanding the folding behaviors and cellular roles is important to fully illuminate functions of riboswitches in vivo. Since riboswitches act without the need for protein factors, RNA structure prediction methods are ideally suited for computationally analyzing their cellular activities. Here, a helix-based RNA folding theory is used to predict the cotranscriptional folding pathways of the flavin mononucleotide (FMN)-binding riboswitch from Bacillus subtilis (B. subtilis) under different conditions. The results show that the efficient function is determined by a balance between the transcription speed, pausing, and the binding rates of the metabolite. According to the predicted behaviors, a general kinetic model is established to investigate how the riboswitch couples sensing and regulatory functions to help bacteria respond to environmental changes at the system levels.
Collapse
Affiliation(s)
- Sha Gong
- Department of Physics, Huanggang Normal University, Huanggang 438000, People's Republic of China
| | - Yujie Wang
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, People's Republic of China
| | - Chengyi Du
- Department of Physics, Huanggang Normal University, Huanggang 438000, People's Republic of China
| |
Collapse
|
4
|
Tang Q, Li Z, Chen N, Luo X, Zhao Q. Natural pigments derived from plants and microorganisms: classification, biosynthesis, and applications. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:592-614. [PMID: 39642082 PMCID: PMC11772333 DOI: 10.1111/pbi.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 12/08/2024]
Abstract
Pigments, as coloured secondary metabolites, endow the world with a rich palette of colours. They primarily originate from plants and microorganisms and play crucial roles in their survival and adaptation processes. In this article, we categorize pigments based on their chemical structure into flavonoids, carotenoids, pyrroles, quinones, azaphilones, melanins, betalains, flavins, and others. We further meticulously describe the colours, sources, and biosynthetic pathways, including key enzymatic steps and regulatory networks that control pigment production, in both plants and microorganisms. In particular, we highlight the role of transport proteins and transcription factors in fine-tuning these pathways. Finally, we introduce the use of pigments in practical production and research, aiming to provide new insights and directions for the application of coloured compounds in diverse fields, such as agriculture, industry, and medicine.
Collapse
Affiliation(s)
- Qian Tang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- School of Applied BiologyCity Polytechnic of ShenzhenShenzhenChina
| | - Zhibo Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ningxin Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Wykes H, Le VVH, Rakonjac J. Mutations in the riboflavin biosynthesis pathway confer resistance to furazolidone and abolish the synergistic interaction between furazolidone and vancomycin in Escherichia coli. Microb Genom 2025; 11. [PMID: 39932767 DOI: 10.1099/mgen.0.001356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The combined application of furazolidone and vancomycin has previously been shown to be synergistic against Gram-negative pathogens, with great therapeutic promise. However, the emergence and mechanism of resistance to this antibiotic combination have not been characterized. To fill this gap, we here selected Escherichia coli progeny for growth on the furazolidone-vancomycin combination at the concentration where the parent was sensitive. We show that selected clones were associated with increased resistance to neither, only one drug, or both furazolidone and vancomycin, but in all cases were associated with a decrease in the growth inhibition synergy. Using whole-genome sequencing, we identified various gene mutations in the resistant mutants. We further investigated the mechanism behind the most frequently arising mutations, those in the riboflavin biosynthesis genes ribB and ribE, that represent novel mutations causing furazolidone resistance and diminished vancomycin-furazolidone synergy. It was found that these ribB/ribE mutations act predominantly by decreasing the activity of the NfsA and NfsB nitroreductases. The emergence of the ribB/ribE mutations imposes a significant fitness cost on bacterial growth. Surprisingly, supplementing the medium with riboflavin, which compensates for the affected riboflavin biosynthesis pathway, could restore the normal growth of the ribB/ribE mutants while having no effects on the furazolidone resistance phenotype. Searching the ribB/ribE mutations in the public sequencing database detects the presence of the furazolidone-resistance-conferring ribE mutations (TKAG131-134 deletion or duplication) in clinical isolates from different countries. Hypotheses explaining why these ribE mutations were found in clinical isolates despite having poor fitness were further discussed.
Collapse
Affiliation(s)
- Hannah Wykes
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vuong Van Hung Le
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- Living Systems Institute, University of Exeter, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jasna Rakonjac
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Eschbach SH, Hien EDM, Ghosh T, Lamontagne AM, Lafontaine DA. The Escherichia coli ribB riboswitch senses flavin mononucleotide within a defined transcriptional window. RNA (NEW YORK, N.Y.) 2024; 30:1660-1673. [PMID: 39366707 PMCID: PMC11571811 DOI: 10.1261/rna.080074.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
7
|
Prakash A, Kalita A, Bhardwaj K, Mishra RK, Ghose D, Kaur G, Verma N, Pani B, Nudler E, Dutta D. Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities. J Biol Chem 2024; 300:107967. [PMID: 39510182 DOI: 10.1016/j.jbc.2024.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli. As riboswitches are untranslated RNAs, they are often associated with the Rho-dependent transcription termination in bacteria. Here, performing in vitro transcription and in vivo reporter assays, we demonstrate that Rho efficiently terminates transcription at the mntP riboswitch region. Excess manganese activates the riboswitch, restoring the coupling between transcription and translation to evade Rho-dependent transcription termination partially. RT-PCR and Western blot experiments revealed that the deletion of the riboswitch abolishes Rho-dependent termination and thereby overexpresses MntP. Interestingly, deletion of the riboswitch also renders bacteria sensitive to manganese. This manganese sensitivity is linked with the overexpression of MntP. Further spot assays, confocal microscopy, and flow cytometry experiments revealed that the high level of MntP expression was responsible for slow growth, cell filamentation, and reactive oxygen species (ROS) production. We posit that manganese-dependent transcriptional activation of mntP in the absence of Rho-dependent termination leads to excessive MntP expression, a membrane protein, causing membrane protein toxicity. Thus, we show a regulatory role of Rho-dependent termination, which prevents membrane protein toxicity by limiting MntP expression.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Arunima Kalita
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bhardwaj
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Kumar Mishra
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Debarghya Ghose
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Gursharan Kaur
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, New York, USA
| | - Dipak Dutta
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
8
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. Microbiol Spectr 2024; 12:e0320723. [PMID: 38916330 PMCID: PMC11302143 DOI: 10.1128/spectrum.03207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Liu L, Luo D, Zhang Y, Liu D, Yin K, Tang Q, Chou SH, He J. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis. Microbiol Spectr 2024; 12:e0045024. [PMID: 38819160 PMCID: PMC11218506 DOI: 10.1128/spectrum.00450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro, while downstream terminator T2 is more efficient in vivo. Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehua Luo
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongji Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dingqi Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kang Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Quarta G, Schlick T. Riboswitch Distribution in the Human Gut Microbiome Reveals Common Metabolite Pathways. J Phys Chem B 2024; 128:4336-4343. [PMID: 38657162 PMCID: PMC11089507 DOI: 10.1021/acs.jpcb.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Riboswitches are widely distributed, conserved RNAs which regulate metabolite levels in bacterial cells through direct, noncovalent binding of their cognate metabolite. Various riboswitch families are highly enriched in gut bacteria, suggestive of a symbiotic relationship between the host and bacteria. Previous studies of the distribution of riboswitches have examined bacterial taxa broadly. Thus, the distribution of riboswitches associated with bacteria inhabiting the intestines of healthy individuals is not well understood. To address these questions, we survey the gut microbiome for riboswitches by including an international database of prokaryotic genomes from the gut samples. Using Infernal, a program that uses RNA-specific sequence and structural features, we survey this data set using existing riboswitch models. We identify 22 classes of riboswitches with vitamin cofactors making up the majority of riboswitch-associated pathways. Our finding is reproducible in other representative databases from the oral as well as the marine microbiomes, underscoring the importance of thiamine pyrophosphate, cobalamin, and flavin mononucleotide in gene regulation. Interestingly, riboswitches do not vary significantly across microbiome representatives from around the world despite major taxonomic differences; this suggests an underlying conservation. Further studies elucidating the role of bacterial riboswitches in the host metabolome are needed to illuminate the consequences of our finding.
Collapse
Affiliation(s)
- Giulio Quarta
- Department
of Medicine, NYU Grossman School of Medicine, 450 East 29th St., Room 341, New York, New York 10016, United States
| | - Tamar Schlick
- Department
of Chemistry, New York University, 100 Washington Square East, Silver
Building, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, 251
Mercer Street, New York, New York 10012, United States
- New
York University-East China Normal University Center for Computational
Chemistry, New York University Shanghai, Shanghai 200122, China
- Simons
Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, New York 10003, United States
| |
Collapse
|
11
|
Paredes-Barrada M, Kopsiaftis P, Claassens NJ, van Kranenburg R. Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory. Metab Eng 2024; 83:39-51. [PMID: 38490636 DOI: 10.1016/j.ymben.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Parageobacillus thermoglucosidasius is a thermophilic and facultatively anaerobic microbe, which is emerging as one of the most promising thermophilic model organisms for metabolic engineering. The use of thermophilic microorganisms for industrial bioprocesses provides the advantages of increased reaction rates and reduced cooling costs for bioreactors compared to their mesophilic counterparts. Moreover, it enables starch or lignocellulose degradation and fermentation to occur at the same temperature in a Simultaneous Saccharification and Fermentation (SSF) or Consolidated Bioprocessing (CBP) approach. Its natural hemicellulolytic capabilities and its ability to convert CO to metabolic energy make P. thermoglucosidasius a potentially attractive host for bio-based processes. It can effectively degrade hemicellulose due to a number of hydrolytic enzymes, carbohydrate transporters, and regulatory elements coded from a genomic cluster named Hemicellulose Utilization (HUS) locus. The growing availability of effective genetic engineering tools in P. thermoglucosidasius further starts to open up its potential as a versatile thermophilic cell factory. A number of strain engineering examples showcasing the potential of P. thermoglucosidasius as a microbial chassis for the production of bulk and fine chemicals are presented along with current research bottlenecks. Ultimately, this review provides a holistic overview of the distinct metabolic characteristics of P. thermoglucosidasius and discusses research focused on expanding the native metabolic boundaries for the development of industrially relevant strains.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands.
| |
Collapse
|
12
|
Ghosh T, Jahangirnejad S, Chauvier A, Stringer AM, Korepanov AP, Côté JP, Wade JT, Lafontaine DA. Direct and indirect control of Rho-dependent transcription termination by the Escherichia coli lysC riboswitch. RNA (NEW YORK, N.Y.) 2024; 30:381-391. [PMID: 38253429 PMCID: PMC10946432 DOI: 10.1261/rna.079779.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Bacterial riboswitches are molecular structures that play a crucial role in controlling gene expression to maintain cellular balance. The Escherichia coli lysC riboswitch has been previously shown to regulate gene expression through translation initiation and mRNA decay. Recent research suggests that lysC gene expression is also influenced by Rho-dependent transcription termination. Through a series of in silico, in vitro, and in vivo experiments, we provide experimental evidence that the lysC riboswitch directly and indirectly modulates Rho transcription termination. Our study demonstrates that Rho-dependent transcription termination plays a significant role in the cotranscriptional regulation of lysC expression. Together with previous studies, our work suggests that lysC expression is governed by a lysine-sensing riboswitch that regulates translation initiation, transcription termination, and mRNA degradation. Notably, both Rho and RNase E target the same region of the RNA molecule, implying that RNase E may degrade Rho-terminated transcripts, providing a means to selectively eliminate these incomplete messenger RNAs. Overall, this study sheds light on the complex regulatory mechanisms used by bacterial riboswitches, emphasizing the role of transcription termination in the control of gene expression and mRNA stability.
Collapse
Affiliation(s)
- Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Shirin Jahangirnejad
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Adrien Chauvier
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | - Alexey P Korepanov
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jean Phillippe Côté
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York 12201, USA
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
13
|
Gnanagobal H, Cao T, Hossain A, Vasquez I, Chakraborty S, Chukwu-Osazuwa J, Boyce D, Espinoza MJ, García-Angulo VA, Santander J. Role of riboflavin biosynthesis gene duplication and transporter in Aeromonas salmonicida virulence in marine teleost fish. Virulence 2023; 14:2187025. [PMID: 36895132 PMCID: PMC10012899 DOI: 10.1080/21505594.2023.2187025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Canada
| | - María Jesus Espinoza
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
14
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
15
|
Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys 2023; 748:109762. [PMID: 37739114 DOI: 10.1016/j.abb.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy and Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
16
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555301. [PMID: 37693561 PMCID: PMC10491194 DOI: 10.1101/2023.08.30.555301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism, physiology and MAIT cell recognition, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Oregon, USA
- Portland VA Medical Center, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
17
|
Xu J, Hou J, Ding M, Wang Z, Chen T. Riboswitches, from cognition to transformation. Synth Syst Biotechnol 2023; 8:357-370. [PMID: 37325181 PMCID: PMC10265488 DOI: 10.1016/j.synbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Riboswitches are functional RNA elements that regulate gene expression by directly detecting metabolites. Twenty years have passed since it was first discovered, researches on riboswitches are becoming increasingly standardized and refined, which could significantly promote people's cognition of RNA function as well. Here, we focus on some representative orphan riboswitches, enumerate the structural and functional transformation and artificial design of riboswitches including the coupling with ribozymes, hoping to attain a comprehensive understanding of riboswitch research.
Collapse
Affiliation(s)
- Jingdong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Junyuan Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Mengnan Ding
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| |
Collapse
|
18
|
Fedorovych DV, Tsyrulnyk AO, Ruchala J, Sobchuk SM, Dmytruk KV, Fayura LR, Sibirny AA. Construction of the advanced flavin mononucleotide producers in the flavinogenic yeast Candida famata. Yeast 2023; 40:360-366. [PMID: 36751139 DOI: 10.1002/yea.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.
Collapse
Affiliation(s)
- Dariya V Fedorovych
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Andriy O Tsyrulnyk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland
| | - Svitlana M Sobchuk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Lyubov R Fayura
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Andriy A Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
19
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
20
|
Chatterjee S, Shioi R, Kool ET. Sulfonylation of RNA 2'-OH groups. ACS CENTRAL SCIENCE 2023; 9:531-539. [PMID: 36968531 PMCID: PMC10037496 DOI: 10.1021/acscentsci.2c01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 06/18/2023]
Abstract
The nucleophilic reactivity of RNA 2'-OH groups in water has proven broadly useful in probing, labeling, and conjugating RNA. To date, reactions selective to ribose 2'-OH have been limited to bond formation with short-lived carbonyl electrophiles. Here we report that many activated small-molecule sulfonyl species can exhibit extended lifetimes in water and retain 2'-OH reactivity. The data establish favorable aqueous solubility for selected reagents and successful RNA-selective reactions at stoichiometric and superstoichiometric yields, particularly for aryl sulfonyltriazole species. We report that the latter are considerably more stable than most prior carbon electrophiles in aqueous environments and tolerate silica chromatography. Furthermore, an azide-substituted sulfonyltriazole reagent is developed to introduce labels into RNA via click chemistry. In addition to high-yield reactions, we find that RNA sulfonylation can also be performed under conditions that give trace yields necessary for structure mapping. Like acylation, the reaction occurs with selectivity for unpaired nucleotides over those in the duplex structure, and a sulfonate adduct causes reverse transcriptase stops, suggesting potential use in RNA structure analysis. Probing of rRNA is demonstrated in human cells, indicating possible cell permeability. The sulfonyl reagent class enables a new level of control, selectivity, versatility, and ease of preparation for RNA applications.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Chemistry, Stanford
University, Stanford, California 94305, United States
| | - Ryuta Shioi
- Department of Chemistry, Stanford
University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Fu B, Ying J, Chen Q, Zhang Q, Lu J, Zhu Z, Yu P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front Microbiol 2023; 13:1111790. [PMID: 36726568 PMCID: PMC9885008 DOI: 10.3389/fmicb.2022.1111790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, to construct the riboflavin-producing strain R1, five key genes, ribA, ribB, ribC, ribD, and ribE, were cloned and ligated to generate the plasmid pET-AE, which was overexpressed in Escherichia coli BL21. The R1 strain accumulated 182.65 ± 9.04 mg/l riboflavin. Subsequently, the R2 strain was constructed by the overexpression of zwf harboring the constructed plasmid pAC-Z in the R1 strain. Thus, the level of riboflavin in the R2 strain increased to 319.01 ± 20.65 mg/l (74.66% increase). To further enhance ribB transcript levels and riboflavin production, the FMN riboswitch was deleted from E. coli BL21 with CRISPR/Cas9 to generate the R3 strain. The R4 strain was constructed by cotransforming pET-AE and pAC-Z into the R3 strain. Compared to those of E. coli BL21, the ribB transcript levels of R2 and R4 improved 2.78 and 3.05-fold, respectively. The R4 strain accumulated 437.58 ± 14.36 mg/l riboflavin, increasing by 37.17% compared to the R2 strain. These results suggest that the deletion of the FMN riboswitch can improve the transcript level of ribB and facilitate riboflavin production. A riboflavin titer of 611.22 ± 11.25 mg/l was achieved under the optimal fermentation conditions. Ultimately, 1574.60 ± 109.32 mg/l riboflavin was produced through fed-batch fermentation with 40 g/l glucose. This study contributes to the industrial production of riboflavin by the recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Yu,
| |
Collapse
|
22
|
Gupta P, Khadake RM, Panja S, Shinde K, Rode AB. Alternative RNA Conformations: Companion or Combatant. Genes (Basel) 2022; 13:1930. [PMID: 36360167 PMCID: PMC9689429 DOI: 10.3390/genes13111930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 09/06/2024] Open
Abstract
RNA molecules, in one form or another, are involved in almost all aspects of cell physiology, as well as in disease development. The diversity of the functional roles of RNA comes from its intrinsic ability to adopt complex secondary and tertiary structures, rivaling the diversity of proteins. The RNA molecules form dynamic ensembles of many interconverting conformations at a timescale of seconds, which is a key for understanding how they execute their cellular functions. Given the crucial role of RNAs in various cellular processes, we need to understand the RNA molecules from a structural perspective. Central to this review are studies aimed at revealing the regulatory role of conformational equilibria in RNA in humans to understand genetic diseases such as cancer and neurodegenerative diseases, as well as in pathogens such as bacteria and viruses so as to understand the progression of infectious diseases. Furthermore, we also summarize the prior studies on the use of RNA structures as platforms for the rational design of small molecules for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | - Ambadas B. Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad—Gurugram Expressway, Faridabad 121001, India
| |
Collapse
|
23
|
Vikram, Mishra V, Rana A, Ahire JJ. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes. 3 Biotech 2022; 12:278. [PMID: 36275359 PMCID: PMC9474784 DOI: 10.1007/s13205-022-03348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022] Open
Abstract
Prokaryotic organisms frequently use riboswitches to quantify intracellular metabolite concentration via high-affinity metabolite receptors. Riboswitches possess a metabolite-sensing system that controls gene regulation in a cis-acting fashion at the initiation of transcriptional/translational level by binding with a specific metabolite and controlling various biochemical pathways. Riboswitch binds with flavin mononucleotide (FMN), a phosphorylated form of riboflavin and controls gene expression involved in riboflavin biosynthesis and transport pathway. The first step of the riboflavin biosynthesis pathway is initiated by the conversion of guanine nucleotide triphosphate (GTP), which is an intermediate of the purine biosynthesis pathway. An alternative pentose phosphate pathway of riboflavin biosynthesis includes the enzymatic conversion of ribulose-5-phosphate into 3, 4 dihydroxy-2-butanone-4-phosphates by DHBP synthase. The product of ribAB interferes with both GTP cyclohydrolase II as well as DHBP synthase activities, which catalyze the cleavage of GTP and converts DHBP Ribu5P in the initial steps of both riboflavin biosynthesis branches. Riboswitches are located in the 5' untranslated region (5' UTR) of messenger RNAs and contain an aptamer domain (highly conserved in sequence) where metabolite binding leads to a conformational change in an aptamer domain, which modulate the regulation of gene expression located on bacterial mRNA. In this review, we focus on how riboswitch regulates the riboflavin biosynthesis pathway in Bacillus subtilis and Lactobacillus plantarum.
Collapse
Affiliation(s)
- Vikram
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Jayesh J. Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, MN Park, Hyderabad, Telangana India
| |
Collapse
|
24
|
Development of the First Tractable Genetic System for Parvimonas micra, a Ubiquitous Pathobiont in Human Dysbiotic Disease. Microbiol Spectr 2022; 10:e0046522. [PMID: 35416697 PMCID: PMC9045310 DOI: 10.1128/spectrum.00465-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Parvimonas micra is a Gram-positive obligate anaerobe and a typical member of the human microbiome. P. micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with the development of multiple types of malignant tumors. Despite its strong association with disease, surprisingly little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. To address this problem, we directly isolated a collection of P. micra strains from odontogenic abscess clinical specimens and then screened these isolates for natural competence. Amazingly, all of the P. micra clinical isolates exhibited various levels of natural competence, including the reference strain ATCC 33270. By exploiting this ability, we were able to employ cloning-independent methodologies to engineer and complement a variety of targeted chromosomal genetic mutations directly within low-passage-number clinical isolates. To develop a tractable genetic system for P. micra, we first adapted renilla-based bioluminescence for highly sensitive reporter studies. This reporter system was then applied for the development of the novel Theo+ theophylline-inducible riboswitch for tunable gene expression studies over a broad dynamic range. Finally, we demonstrate the feasibility of generating mariner-based transposon sequencing (Tn-seq) libraries for forward genetic screening in P. micra. With the availability of a highly efficient transformation protocol and the current suite of genetic tools, P. micra should now be considered a fully genetically tractable organism suitable for molecular genetic research. The methods presented here provide a clear path to investigate the understudied role of P. micra in polymicrobial infections and tumorigenesis. IMPORTANCE Parvimonas micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with numerous cancers. Despite this, little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. In this study, we provide the first report of P. micra natural competence and describe the only tractable genetic system for this species. The methods presented here will allow for the detailed study of P. micra and its role in infection and tumorigenesis.
Collapse
|
25
|
Identification of BvgA-Dependent and BvgA-Independent Small RNAs (sRNAs) in Bordetella pertussis Using the Prokaryotic sRNA Prediction Toolkit ANNOgesic. Microbiol Spectr 2021; 9:e0004421. [PMID: 34550019 PMCID: PMC8557813 DOI: 10.1128/spectrum.00044-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding small RNAs (sRNAs) are crucial for the posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. In the human pathogen Bordetella pertussis, which causes whooping cough, virulence is controlled primarily by the master two-component system BvgA (response regulator)/BvgS (sensor kinase). In this system, BvgA is phosphorylated (Bvg+ mode) or nonphosphorylated (Bvg- mode), with global transcriptional differences between the two. B. pertussis also carries the bacterial sRNA chaperone Hfq, which has previously been shown to be required for virulence. Here, we conducted transcriptomic analyses to identify possible B. pertussis sRNAs and to determine their BvgAS dependence using transcriptome sequencing (RNA-seq) and the prokaryotic sRNA prediction program ANNOgesic. We identified 143 possible candidates (25 Bvg+ mode specific and 53 Bvg- mode specific), of which 90 were previously unreported. Northern blot analyses confirmed all of the 10 ANNOgesic candidates that we tested. Homology searches demonstrated that 9 of the confirmed sRNAs are highly conserved among B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica, with one that also has homologues in other species of the Alcaligenaceae family. Using coimmunoprecipitation with a B. pertussis FLAG-tagged Hfq, we demonstrated that 3 of the sRNAs interact directly with Hfq, which is the first identification of sRNA binding to B. pertussis Hfq. Our study demonstrates that ANNOgesic is a highly useful tool for the identification of sRNAs in this system and that its combination with molecular techniques is a successful way to identify various BvgAS-dependent and Hfq-binding sRNAs. IMPORTANCE Noncoding small RNAs (sRNAs) are crucial for posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. We have investigated the presence of sRNAs in the obligate human pathogen B. pertussis, using transcriptome sequencing (RNA-seq) and the recently developed prokaryotic sRNA search program ANNOgesic. This analysis has identified 143 sRNA candidates (90 previously unreported). We have classified their dependence on the B. pertussis two-component system required for virulence, namely, BvgAS, based on their expression in the presence/absence of the phosphorylated response regulator BvgA, confirmed several by Northern analyses, and demonstrated that 3 bind directly to B. pertussis Hfq, the RNA chaperone involved in mediating sRNA effects. Our study demonstrates the utility of combining RNA-seq, ANNOgesic, and molecular techniques to identify various BvgAS-dependent and Hfq-binding sRNAs, which may unveil the roles of sRNAs in pertussis pathogenesis.
Collapse
|
26
|
Lins MRDCR, Amorim LADS, Corrêa GG, Picão BW, Mack M, Cerri MO, Pedrolli DB. Targeting riboswitches with synthetic small RNAs for metabolic engineering. Metab Eng 2021; 68:59-67. [PMID: 34517126 DOI: 10.1016/j.ymben.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Our growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA tool to target bacterial riboswitches and activate gene expression (rtRNA). The synthetic rtRNA is suitable for regulation of gene expression both in cell-free and in cellular systems. It targets riboswitches to promote the antitermination folding regardless the cognate metabolite concentration. Therefore, it prevents transcription termination increasing gene expression up to 103-fold. We successfully used small RNA arrays for multiplex targeting of riboswitches. Finally, we used the synthetic rtRNAs to engineer an improved riboflavin producer strain. The easiness to design and construct, and the fact that the rtRNA works as a single genome copy, make it an attractive tool for engineering industrial metabolite-producing strains.
Collapse
Affiliation(s)
- Milca Rachel da Costa Ribeiro Lins
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Bruno Willian Picão
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Matthias Mack
- Mannheim University of Applied Sciences, Institute for Technical Microbiology, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Marcel Otávio Cerri
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil.
| |
Collapse
|
27
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
28
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Turner ME, Huynh K, Carroll RK, Ahn SJ, Rice KC. Characterization of the Streptococcus mutans SMU.1703c-SMU.1702c Operon Reveals Its Role in Riboflavin Import and Response to Acid Stress. J Bacteriol 2020; 203:e00293-20. [PMID: 33077636 PMCID: PMC7950412 DOI: 10.1128/jb.00293-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.
Collapse
Affiliation(s)
- Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Khanh Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Anderson NT, Weyant KB, Mukherjee A. Characterization of flavin binding in oxygen-independent fluorescent reporters. AIChE J 2020; 66. [PMID: 34305141 DOI: 10.1002/aic.17083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent proteins based on light, oxygen, and voltage (LOV) sensing photoreceptors are among the few reporter gene technologies available for studying living systems in oxygen-free environments that render reporters based on the green fluorescent protein nonfluorescent. LOV reporters develop fluorescence by binding flavin mononucleotide (FMN), which they endogenously obtain from cells. As FMN is essential to cell physiology as well as for determining fluorescence in LOV proteins, it is important to be able to study and characterize flavin binding in LOV reporters. To this end, we report a method for reversibly separating FMN from two commonly used LOV reporters to prepare stable and soluble apoproteins. Using fluorescence titration, we measured the equilibrium dissociation constant for binding with all three cellular flavins: FMN, flavin adenine dinucleotide, and riboflavin. Finally, we exploit the riboflavin affinity of apo LOV reporters, identified in this work, to develop a fluorescence turn-on biosensor for vitamin B2.
Collapse
Affiliation(s)
- Nolan T. Anderson
- Department of Chemical Engineering University of California Santa Barbara California 93106 USA
| | - Kevin B. Weyant
- Smith School of Chemical & Biomolecular Engineering Cornell University Ithaca New York 14853 USA
| | - Arnab Mukherjee
- Department of Chemical Engineering University of California Santa Barbara California 93106 USA
- Department of Chemistry University of California Santa Barbara California 93106 USA
- Neuroscience Research Institute University of California Santa Barbara California 93106 USA
- Center for Bioengineering University of California Santa Barbara California 93106 USA
| |
Collapse
|
32
|
Zhou T, Li R, Zhang S, Zhao S, Sharma M, Kulshrestha S, Khan A, Kakade A, Han H, Niu Y, Li X. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng 2020; 118:210-222. [PMID: 32915455 DOI: 10.1002/bit.27563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 μM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 μM, which conforms to the common Cu2+ safety standard (32 μM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Shuting Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Apurva Kakade
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongyan Niu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717-20728. [PMID: 32788367 PMCID: PMC7456131 DOI: 10.1073/pnas.2007472117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.
Collapse
|
34
|
Bossi L, Figueroa-Bossi N, Bouloc P, Boudvillain M. Regulatory interplay between small RNAs and transcription termination factor Rho. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194546. [PMID: 32217107 DOI: 10.1016/j.bbagrm.2020.194546] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
The largest and best studied group of regulatory small RNAs (sRNAs) in bacteria act by modulating translation or turnover of messenger RNAs (mRNAs) through base-pairing interactions that typically take place near the 5' end of the mRNA. This allows the sRNA to bind the complementary target sequence while the remainder of the mRNA is still being made, creating conditions whereby the action of the sRNA can extend to transcriptional steps, most notably transcription termination. Increasing evidence corroborates the existence of a functional interplay between sRNAs and termination factor Rho. Two general mechanisms have emerged. One mechanism operates in translated regions subjected to sRNA repression. By inhibiting ribosome binding co-transcriptionally, the sRNA uncouples translation from transcription, allowing Rho to bind the nascent RNA and promote termination. In the second mechanism, which functions in 5' untranslated regions, the sRNA antagonizes termination directly by interfering with Rho binding to the RNA or the subsequent translocation along the RNA. Here, we review the above literature in the context of other mechanisms that underlie the participation of Rho-dependent transcription termination in gene regulation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
35
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
36
|
Dobrzanski T, Pobre V, Moreno LF, Barbosa HCDS, Monteiro RA, de Oliveira Pedrosa F, de Souza EM, Arraiano CM, Steffens MBR. In silico prediction and expression profile analysis of small non-coding RNAs in Herbaspirillum seropedicae SmR1. BMC Genomics 2020; 21:134. [PMID: 32039705 PMCID: PMC7011215 DOI: 10.1186/s12864-019-6402-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Herbaspirillum seropedicae is a diazotrophic bacterium from the β-proteobacteria class that colonizes endophytically important gramineous species, promotes their growth through phytohormone-dependent stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is completely sequenced and annotated but despite the availability of diverse structural and functional analysis of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in presence of naringenin, a flavonoid secreted by some plants. RESULTS This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and 4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium. CONCLUSIONS H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the presence of naringenin. The functions of most of these sRNAs remains unknown but their existence in this bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to nutritional and environmental changes.
Collapse
Affiliation(s)
- Tatiane Dobrzanski
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Leandro Ferreira Moreno
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Helba Cirino de Souza Barbosa
- Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.,Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Berenice Reynaud Steffens
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.
| |
Collapse
|
37
|
Rodionova IA, Heidari Tajabadi F, Zhang Z, Rodionov DA, Saier MH. A Riboflavin Transporter in Bdellovibrio exovorous JSS. J Mol Microbiol Biotechnol 2019; 29:27-34. [PMID: 31509826 DOI: 10.1159/000501354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
The ImpX transporters of the drug/metabolite transporter superfamily were first proposed to transport riboflavin (RF; vitamin B2) based on findings of a cis-regulatory RNA element responding to flavin mononucleotide (an FMN riboswitch). Bdellovibrio exovorous JSS has a homolog belonging to this superfamily. It has 10 TMSs and shows 30% identity to the previously characterized ImpX transporter from Fusobacterium nucleatum. However, the ImpX homolog is not regulated by an FMN-riboswitch. In order to test the putative function of the ImpX homolog from B. exovorous (BexImpX), we cloned and heterologously expressed its gene. We used functional complementation, growth inhibition experiments, direct uptake experiments and inhibition studies, suggesting a high degree of specificity for RF uptake. The EC50 for growth with RF was estimated to be in the range 0.5-1 µM, estimated from the half-maximal RF concentration supporting the growth of a RF auxotrophic Escherichia coli strain, but the Khalf for RF uptake was 20 µM. Transport experiments suggested that the energy source is the proton motive force but that NaCl stimulates uptake. Thus, members of the ImpX family members are capable of RF uptake, not only in RF prototrophic species such as F. nucleatum, but also in the B2 auxotrophic species, B. exovorous.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA
| | - Fereshteh Heidari Tajabadi
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA.,Department of Plant Protection, University of Tehran, Tehran, Iran
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA
| | - Dmitry A Rodionov
- Sanford Burnham Prebys Medical Research Institute, San Diego, California, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA,
| |
Collapse
|
38
|
Ludwig P, Sévin DC, Busche T, Kalinowski J, Bourdeaux F, Grininger M, Mack M. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM 2019; 164:908-919. [PMID: 29856311 DOI: 10.1099/mic.0.000662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genes encoding dodecin proteins are present in almost 20 % of archaeal and in more than 50 % of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.
Collapse
Affiliation(s)
- Petra Ludwig
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| |
Collapse
|
39
|
de Freitas EC, Ucci AP, Teixeira EC, Pedroso GA, Hilario E, Bertolazzi Zocca VF, de Paiva GB, Ferreira H, Pedrolli DB, Bertolini MC. The copper-inducible copAB operon in Xanthomonas citri subsp. citri is regulated at transcriptional and translational levels. MICROBIOLOGY-SGM 2019; 165:355-365. [PMID: 30689540 DOI: 10.1099/mic.0.000767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upstream open reading frames (ORFs) are frequently found in the 5'-flanking regions of genes and may have a regulatory role in gene expression. A small ORF (named cohL here) was identified upstream from the copAB copper operon in Xanthomonascitri subsp. citri (Xac). We previously demonstrated that copAB expression was induced by copper and that gene inactivation produced a mutant strain that was unable to grow in the presence of copper. Here, we address the role of cohL in copAB expression control. We demonstrate that cohL expression is induced by copper in a copAB-independent manner. Although cohL is transcribed, the CohL protein is either not expressed in vivo or is synthesized at undetectable levels. Inactivation of cohL (X. citri cohL polar mutant strain) leads to an inability to synthesize cohL and copAB transcripts and consequently the inability to grow in the presence of copper. Bioinformatic tools predicted a stem-loop structure for the cohL-copAB intergenic region and revealed that this region may arrange itself in a secondary structure. Using in vitro gene expression, we found out that the structured 5'-UTR mRNA of copAB is responsible for sequestering the ribosome-binding site that drives the translation of copA. However, copper alone was not able to release the sequence. Based on the results, we speculate that cohL plays a role as a regulatory RNA rather than as a protein-coding gene.
Collapse
Affiliation(s)
- Eliane Cristina de Freitas
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Amanda Piovesan Ucci
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Elaine Cristina Teixeira
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Gisele Audrei Pedroso
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| | - Eduardo Hilario
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil.,†Present address: Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA
| | - Vitória Fernanda Bertolazzi Zocca
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Gabriela Barbosa de Paiva
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Henrique Ferreira
- 3Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
| | - Danielle Biscaro Pedrolli
- 2Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, UNESP, 14800-903, Araraquara, Brazil
| | - Maria Célia Bertolini
- 1Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
40
|
Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng 2018; 49:105-115. [DOI: 10.1016/j.ymben.2018.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
41
|
Sepúlveda Cisternas I, Salazar JC, García-Angulo VA. Overview on the Bacterial Iron-Riboflavin Metabolic Axis. Front Microbiol 2018; 9:1478. [PMID: 30026736 PMCID: PMC6041382 DOI: 10.3389/fmicb.2018.01478] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
Redox reactions are ubiquitous in biological processes. Enzymes involved in redox metabolism often use cofactors in order to facilitate electron-transfer reactions. Common redox cofactors include micronutrients such as vitamins and metals. By far, while iron is the main metal cofactor, riboflavin is the most important organic cofactor. Notably, the metabolism of iron and riboflavin seem to be intrinsically related across life kingdoms. In bacteria, iron availability influences expression of riboflavin biosynthetic genes. There is documented evidence for riboflavin involvement in surpassing iron-restrictive conditions in some species. This is probably achieved through increase in iron bioavailability by reduction of extracellular iron, improvement of iron uptake pathways and boosting hemolytic activity. In some cases, riboflavin may also work as replacement of iron as enzyme cofactor. In addition, riboflavin is involved in dissimilatory iron reduction during extracellular respiration by some species. The main direct metabolic relationships between riboflavin and iron in bacterial physiology are reviewed here.
Collapse
Affiliation(s)
- Ignacio Sepúlveda Cisternas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Víctor A García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
42
|
Rizvi NF, Howe JA, Nahvi A, Klein DJ, Fischmann TO, Kim HY, McCoy MA, Walker SS, Hruza A, Richards MP, Chamberlin C, Saradjian P, Butko MT, Mercado G, Burchard J, Strickland C, Dandliker PJ, Smith GF, Nickbarg EB. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chem Biol 2018; 13:820-831. [PMID: 29412640 DOI: 10.1021/acschembio.7b01013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.
Collapse
Affiliation(s)
- Noreen F. Rizvi
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John A. Howe
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ali Nahvi
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel J. Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Hai-Young Kim
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark A. McCoy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alan Hruza
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Chad Chamberlin
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Saradjian
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Gabriel Mercado
- Biodesy, Inc., South San Francisco, California 94080, United States
| | - Julja Burchard
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Graham F. Smith
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
43
|
Landwehr W, Kämpfer P, Glaeser SP, Rückert C, Kalinowski J, Blom J, Goesmann A, Mack M, Schumann P, Atasayar E, Hahnke RL, Rohde M, Martin K, Stadler M, Wink J. Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov. Int J Syst Evol Microbiol 2018; 68:382-393. [DOI: 10.1099/ijsem.0.002519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wiebke Landwehr
- Department of Microbial Strain Collection, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Peter Kämpfer
- University of Gießen, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | | | - Christian Rückert
- University of Bielefeld, Centere for Biotechnology, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- University of Bielefeld, Centere for Biotechnology, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jochen Blom
- University of Gießen, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | | | - Matthias Mack
- Biotechnology Department, Institute for Technical Microbiology, Hochschule Mannheim, Paul-Wittsack-Str.10, 68163 Mannheim, Germany
| | - Peter Schumann
- Leibnitz Institute, DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ewelina Atasayar
- Leibnitz Institute, DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Richard L. Hahnke
- Leibnitz Institute, DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Karin Martin
- Hans Knöll Institut für Wirkstoffforschung, 07743 Jena, Germany
| | - Marc Stadler
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Joachim Wink
- Department of Microbial Strain Collection, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
44
|
Rodionova IA, Vetting MW, Li X, Almo SC, Osterman AL, Rodionov DA. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res 2017; 45:3785-3799. [PMID: 28073944 PMCID: PMC5397151 DOI: 10.1093/nar/gkw1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
Collapse
Affiliation(s)
- Irina A Rodionova
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoqing Li
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei L Osterman
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
| |
Collapse
|
45
|
Oesterle S, Gerngross D, Schmitt S, Roberts TM, Panke S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci Rep 2017; 7:12327. [PMID: 28951570 PMCID: PMC5615074 DOI: 10.1038/s41598-017-12395-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Steven Schmitt
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
46
|
Abstract
Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.
Collapse
|
47
|
Robbins JM, Souffrant MG, Hamelberg D, Gadda G, Bommarius AS. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties. Biochemistry 2017. [PMID: 28640638 DOI: 10.1021/acs.biochem.7b00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavins, including flavin adenine dinucleotide (FAD), are fundamental catalytic cofactors that are responsible for the redox functionality of a diverse set of proteins. Alternatively, modified flavin analogues are rarely found in nature as their incorporation typically results in inactivation of flavoproteins, thus leading to the disruption of important cellular pathways. Here, we report that the fungal flavoenzyme formate oxidase (FOX) catalyzes the slow conversion of noncovalently bound FAD to 8-formyl FAD and that this conversion results in a nearly 10-fold increase in formate oxidase activity. Although the presence of an enzyme-bound 8-formyl FMN has been reported previously as a result of site-directed mutagenesis studies of lactate oxidase, FOX is the first reported case of 8-formyl FAD in a wild-type enzyme. Therefore, the formation of the 8-formyl FAD cofactor in formate oxidase was investigated using steady-state kinetics, site-directed mutagenesis, ultraviolet-visible, circular dichroism, and fluorescence spectroscopy, liquid chromatography with mass spectrometry, and computational analysis. Surprisingly, the results from these studies indicate not only that 8-formyl FAD forms spontaneously and results in the active form of FOX but also that its autocatalytic formation is dependent on a nearby arginine residue, R87. Thus, this work describes a new enzyme cofactor and provides insight into the little-understood mechanism of enzyme-mediated 8α-flavin modifications.
Collapse
Affiliation(s)
- John M Robbins
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States.,Engineered Biosystems Building (EBB), Georgia Institute of Technology , Atlanta, Georgia 30332-2000, United States
| | - Michael G Souffrant
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Molecular Basis of Disease Program, Georgia State University , Atlanta, Georgia 30303, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Molecular Basis of Disease Program, Georgia State University , Atlanta, Georgia 30303, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Biotechnology and Drug Design, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Department of Biology, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States.,Engineered Biosystems Building (EBB), Georgia Institute of Technology , Atlanta, Georgia 30332-2000, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
48
|
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Cell Chem Biol 2017; 24:576-588.e6. [PMID: 28434876 DOI: 10.1016/j.chembiol.2017.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022]
Abstract
Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.
Collapse
|
49
|
Cisternas IS, Torres A, Flores AF, Angulo VAG. Differential regulation of riboflavin supply genes in Vibrio cholerae. Gut Pathog 2017; 9:10. [PMID: 28239422 PMCID: PMC5312566 DOI: 10.1186/s13099-017-0159-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 12/01/2022] Open
Abstract
Background Riboflavin is the precursor of important redox cofactors such as flavin mononucleotide (FMN) and flavin adenine dinucleotide, required for several biological processes. Vibrio cholerae, a pathogenic bacterium responsible for the cholera disease, possesses the ability to biosynthesize de novo as well as to uptake riboflavin through the riboflavin biosynthetic pathway (RBP) and the RibN importer, respectively. The intra-organism relationship between riboflavin biosynthesis and uptake functions has not been studied. Results This work determined the transcriptional organization of RBP genes and ribN in V. cholerae through reverse transcription polymerase chain reaction and analyzed their expression when growing with or without extracellular riboflavin using real time PCR. The RBP is organized in three transcriptional units, the major one containing ribD, ribE, ribA and ribH together with genes involved in functions not directly related to riboflavin biosynthesis such as nrdR and nusB. In addition, two independent monocistronic units contain ribA2 and ribB, the later conserving a putative FMN riboswitch. The ribN gene is encoded in operon with a gene coding for a predicted outer membrane protein and a gene encoding a protein with a glutaredoxin domain. Regulation analysis showed that among these transcriptional units, only ribB is negatively regulated by riboflavin and that its repression depends on the RibN riboflavin importer. Moreover, external riboflavin highly induced ribB transcription in a ΔribN strain. Also, a genomic database search found a negative correlation between the presence of nrdR and nusB and the FMN riboswitch in bacterial RBP operons. Conclusions Growing in the presence of riboflavin downregulates only a single element among the transcriptional units of riboflavin supply pathways. Thus, endogenous riboflavin biosynthesis seems to be negatively regulated by extracellular riboflavin through its specific effect on transcription of ribB in V. cholerae. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0159-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignacio Sepúlveda Cisternas
- Escuela de Biotecnología, Universidad Mayor, Campus Huechuraba, Santiago, Chile.,Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Alexia Torres
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Andrés Fuentes Flores
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Víctor Antonio García Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| |
Collapse
|
50
|
Noro E, Mori M, Makino G, Takai Y, Ohnuma S, Sato A, Tomita M, Nakahigashi K, Kanai A. Systematic characterization of artificial small RNA-mediated inhibition of Escherichia coli growth. RNA Biol 2016; 14:206-218. [PMID: 27981881 PMCID: PMC5324740 DOI: 10.1080/15476286.2016.1270001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new screening system for artificial small RNAs (sRNAs) that inhibit the growth of Escherichia coli was constructed. In this system, we used a plasmid library to express RNAs of ∼120 nucleotides, each with a random 30-nucleotide sequence that can recognize its target mRNA(s). After approximately 60,000 independent colonies were screened, several plasmids that inhibited bacterial growth were isolated. To understand the inhibitory mechanism, we focused on one sRNA, S-20, that exerted a strong inhibitory effect. A time-course analysis of the proteome of S-20-expressing E. coli and a bioinformatic analysis were used to identify potential S-20 target mRNAs, and suggested that S-20 binds the translation initiation sites of several mRNAs encoding enzymes such as peroxiredoxin (osmC), glycyl-tRNA synthetase α subunit (glyQ), uncharacterized protein ygiM, and tryptophan synthase β chain (trpB). An in vitro translation analysis of chimeric luciferase-encoding mRNAs, each containing a potential S-20 target sequence, indicated that the translation of these mRNAs was inhibited in the presence of S-20. A gel shift analysis combined with the analysis of a series of S-20 mutants suggested that S-20 targets multiple mRNAs that are responsible for inhibiting E. coli growth. These data also suggest that S-20 acts like an endogenous sRNA and that E. coli can utilize artificial sRNAs.
Collapse
Affiliation(s)
- Emiko Noro
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Masaru Mori
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Gakuto Makino
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| | - Yuki Takai
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Sumiko Ohnuma
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Asako Sato
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Masaru Tomita
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| | - Kenji Nakahigashi
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Akio Kanai
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| |
Collapse
|