1
|
Suliman AE, Mangood AH, Yehia NS, Abdelraouf M, Batakoushy HA, Abdou MM, Zaki EG. Gallic acid based green corrosion inhibitor for mild steel in 1 M HCl electrochemical and microbial assessment with theoretical validation. Sci Rep 2025; 15:15156. [PMID: 40307297 PMCID: PMC12044065 DOI: 10.1038/s41598-025-97647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The petroleum industry, characterized by the significant investment in costly equipment and devices utilized in the extraction, production, or processing of crude oil, can result in the loss of valuable assets or the crude itself. This research involved the synthesis of a Schiff base from substituted gallic acid derivatives through an intermediate reaction known as N-(2-{2-[2-(2-amino-ethylamino)-ethylamino]-ethylamino}-ethyl)-3,4,5-trihydroxy-benzamide (AEET). The synthesized compound was characterized using FTIR and 1HNMR spectroscopy to evaluate its effectiveness in inhibition. The performance of the inhibitors was assessed through an electrochemical process that included Tafel and EIS. This evaluation was supported by theoretical mechanisms involving density functional theory (DFT) and molecular dynamics simulations (MDS). To validate the findings from the electrochemical studies, the scanning electron microscopy (SEM) technique was employed to examine the topographic anisotropy characteristics between the treated and untreated samples of mild steel species. The bioassay diluted serial technique was utilized to assess the AEET as effective biocides for managing bacterial growth issues. This evaluation included an analysis of the AEET's efficiency in inhibiting sulfate-reducing bacteria (SRB). Additionally, computational methods were described, demonstrating optimal scores, RMSD values, and binding interaction energies associated with the formation of hydrogen bonds with specific receptor residues to investigate the biological activity.
Collapse
Affiliation(s)
- Ahmed E Suliman
- Burg Al-arab Petroleum Company (Burapetco) 204 A ST 287, New Maadi, Cairo, Egypt
| | - Ahmed H Mangood
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El Kom, Menouia, Egypt
| | - Naema S Yehia
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El Kom, Menouia, Egypt
| | - M Abdelraouf
- Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin El Kom, 32511, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia National University, 70th km Cairo-Alexandria Agricultural Road, Menoufia, Egypt
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| | - E G Zaki
- Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt.
- Center for Scientific Research and Sustainable Development, Sinai University, Kantra Branch, Ismailia, Egypt.
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt.
| |
Collapse
|
2
|
Dodda SR, Hossain M, Mondal S, Das S, Khator (Jain) S, Aikat K, Mukhopadhyay SS. The S-S bridge mutation between the A2 and A4 loops (T416C-I432C) of Cel7A of Aspergillus fumigatus enhances catalytic activity and thermostability. Appl Environ Microbiol 2024; 90:e0232923. [PMID: 38440989 PMCID: PMC11022540 DOI: 10.1128/aem.02329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 03/06/2024] Open
Abstract
Disulfide bonds are important for maintaining the structural conformation and stability of the protein. The introduction of the disulfide bond is a promising strategy to increase the thermostability of the protein. In this report, cysteine residues are introduced to form disulfide bonds in the Glycoside Hydrolase family GH 7 cellobiohydrolase (GH7 CBHs) or Cel7A of Aspergillus fumigatus. Disulfide by Design 2.0 (DbD2), an online tool is used for the detection of the mutation sites. Mutations are created (D276C-G279C; DSB1, D322C-G327C; DSB2, T416C-I432C; DSB3, G460C-S465C; DSB4) inside and outside of the peripheral loops but, not in the catalytic region. The introduction of cysteine in the A2 and A4 loop of DSB3 mutant showed higher thermostability (70% activity at 70°C), higher substrate affinity (Km = 0.081 mM) and higher catalytic activity (Kcat = 9.75 min-1; Kcat/Km = 120.37 mM min-1) compared to wild-type AfCel7A (50% activity at 70°C; Km = 0.128 mM; Kcat = 4.833 min-1; Kcat/Km = 37.75 mM min-1). The other three mutants with high B factor showed loss of thermostability and catalytic activity. Molecular dynamic simulations revealed that the mutation T416C-I432C makes the tunnel wider (DSB3: 13.6 Å; Wt: 5.3 Å) at the product exit site, giving flexibility in the entrance region or mobility of the substrate in the exit region. It may facilitate substrate entry into the catalytic tunnel and release the product faster than the wild type, whereas in other mutants, the tunnel is not prominent (DSB4), the exit is lost (DSB1), and the ligand binding site is absent (DSB2). This is the first report of the gain of function of both thermostability and enzyme activity of cellobiohydrolase Cel7A by disulfide bond engineering in the loop.IMPORTANCEBioethanol is one of the cleanest renewable energy and alternatives to fossil fuels. Cost efficient bioethanol production can be achieved through simultaneous saccharification and co-fermentation that needs active polysaccharide degrading enzymes. Cellulase enzyme complex is a crucial enzyme for second-generation bioethanol production from lignocellulosic biomass. Cellobiohydrolase (Cel7A) is an important member of this complex. In this work, we engineered (disulfide bond engineering) the Cel7A to increase its thermostability and catalytic activity which is required for its industrial application.
Collapse
Affiliation(s)
- Subba Reddy Dodda
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Musaddique Hossain
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Sudipa Mondal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Shalini Das
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Sneha Khator (Jain)
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Kaustav Aikat
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Sudit S. Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
3
|
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023; 12:foods12061124. [PMID: 36981051 PMCID: PMC10048088 DOI: 10.3390/foods12061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Fungi make a fundamental contribution to several biotechnological processes, including brewing, winemaking, and the production of enzymes, organic acids, alcohols, antibiotics, and pharmaceuticals. The present review explores the biotechnological importance of the filamentous yeast-like fungus Geotrichum candidum, a ubiquitous species known for its use as a starter in the dairy industry. To uncover G. candidum's biotechnological role, we performed a search for related work through the scientific indexing internet services, Web of Science and Google Scholar. The following query was used: Geotrichum candidum, producing about 6500 scientific papers from 2017 to 2022. From these, approximately 150 that were associated with industrial applications of G. candidum were selected. Our analysis revealed that apart from its role as a starter in the dairy and brewing industries, this species has been administered as a probiotic nutritional supplement in fish, indicating improvements in developmental and immunological parameters. Strains of this species produce a plethora of biotechnologically important enzymes, including cellulases, β-glucanases, xylanases, lipases, proteases, and α-amylases. Moreover, strains that produce antimicrobial compounds and that are capable of bioremediation were identified. The findings of the present review demonstrate the importance of G. candidum for agrifood- and bio-industries and provide further insights into its potential future biotechnological roles.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 YT20 Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
4
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
5
|
Dodda SR, Hossain M, Jain P, Aikat K, Mukhopadhyay SS. Comparative Biochemical and Structural Properties of an Industrially Important Biocatalyst Cellobiohydrolase Cel7A from Thermophilic Aspergillus fumigatus. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol Adv 2022; 59:107981. [DOI: 10.1016/j.biotechadv.2022.107981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
7
|
Khowdiary MM, Taha NA, Saleh NM, Elhenawy AA. Synthesis of Novel Nano-Sulfonamide Metal-Based Corrosion Inhibitor Surfactants. MATERIALS 2022; 15:ma15031146. [PMID: 35161090 PMCID: PMC8838271 DOI: 10.3390/ma15031146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The synthesis of novel corrosion inhibitors and biocide metal complex nanoparticle surfactants was achieved through the reaction of sulfonamide with selenious acid to produce a quaternary ammonium salt. Platinum and cobalt surfactants were then formed by complexing the first products with platinum (II) or cobalt (II) ions. The surface properties of these surfactants were then investigated, and the free energy of form micelles (ΔGomic) and adsorption (ΔGoads) was determined. The obtained cationic compounds were evaluated as corrosion inhibitors for carbon steel dissolution in 1N HCl medium. The results of gravimetric and electrochemical measurements showed that the obtained inhibitors were excellent corrosion inhibitors. The anti-sulfate-reducing bacteria activity known to cause corrosion of oil pipes was obtained by the inhibition zone diameter method for the prepared compounds, which were measured against sulfate-reducing bacteria. FTIR spectra, elemental analysis, H1 NMR spectrum, and 13C labeling were performed to ensure the purity of the prepared compounds.
Collapse
Affiliation(s)
- Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Branch El Lieth, Makkah al-Mukarramah 24382, Saudi Arabia
- Applied Surfactant Laboratory, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
- Correspondence: (M.M.K.); (N.A.T.); Tel.: +966-583-307-941 (M.M.K.); +20-100-528-9679 (N.A.T.)
| | - Nahla A. Taha
- Modeling and Simulation Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Egypt
- Correspondence: (M.M.K.); (N.A.T.); Tel.: +966-583-307-941 (M.M.K.); +20-100-528-9679 (N.A.T.)
| | - Nashwa M. Saleh
- Egypt Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Youssef Abbas Str., Cairo 11651, Egypt;
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science and Arts in Al-Mukhwah, Al-Baha University, Al Bahah 65511, Saudi Arabia;
- Chemistry Department, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
8
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
9
|
Zhou HY, Yi XN, Chen Q, Zhou JB, Li SF, Cai X, Chen DS, Cheng XP, Li M, Wang HY, Chen KQ, Liu ZQ, Zheng YG. Improvement of catalytic performance of endoglucanase CgEndo from Colletotrichum graminicola by site-directed mutagenesis. Enzyme Microb Technol 2021; 154:109963. [PMID: 34971884 DOI: 10.1016/j.enzmictec.2021.109963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
In order to improve the catalytic efficiency of cellulase for more effective utilization of lignocellulose, a novel endoglucanase (CgEndo) from Colletotrichum graminicola was expressed by Pichia pastoris X33 and modified by site-directed mutagenesis. Two mutants, Y63S and N20D/S113T, with 62.31% and 57.14% increased enzyme activities were obtained, respectively. On this basis, their biochemical properties, kinetic parameters, structural information as well as the application in biomass degradation were investigated and compared with the wild-type CgEngo. The results indicated that the mutation Y63S and N20D/S113T resulted in an improvement of proximity between enzyme and substrate through conformational changes of the catalytic region, which might contribute to the higher enzyme activities and catalysis efficiency (Kcat/Km) of Y63S and N20D/S113T. These findings laid important foundation for the further engineering of this endoglucanase and practical application in efficient degradation of cellulosic biomass in nature.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Nan Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qi Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian-Bao Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Xin-Ping Cheng
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Kai-Qian Chen
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
10
|
Fungal cellulases: protein engineering and post-translational modifications. Appl Microbiol Biotechnol 2021; 106:1-24. [PMID: 34889986 DOI: 10.1007/s00253-021-11723-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.
Collapse
|
11
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
12
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
14
|
Pedersoli WR, de Paula RG, Antoniêto ACC, Carraro CB, Taveira IC, Maués DB, Martins MP, Ribeiro LFC, Damasio ARDL, Silva-Rocha R, Filho AR, Silva RN. Analysis of the phosphorylome of trichoderma reesei cultivated on sugarcane bagasse suggests post-translational regulation of the secreted glycosyl hydrolase Cel7A. ACTA ACUST UNITED AC 2021; 31:e00652. [PMID: 34258241 PMCID: PMC8254082 DOI: 10.1016/j.btre.2021.e00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Phosphorylome of Trichoderma reesei reveals phosphosites in some glycosyl hydrolases. Phosphoserine and phosphothreonine is the major phosphosites identified. Protein Kinase C is the most frequently predicted kinase in phosphorylome. The cellulase Cel7A activity is affected by dephosphorylation.
Trichoderma reesei is one of the major producers of holocellulases. It is known that in T. reesei, protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of T. reesei grown in the presence of sugarcane bagasse and glucose as carbon source. In presence of sugarcane bagasse, a total of 114 phosphorylated proteins were identified. Phosphoserine and phosphothreonine corresponded to 89.6% of the phosphosites and 10.4% were related to phosphotyrosine. Among the identified proteins, 65% were singly phosphorylated, 19% were doubly phosphorylated, 12% were triply phosphorylated, and 4% displayed even higher phosphorylation. Seventy-five kinases were predicted to phosphorylate the sites identified in this work, and the most frequently predicted serine/threonine kinase was PKC1. Among phosphorylated proteins, four glycosyl hydrolases were predicted to be secreted. Interestingly, Cel7A activity, the most secreted protein, was reduced to approximately 60% after in vitro dephosphorylation, suggesting that phosphorylation might alter Cel7A structure, substrate affinity, and targeting of the substrate to its carbohydrate-binding domain. These results suggest a novel post-translational regulation of Cel7A.
Collapse
Affiliation(s)
- Wellington Ramos Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cláudia Batista Carraro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maíra Pompeu Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - André Ricardo de Lima Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Antônio Rossi Filho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
15
|
Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydr Res 2020; 498:108191. [PMID: 33157460 DOI: 10.1016/j.carres.2020.108191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
Chitin and chitosan can undergo nonspecific enzymatic hydrolysis by several different hydrolases. This susceptibility to nonspecific enzymes opens up many opportunities for producing chitooligosaccharides and low molecular weight chitopolysaccharides, since specific chitinases and chitosanases are rare and not commercially available. In this study, chitosan and chitin were hydrolyzed using several commercially available hydrolases. Among them, cellulases with the highest specific activity demonstrated the best activity, as indicated by the rapid decrease in viscosity of a chitosan solution. The hydrolysis of chitosan by nonspecific enzymes generated a sugar release that corresponded to the decrease in the degree of polymerization. This decrease reached a maximum of 3.3-fold upon hydrolysis of 10% of the sample. Cellulases were better than lysozyme or amylases at hydrolyzing chitosan and chitin. Analysis of 13C CP-MAS NMR and FTIR spectra of chitin after cellulase treatment revealed changes in the chitin crystal structure related to rearrangement of inter- and intramolecular H-bonds. The structural changes and decreases in crystallinity allowed dissolution of chitin molecules of high molecular weight and enhanced the solubility of chitin in alkali by 10-12% compared to untreated chitin.
Collapse
|
16
|
Kyu MT, Nishio S, Noda K, Dar B, Aye SS, Matsuda T. Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field. J Biochem 2020; 168:243-256. [DOI: 10.1093/jb/mvaa049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/29/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract
Biological degradation of cellulose from dead plants in nature and plant biomass from agricultural and food-industry waste is important for sustainable carbon recirculation. This study aimed at searching diverse cellulose-degrading systems of wild filamentous fungi and obtaining fungal lines useful for cellooligosaccharide production from agro-industrial wastes. Fungal lines with cellulolytic activity were screened and isolated from stacked rice straw and soil in subtropical fields. Among 13 isolated lines, in liquid culture with a nutrition-limited cellulose-containing medium, four lines of Aspergillus spp. secreted 50–60 kDa proteins as markedly dominant components and gave clear activity bands of possible endo-β-1,4-glucanase in zymography. Mass spectroscopy (MS) analysis of the dominant components identified three endo-β-1,4-glucanases (GH5, GH7 and GH12) and two cellobiohydrolases (GH6 and GH7). Cellulose degradation by the secreted proteins was analysed by LC-MS-based measurement of derivatized reducing sugars. The enzymes from the four Aspergillus spp. produced cellobiose from crystalline cellulose and cellotriose at a low level compared with cellobiose. Moreover, though smaller than that from crystalline cellulose, the enzymes of two representative lines degraded powdered rice straw and produced cellobiose. These fungal lines and enzymes would be effective for production of cellooligosaccharides as cellulose degradation-intermediates with added value other than glucose.
Collapse
Affiliation(s)
- May Thin Kyu
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Botany, University of Yangon, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
| | - Shunsuke Nishio
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koki Noda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Bay Dar
- Department of Botany, University of Yangon, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
| | - San San Aye
- Department of Botany, University of Yangon, University Avenue Road, Kamayut Township 11041, Yangon, Myanmar
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. MATERIALS 2020; 13:ma13092087. [PMID: 32369952 PMCID: PMC7254194 DOI: 10.3390/ma13092087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
Abstract
The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g−1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g−1. Atomic force and scanning electron microscopy images showed BC microstructure “loosening“after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.
Collapse
|
18
|
Han C, Yang R, Sun Y, Liu M, Zhou L, Li D. Identification and Characterization of a Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme for Synergistic Effect With Commercial Cellulase on Pretreated Wheat Straw Degradation. Front Bioeng Biotechnol 2020; 8:296. [PMID: 32328483 PMCID: PMC7160368 DOI: 10.3389/fbioe.2020.00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
The novel cellobiohydrolase gene ctcel7 was identified from Chaetomium thermophilum, and its recombinant protein CtCel7, a member of glycoside hydrolase family 7, was heterologously expressed in Pichia pastoris and biochemically characterized. Compared with commercial hydrolases, purified CtCel7 exhibited superior bifunctional cellobiohydrolase and xylanase activities against microcrystalline cellulose and xylan, respectively, under optimal conditions of 60°C and pH 4.0. Moreover, CtCel7 displayed remarkable thermostability with over 90% residual activity after heat (60°C) treatment for 180 min. CtCel7 was insensitive to most detected cations and reagents and preferentially cleaved the β-1,4-glycosidic bond to generate oligosaccharides through the continuous saccharification of lignocellulosic substrates, which are crucial for various practical applications. Notably, the hydrolysis effect of a commercial cellulase cocktail on pretreated wheat straw was substantively improved by its combination with CtCel7. Taken together, these excellent properties distinguish CtCel7 as a robust candidate for the biotechnological production of biofuels and biobased chemicals.
Collapse
Affiliation(s)
- Chao Han
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ruirui Yang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yanxu Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Lifan Zhou
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Duochuan Li
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Røjel N, Kari J, Sørensen TH, Borch K, Westh P. pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnol Bioeng 2019; 117:382-391. [PMID: 31631319 DOI: 10.1002/bit.27206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.
Collapse
Affiliation(s)
- Nanna Røjel
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Present address: Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
20
|
Pavlov IY, Eneyskaya EV, Bobrov KS, Polev DE, Ivanen DR, Kopylov AT, Naryzhny SN, Kulminskaya AA. Comprehensive Analysis of Carbohydrate-Active Enzymes from the Filamentous Fungus Scytalidium candidum 3C. BIOCHEMISTRY (MOSCOW) 2018; 83:1399-1410. [PMID: 30482151 DOI: 10.1134/s000629791811010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endo-hemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thio-linkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.
Collapse
Affiliation(s)
- I Yu Pavlov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - E V Eneyskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - K S Bobrov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - D E Polev
- Resource Center for Molecular and Cell Technologies and "Centre Biobank", St. Petersburg State University, Stary Peterhof, St. Petersburg, 198504, Russia.
| | - D R Ivanen
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - A T Kopylov
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - S N Naryzhny
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - A A Kulminskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Peter the Great St. Petersburg Polytechnic University, Department of Medical Physics, St. Petersburg, 194021, Russia
| |
Collapse
|
21
|
Pavlov IY, Bobrov KS, Sumacheva AD, Masharsky AE, Polev DE, Zhurishkina EV, Kulminskaya AA. Scytalidium candidum 3C is a new name for the Geotrichum candidum Link 3C strain. J Basic Microbiol 2018; 58:883-891. [PMID: 30067294 DOI: 10.1002/jobm.201800066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Abstract
In the 1970s, the strain Geotrichum candidum Link 3C was isolated from rotting rope and since then has been extensively studied as a source of cellulose and xylan-degrading enzymes. The original identification of the strain was based only on morphological characters of the fungal mycelium in culture. Recent comparison of the internal transcribed spacer (ITS) fragments derived from the draft genome published in 2015 did not show its similarity to G. candidum species. Given the value of the strain 3C in lignocellulosic biomass degradation, we performed morphological and molecular studies to find the appropriate taxonomic placement for this fungal strain within the Ascomycota phylum. ITS, 18S rDNA, 28S rDNA sequences, and RPB2 encoding genes were used to construct phylogenetic trees with Maximum likelihood and Bayesian inference methods. Based on sequence comparison and multiple gene sequencing, we conclude that the fungal strain designated as Geotrichum candidum Link 3C should be placed into the genus Scytalidium (Pezizomycotina, Leotiomycetes) and is redescribed herein as Scytalidium candidum 3C comb. nov.
Collapse
Affiliation(s)
- Ivan Yu Pavlov
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Kirill S Bobrov
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Anastasiya D Sumacheva
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Alexey E Masharsky
- Centre for Molecular and Cell Technologies, The Research Park, St. Petersburg State University, St. Petersburg, Petergof, Russia
| | - Dmitrii E Polev
- Resource Centre "Centre Biobank", Research Park, St. Petersburg State University, St. Petersburg, Petergof, Russia
| | - Elena V Zhurishkina
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia
| | - Anna A Kulminskaya
- National Research Center «Kurchatov Institute», B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, Russia.,Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
22
|
Rabinovich ML, Melnik MS, Herner ML, Voznyi YV, Vasilchenko LG. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Biotechnol J 2018; 14:e1700712. [PMID: 29781240 DOI: 10.1002/biot.201700712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes nine subsites for β-d-glucose units, seven of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent kcat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) kcat /Km for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG4 ). Interaction of substrates with the subsites -6 and -5 proximal to the nonconserved Gln101 residue in HjCel7A decreases Km,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with Kd ≈2-9 nM via CBM and CD that captures six terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Maria S Melnik
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Mikhail L Herner
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Yakov V Voznyi
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lilia G Vasilchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
23
|
Silveira RL, Skaf MS. Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase. Phys Chem Chem Phys 2018; 20:7498-7507. [PMID: 29488531 DOI: 10.1039/c8cp00101d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cellobiohydrolases (CBHs) are key enzymes for the saccharification of cellulose and play major roles in industrial settings for biofuel production. The catalytic core domain of these enzymes exhibits a long and narrow binding tunnel capable of binding glucan chains from crystalline cellulose and processively hydrolyze them. The binding cleft is topped by a set of loops, which are believed to play key roles in substrate binding and cleavage processivity. Here, we present an analysis of the loop motions of the Trichoderma reesei Cel7A catalytic core domain (TrCel7A) using conventional and accelerated molecular dynamics simulations. We observe that the loops exhibit highly coupled fluctuations and cannot move independently of each other. In the absence of a substrate, the characteristic large amplitude dynamics of TrCel7A consists of breathing motions, where the loops undergo open-and-close fluctuations. Upon substrate binding, the open-close fluctuations of the loops are quenched and one of the loops moves parallel to the binding site, possibly to allow processive motion along the glucan chain. Using microsecond accelerated molecular dynamics, we observe large-scale fluctuations of the loops (up to 37 Å) and the entire exposure of the TrCel7A binding site in the absence of the substrate, resembling an endoglucanase. These results suggest that the initial CBH-substrate contact and substrate recognition by the enzyme are similar to that of endoglucanases and, once bound to the substrate, the loops remain closed for proper enzymatic activity.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- Institute of Chemistry, University of Campinas, Cx. P. 6154, Campinas, 13084-862, SP, Brazil.
| | | |
Collapse
|
24
|
Stavrou AA, Mixão V, Boekhout T, Gabaldón T. Misidentification of genome assemblies in public databases: The case of Naumovozyma dairenensis and proposal of a protocol to correct misidentifications. Yeast 2018; 35:425-429. [PMID: 29320804 PMCID: PMC6001429 DOI: 10.1002/yea.3303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022] Open
Abstract
Online sequence databases such as NCBI GenBank serve as a tremendously useful platform for researchers to share and reuse published data. However, submission systems lack control for errors such as organism misidentification, which once entered in the database can be propagated and mislead downstream analyses. Here we present an illustrating case of misidentification of Candida albicans from a clinical sample as Naumovozyma dairenensis based on whole-genome shotgun data. Analyses of phylogenetic markers, read mapping and single nucleotide polymorphisms served to correct the identification. We propose that the routine use of such analyses could help to detect misidentifications arising from unsupervised analyses and correct them before they enter the databases. Finally, we discuss broader implications of such misidentifications and the difficulty of correcting them once they are in the records.
Collapse
Affiliation(s)
- Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
25
|
Kadowaki MAS, Higasi P, de Godoy MO, Prade RA, Polikarpov I. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila. FEBS J 2018; 285:559-579. [PMID: 29222836 DOI: 10.1111/febs.14356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Abstract
Cellobiohydrolases hydrolyze cellulose, a linear polymer with glucose monomers linked exclusively by β-1,4 glycosidic linkages. The widespread hydrogen bonding network tethers individual cellulose polymers forming crystalline cellulose, which prevent the access of hydrolytic enzymes and water molecules. The most abundant enzyme secreted by Myceliophthora thermophila M77 in response to the presence of biomass is the cellobiohydrolase MtCel7A, which is composed by a GH7-catalytic domain (CD), a linker, and a CBM1-type carbohydrate-binding module. GH7 cellobiohydrolases have been studied before, and structural models have been proposed. However, currently available GH7 crystal structures only define separate catalytic domains and/or cellulose-binding modules and do not include the full-length structures that are involved in shaping the catalytic mode of operation. In this study, we determined the 3D structure of catalytic domain using X-ray crystallography and retrieved the full-length enzyme envelope via small-angle X-ray scattering (SAXS) technique. The SAXS data reveal a tadpole-like molecular shape with a rigid linker connecting the CD and CBM. Our biochemical studies show that MtCel7A has higher catalytic efficiency and thermostability as well as lower processivity when compared to the well-studied TrCel7A from Trichoderma reesei. Based on a comparison of the crystallographic structures of CDs and their molecular dynamic simulations, we demonstrate that MtCel7A has considerably higher flexibility than TrCel7A. In particular, loops that cover the active site are more flexible and undergo higher conformational fluctuations, which might account for decreased processivity and enhanced enzymatic efficiency. Our statistical coupling analysis suggests co-evolution of amino acid clusters comprising the catalytic site of MtCel7A, which correlate with the steps in the catalytic cycle of the enzyme. DATABASE The atomic coordinates and structural factors of MtCel7A have been deposited in the Protein Data Bank with accession number 5W11.
Collapse
Affiliation(s)
| | - Paula Higasi
- São Carlos Institute of Physics, University of São Paulo, Brazil
| | | | - Rolf A Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Brazil
| |
Collapse
|
26
|
Borisova AS, Eneyskaya EV, Jana S, Badino SF, Kari J, Amore A, Karlsson M, Hansson H, Sandgren M, Himmel ME, Westh P, Payne CM, Kulminskaya AA, Ståhlberg J. Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:5. [PMID: 29344086 PMCID: PMC5766984 DOI: 10.1186/s13068-017-1006-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/23/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.
Collapse
Affiliation(s)
- Anna S. Borisova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Orlova Roscha, Gatchina, Leningrad Region 188300 Russia
| | - Elena V. Eneyskaya
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Orlova Roscha, Gatchina, Leningrad Region 188300 Russia
| | - Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506-0046 USA
| | - Silke F. Badino
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
| | - Jeppe Kari
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
| | - Antonella Amore
- National Renewable Energy Laboratory, Biosciences Center, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Michael E. Himmel
- National Renewable Energy Laboratory, Biosciences Center, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Peter Westh
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506-0046 USA
- Present Address: Division of Chemical, Bioengineering, Environmental, and Transport Systems, National Science Foundation, Alexandria, VA USA
| | - Anna A. Kulminskaya
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Orlova Roscha, Gatchina, Leningrad Region 188300 Russia
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| |
Collapse
|
27
|
Haidari S, Boskov M, Schillinger U, Bissinger O, Wolff KD, Plank C, Kolk A. Functional analysis of bioactivated and antiinfective PDLLA - coated surfaces. J Biomed Mater Res A 2017; 105:1672-1683. [PMID: 28218496 DOI: 10.1002/jbm.a.36042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Abstract
Common scaffold surfaces such as titanium can have side effects; for example, infections, cytotoxicity, impaired osseointegration, or low regeneration rates for bone tissue. These effects lead to poor implant integration or even implant loss. Therefore, bioactive implants are promising instruments in tissue regeneration. Osteoinductive elements-such as growth factors and anti-infectives-support wound healing and bone growth and thereby enable faster osseointegration, even in elderly patients. In this study, titanium surfaces were coated with a poly-(d,l-lactide) (PDLLA) layer containing different concentrations of copolymer-protected gene vectors (COPROGs) to locally provide bone morphogenetic protein-2 (BMP-2) or activated anti-infective agents, such as chlorhexidine gluconate, triclosan, and metronidazole, to prevent peri-implantitis. The coated titanium implants were then loaded with osteoblasts, NIH 3T3 fibroblasts, and human mesenchymal stem cells in 96-well plates. When shielded by COPROGs as a protective layer and resuspended in PDLLA, BMP-2-encoding pDNA at relatively low doses (5.63 µg/implant) induced the local expression of BMP-2. A linear dose dependence, which is common for recombinant growth factors, was not found, probably due to the retention property of the PDLLA surface. PDLLA, in general, successfully retains additional elements, such as osteoconductive growth factors (BMP-2) and anti-infective agents, which was demonstrated using metronidazole, and thus prevents the systemic application of excessive doses. These bioactive implant surfaces that provide the local release of therapeutic gene vectors or anti-infective agents allow the controlled stimulation of the implant and scaffold osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1672-1683, 2017.
Collapse
Affiliation(s)
- Selgai Haidari
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Marko Boskov
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Ulrike Schillinger
- Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Christian Plank
- Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany.,Institute of Molecular Immunology - Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| |
Collapse
|
28
|
Ogunmolu FE, Jagadeesha NBK, Kumar R, Kumar P, Gupta D, Yazdani SS. Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:71. [PMID: 28344646 PMCID: PMC5360062 DOI: 10.1186/s13068-017-0752-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND GH7 cellobiohydrolases (CBH1) are vital for the breakdown of cellulose. We had previously observed the enzyme as the most dominant protein in the active cellulose-hydrolyzing secretome of the hypercellulolytic ascomycete-Penicillium funiculosum (NCIM1228). To understand its contributions to cellulosic biomass saccharification in comparison with GH7 cellobiohydrolase from the industrial workhorse-Trichoderma reesei, we natively purified and functionally characterized the only GH7 cellobiohydrolase identified and present in the genome of the fungus. RESULTS There were marginal differences observed in the stability of both enzymes, with P. funiculosum (PfCBH1) showing an optimal thermal midpoint (Tm) of 68 °C at pH 4.4 as against an optimal Tm of 65 °C at pH 4.7 for T. reesei (TrCBH1). Nevertheless, PfCBH1 had an approximate threefold lower binding affinity (Km), an 18-fold higher turnover rate (kcat), a sixfold higher catalytic efficiency as well as a 26-fold higher enzyme-inhibitor complex equilibrium dissociation constant (Ki) than TrCBH1 on p-nitrophenyl-β-d-lactopyranoside (pNPL). Although both enzymes hydrolyzed cellooligomers (G2-G6) and microcrystalline cellulose, releasing cellobiose and glucose as the major products, the propensity was more with PfCBH1. We equally observed this trend during the hydrolysis of pretreated wheat straws in tandem with other core cellulases under the same conditions. Molecular dynamic simulations conducted on a homology model built using the TrCBH1 structure (PDB ID: 8CEL) as a template enabled us to directly examine the effects of substrate and products on the protein dynamics. While the catalytic triads-EXDXXE motifs-were conserved between the two enzymes, subtle variations in regions enclosing the catalytic path were observed, and relations to functionality highlighted. CONCLUSION To the best of our knowledge, this is the first report about a comprehensive and comparative description of CBH1 from hypercellulolytic ascomycete-P. funiculosum NCIM1228, against the backdrop of the same enzyme from the industrial workhorse-T. reesei. Our study reveals PfCBH1 as a viable alternative for CBH1 from T. reesei in industrial cellulase cocktails.
Collapse
Affiliation(s)
- Funso Emmanuel Ogunmolu
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Navya Bhatt Kammachi Jagadeesha
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rakesh Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pawan Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
29
|
Ladevèze S, Haon M, Villares A, Cathala B, Grisel S, Herpoël-Gimbert I, Henrissat B, Berrin JG. The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:215. [PMID: 28919928 PMCID: PMC5596469 DOI: 10.1186/s13068-017-0903-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/07/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that have revolutionized our understanding of lignocellulose degradation. Fungal LPMOs of the AA9 family target cellulose and hemicelluloses. AA9 LPMO-coding genes have been identified across a wide range of fungal saprotrophs (Ascomycotina, Basidiomycotina, etc.), but so far they have not been found in more basal lineages. Recent genome analysis of the yeast Geotrichum candidum (Saccharomycotina) revealed the presence of several LPMO genes, which belong to the AA9 family. RESULTS In this study, three AA9 LPMOs from G. candidum were successfully produced and biochemically characterized. The use of native signal peptides was well suited to ensure correct processing and high recombinant production of GcLPMO9A, GcLPMO9B, and GcLPMO9C in Pichia pastoris. We show that GcLPMO9A and GcLPMO9B were both active on cellulose and xyloglucan, releasing a mixture of soluble C1- and C4-oxidized oligosaccharides from cellulose. All three enzymes disrupted cellulose fibers and significantly improved the saccharification of pretreated lignocellulosic biomass upon addition to a commercial cellulase cocktail. CONCLUSIONS The unique enzymatic arsenal of G. candidum compared to other yeasts could be beneficial for plant cell wall decomposition in a saprophytic or pathogenic context. From a biotechnological point of view, G. candidum LPMOs are promising candidates to further enhance enzyme cocktails used in biorefineries such as consolidated bioprocessing.
Collapse
Affiliation(s)
- Simon Ladevèze
- INRA, Aix Marseille University BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Mireille Haon
- INRA, Aix Marseille University BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Ana Villares
- INRA, UR1268 Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Bernard Cathala
- INRA, UR1268 Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Sacha Grisel
- INRA, Aix Marseille University BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Isabelle Herpoël-Gimbert
- INRA, Aix Marseille University BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7857, CNRS, Aix-Marseille University, 13288 Marseille, France
- USC1408, Architecture et Fonction des Macromolécules Biologiques, INRA, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jedda, 21589 Saudi Arabia
| | - Jean-Guy Berrin
- INRA, Aix Marseille University BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| |
Collapse
|
30
|
Crystal structures of wild‐type
Trichoderma reesei
Cel7A catalytic domain in open and closed states. FEBS Lett 2016; 590:4429-4438. [DOI: 10.1002/1873-3468.12464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 11/07/2022]
|
31
|
Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life. Appl Environ Microbiol 2016; 82:3395-409. [PMID: 27037126 DOI: 10.1128/aem.00163-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 μM, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life. IMPORTANCE GH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.
Collapse
|