1
|
Guo J, Wang MF, Yuan SJ, Li K, Zhang Q, Lei HM, Wu JL, Li AX, Xu YH, Chen X. Photo-controlled co-delivery of verteporfin and acriflavine via platelets achieves potentiated glioblastoma-targeted photodynamic therapy. J Nanobiotechnology 2025; 23:371. [PMID: 40405165 PMCID: PMC12096713 DOI: 10.1186/s12951-025-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/24/2025] Open
Abstract
The potential of glioblastoma (GBM) photodynamic therapy (PDT) is limited by inadequate GBM drug delivery, and the development of resistance to PDT as a result of cellular damage response that critically involves the hypoxia-inducible factor-1α (HIF-1α) and yes-associated protein (YAP). Herein, addressing these challenges, we demonstrated a strategy of photo-controlled, targeted co-delivery of verteporfin (Vp), a photosensitizer and YAP inhibitor as well, and acriflavine (Af), a HIF-1α inhibitor via platelets for enhanced GBM PDT. Mouse platelets were separately loaded with Vp (Vp@Plt) and Af (Af@Plt) and the mixture thereof is termed Vp@Plt + Af@Plt. Alternatively, platelets were simultaneously loaded with Vp and Af to yield (Vp + Af)@Plt. First, both Vp@Plt + Af@Plt and (Vp + Af)@Plt were shown to achieve rapid and efficient laser-triggered, GBM-targeted delivery of Vp and Af, which led to markedly higher phototoxicity in the GBM cells (GBCs) and ultimately more potent GBM PDT than Vp@Plt in mice. Next, a mechanistic study revealed the induction of a mutually promotional interaction of HIF-1α and YAP in the GBCs in response to PDT-inflicted DNA damage. This interaction protected HIF-1α from degradation and meanwhile assisted in the nuclear translocation of YAP leading to increased nuclear presence of both HIF-1α and YAP and escalated DNA damage repair activity under their regulation. Both Af and Vp were found to block the PDT-induced HIF-1α-YAP interaction and thereby severely impaired DNA damage repair, eventually resulting in exacerbated cell death. In conclusion, Af and Vp can be adequately co-delivered in GBM via platelets in a photo-controlled manner to achieve efficacious GBM PDT through double blocking of the HIF-1α-YAP interaction in the GBCs.
Collapse
Affiliation(s)
- Jie Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Meng-Fei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shen-Jun Yuan
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Hui-Mei Lei
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jia-Lin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - An-Xin Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
2
|
Zhu TC, He ZP, Li ST, Zheng L, Zheng XY, Lan XL, Qu CH, Nie RC, Gu C, Huang LN, Cai XX, Xiang ZC, Xie D, Cai MY. TAOK1 promotes filament formation in HR repair through phosphorylating USP7. Proc Natl Acad Sci U S A 2025; 122:e2422262122. [PMID: 40106350 PMCID: PMC11962436 DOI: 10.1073/pnas.2422262122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors are vital therapeutic agents that exploit synthetic lethality, particularly effective in tumors with homologous recombination (HR) defects. However, broadening their clinical utility remains a significant challenge. In this study, we conducted a high-throughput kinase inhibitor screen to identify potential targets exhibiting synthetical lethality with PARP inhibitors. Our results show that thousand and one amino acid protein kinase 1 (TAOK1) plays a pivotal role in the DNA damage response by phosphorylating ubiquitin specific peptidase 7 (USP7), thereby promoting its enzymatic activity and preventing the ubiquitylation and subsequent degradation of RAD51, a crucial protein in the filament formation of HR repair. Notably, genetic depletion or pharmacological inhibition of TAOK1, as well as blocking peptide targeting the USP7 phosphorylation site, impaired USP7 function, leading to RAD51 degradation, disruption of HR repair, and increased tumor cell and sensitivity to PARP inhibition. This study highlights TAOK1 as a critical regulator of HR repair pathway in human cancer cells and presents a therapeutic strategy overcoming resistance to PARPi inhibitors. These findings support the potential clinical application of combining PARP inhibitors with TAOK1 inhibition or peptide treatment to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Tian-Chen Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Zhang-Ping He
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou510000, China
| | - Shu-Ting Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Lin Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350000, China
| | - Xue-Yi Zheng
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Xia-Lu Lan
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Chun-Hua Qu
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Run-Cong Nie
- Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Chao Gu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou215000, China
| | - Li-Ning Huang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou215000, China
| | - Xiao-Xia Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
| | - Zhi-Cheng Xiang
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| |
Collapse
|
3
|
Shu Y, Jin X, Ji M, Zhang Z, Wang X, Liang H, Lu S, Dong S, Lin Y, Guo Y, Zhuang Q, Wang Y, Lei Z, Guo L, Meng X, Zhou G, Zhang W, Chang L. Ku70 Binding to YAP Alters PARP1 Ubiquitination to Regulate Genome Stability and Tumorigenesis. Cancer Res 2024; 84:2836-2855. [PMID: 38862269 DOI: 10.1158/0008-5472.can-23-4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Yes-associated protein (YAP) is a central player in cancer development, with functions extending beyond its recognized role in cell growth regulation. Recent work has identified a link between YAP/transcriptional coactivator with PDZ-binding motif (TAZ) and the DNA damage response. Here, we investigated the mechanistic underpinnings of the cross-talk between DNA damage repair and YAP activity. Ku70, a key component of the nonhomologous end joining pathway to repair DNA damage, engaged in a dynamic competition with TEAD4 for binding to YAP, limiting the transcriptional activity of YAP. Depletion of Ku70 enhanced interaction between YAP and TEAD4 and boosted YAP transcriptional capacity. Consequently, Ku70 loss enhanced tumorigenesis in colon cancer and hepatocellular carcinoma (HCC) in vivo. YAP impeded DNA damage repair and elevated genome instability by inducing PARP1 degradation through the SMURF2-mediated ubiquitin-proteasome pathway. Analysis of samples from patients with HCC substantiated the link between Ku70 expression, YAP activity, PARP1 levels, and genome instability. In conclusion, this research provides insight into the mechanistic interactions between YAP and key regulators of DNA damage repair, highlighting the role of a Ku70-YAP-PARP1 axis in preserving genome stability. Significance: Increased yes-associated protein transcriptional activity stimulated by loss of Ku70 induces PARP1 degradation by upregulating SMURF2 to inhibit DNA damage, driving genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Yinyin Shu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhisen Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiuxiu Wang
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Haisheng Liang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shuangshuang Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shuai Dong
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yiping Lin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuhan Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuanyu Meng
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wensheng Zhang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Xia L, Lin H, Cao H, Lian J. Tenascin C as a novel zinc finger protein 750 target regulating the immunogenicity via DNA damage in lung squamous cell carcinoma. BMC Cancer 2024; 24:561. [PMID: 38711034 PMCID: PMC11071264 DOI: 10.1186/s12885-024-12285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.
Collapse
Affiliation(s)
- Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China.
| | - Hexin Lin
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, CN, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, 361000, CN, China.
| | - Jiabian Lian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China.
| |
Collapse
|
6
|
Stepan J, Heinz DE, Dethloff F, Wiechmann S, Martinelli S, Hafner K, Ebert T, Junglas E, Häusl AS, Pöhlmann ML, Jakovcevski M, Pape JC, Zannas AS, Bajaj T, Hermann A, Ma X, Pavenstädt H, Schmidt MV, Philipsen A, Turck CW, Deussing JM, Rammes G, Robinson AC, Payton A, Wehr MC, Stein V, Murgatroyd C, Kremerskothen J, Kuster B, Wotjak CT, Gassen NC. Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice. Sci Signal 2024; 17:eadj6603. [PMID: 38687825 DOI: 10.1126/scisignal.adj6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.
Collapse
Affiliation(s)
- Jens Stepan
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ellen Junglas
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Anke Hermann
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Salford M6 8HD, UK
| | - Antony Payton
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Valentin Stein
- Institute of Physiology II, Medical Faculty University of Bonn, 53115 Bonn, Germany
| | | | - Joachim Kremerskothen
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Weiler SME, Bissinger M, Rose F, von Bubnoff F, Lutz T, Ori A, Schirmacher P, Breuhahn K. SEPTIN10-mediated crosstalk between cytoskeletal networks controls mechanotransduction and oncogenic YAP/TAZ signaling. Cancer Lett 2024; 584:216637. [PMID: 38242197 DOI: 10.1016/j.canlet.2024.216637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The transcriptional co-activators of the Hippo pathway, YAP and TAZ, are regulated by mechanotransduction, which depends on dynamic actin cytoskeleton remodeling. Here, we identified SEPTIN10 as a novel cytoskeletal protein, which is transcriptionally regulated by YAP/TAZ and whose overexpression correlates with poor survival and vascular invasion in hepatocellular carcinoma (HCC) patients. Functional characterization demonstrated that SEPTIN10 promotes YAP/TAZ-dependent cell viability, migration and invasion of liver cancer cells. Mechanistically, SEPTIN10 interacts with actin and microtubule filaments supporting actin stress fiber formation and intracellular tension through binding to CAPZA2 while concurrently inhibiting microtubule polymerization through the blockage of MAP4 function. This functional antagonism is important for cytoskeleton-dependent feedback activation of YAP/TAZ, as microtubule depolymerization induces actin stress fiber formation and subsequently YAP/TAZ activity. Importantly, the crosstalk between microfilaments and microtubules is mediated by SEPTIN10 as its loss abrogates actin stress fiber formation after microtubule disruption. Together, the YAP/TAZ target gene SEPTIN10 controls the dynamic interplay between actin and microtubule filaments, which feeds back on Hippo pathway activity in HCC cells and thus acts as molecular switch with impact on oncogenic signaling and cancer cell biology.
Collapse
Affiliation(s)
- Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian von Bubnoff
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Jeong DJ, Um JH, Kim YY, Shin DJ, Im S, Lee KM, Lee YH, Lim DS, Kim D, Yun J. The Mst1/2-BNIP3 axis is required for mitophagy induction and neuronal viability under mitochondrial stress. Exp Mol Med 2024; 56:674-685. [PMID: 38443598 PMCID: PMC10984967 DOI: 10.1038/s12276-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 03/07/2024] Open
Abstract
Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.
Collapse
Affiliation(s)
- Dae Jin Jeong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dong Jin Shin
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Sangwoo Im
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
9
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Jama M, Zhang M, Poile C, Nakas A, Sharkey A, Dzialo J, Dawson A, Kutywayo K, Fennell DA, Hollox EJ. Gene fusions during the early evolution of mesothelioma correlate with impaired DNA repair and Hippo pathways. Genes Chromosomes Cancer 2024; 63:e23189. [PMID: 37421230 DOI: 10.1002/gcc.23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.
Collapse
Affiliation(s)
- Maymun Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Min Zhang
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Novogene Corpotation Ltd., Building 301, Beijing, China
| | - Charlotte Poile
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Apostolos Nakas
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Annabel Sharkey
- Department of Cardio-Thoracic Surgery, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - Joanna Dzialo
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Alan Dawson
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Kudazyi Kutywayo
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Cardio-Thoracic Surgery, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - Dean A Fennell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Yang Y, Feng T, Fan X, Wang C, Jiang Y, Zhou X, Bao W, Zhang D, Wang S, Yu J, Tao Y, Song G, Bao H, Yan J, Wu X, Shao Y, Qiu G, Su D, Chen Q. Genomic and Transcriptomic Remodeling by Neoadjuvant Chemoradiotherapy (nCRT) and the Indicative Role of Acquired INDEL Percentage for nCRT Efficacy in Esophageal Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2023; 117:979-993. [PMID: 37339686 DOI: 10.1016/j.ijrobp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The effect of genomic factors on the response of patients with esophageal squamous cell carcinoma (ESCC) to neoadjuvant chemoradiotherapy (nCRT), as well as how nCRT influences the genome and transcriptome of ESCC, remain largely unknown. METHODS AND MATERIALS In total, 137 samples from 57 patients with ESCC undergoing nCRT were collected and subjected to whole-exome sequencing and RNA sequencing analysis. Genetic and clinicopathologic factors were compared between the patients achieving pathologic complete response and patients not achieving pathologic complete response. Genomic and transcriptomic profiles before and after nCRT were analyzed. RESULTS Codeficiency of the DNA damage repair and HIPPO pathways synergistically sensitized ESCC to nCRT. nCRT induced small INDELs and focal chromosomal loss concurrently. Acquired INDEL% exhibited a decreasing trend with the increase of tumor regression grade (P = .06, Jonckheere's test). Multivariable Cox analysis indicated that higher acquired INDEL% was associated with better survival (adjusted hazard ratio [aHR], 0.93; 95% CI, 0.86-1.01; P = .067 for recurrence-free survival [RFS]; aHR, 0.86; 95% CI, 0.76-0.98; P = .028 for overall survival [OS], with 1% of acquired INDEL% as unit). The prognostic value of acquired INDEL% was confirmed by the Glioma Longitudinal AnalySiS data set (aHR, 0.95; 95% CI, 0.902-0.997; P = .037 for RFS; aHR, 0.96; 95% CI, 0.917-1.004; P = .076 for OS). Additionally, clonal expansion degree was negatively associated with patient survival (aHR, 5.87; 95% CI, 1.10-31.39; P = .038 for RFS; aHR, 9.09; 95% CI, 1.10-75.36; P = .041 for OS, with low clonal expression group as reference) and also negatively correlated with acquired INDEL% (Spearman ρ = -0.45; P = .02). The expression profile was changed after nCRT. The DNA replication gene set was downregulated, while the cell adhesion gene set was upregulated after nCRT. Acquired INDEL% was negatively correlated with the enrichment of the DNA replication gene set (Spearman ρ = -0.56; P = .003) but was positively correlated with the enrichment of the cell adhesion gene set (Spearman ρ = 0.40; P = .05) in posttreatment samples. CONCLUSIONS nCRT remodels the genome and transcriptome of ESCC. Acquired INDEL% is a potential biomarker to indicate the effectiveness of nCRT and radiation sensitivity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - TingTing Feng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaojun Fan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Changchun Wang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Youhua Jiang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xia Zhou
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Wu'an Bao
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Danhong Zhang
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Shi Wang
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiangping Yu
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yali Tao
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ge Song
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Guoqin Qiu
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qixun Chen
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Patrick S, Lathoria K, Suri V, Sen E. Reduced YAP1 and FOLR1 in gliomas predict better response to chemotherapeutics. Cell Signal 2023:110738. [PMID: 37269960 DOI: 10.1016/j.cellsig.2023.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Gliomas harbouring mutations in IDH1 (isocitrate dehydrogenase 1) are characterized by greater sensitivity to chemotherapeutics. These mutants also exhibit diminished levels of transcriptional coactivator YAP1 (yes-associated protein 1). Enhanced DNA damage in IDH1 mutant cells, as evidenced by γH2AX formation (phosphorylation of histone variant H2A.X) and ATM (serine/threonine kinase; ataxia telangiectasia mutated) phosphorylation, was accompanied by reduced FOLR1 (folate receptor 1) expression. Diminished FOLR1, concomitant with heightened γH2AX levels, was also observed in patient-derived IDH1 mutant glioma tissues. Chromatin immunoprecipitation, overexpression of mutant YAP1, and treatment with YAP1-TEAD (TEA domain transcription factors) complex inhibitor verteporfin demonstrated regulation of FOLR1 expression by YAP1 and its partner transcription factor TEAD2. TCGA (The Cancer Genome Atlas) data analysis demonstrated better patient survival with reduced FOLR1 expression. Depletion of FOLR1 rendered IDH1 wild-type gliomas more susceptible to temozolomide-mediated death. Despite heightened DNA damage, IDH1 mutants exhibited reduced levels of IL6 (interleukin 6) and IL8 (interleukin 8) - pro-inflammatory cytokines known to be associated with persistent DNA damage. While both FOLR1 and YAP1 influenced DNA damage, only YAP1 was involved in regulating IL6 and IL8. ESTIMATE and CIBERSORTx analyses revealed the association between YAP1 expression and immune cell infiltration in gliomas. By identifying the influence of YAP1-FOLR1 link in DNA damage, our findings suggest that simultaneous depletion of both could amplify the potency of DNA damaging agents, while concomitantly reducing the release of inflammatory mediators and potentially affecting immune modulation. This study also highlights the novel role of FOLR1 as a probable prognostic marker in gliomas, predicting responsiveness to temozolomide and other DNA damaging agents.
Collapse
Affiliation(s)
| | | | - Vaishali Suri
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122052, India.
| |
Collapse
|
13
|
Viner-Breuer R, Golan-Lev T, Benvenisty N, Goldberg M. Genome-Wide Screening in Human Embryonic Stem Cells Highlights the Hippo Signaling Pathway as Granting Synthetic Viability in ATM Deficiency. Cells 2023; 12:1503. [PMID: 37296624 PMCID: PMC10253227 DOI: 10.3390/cells12111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
ATM depletion is associated with the multisystemic neurodegenerative syndrome ataxia-telangiectasia (A-T). The exact linkage between neurodegeneration and ATM deficiency has not been established yet, and no treatment is currently available. In this study, we aimed to identify synthetic viable genes in ATM deficiency to highlight potential targets for the treatment of neurodegeneration in A-T. We inhibited ATM kinase activity using the background of a genome-wide haploid pluripotent CRISPR/Cas9 loss-of-function library and examined which mutations confer a growth advantage on ATM-deficient cells specifically. Pathway enrichment analysis of the results revealed the Hippo signaling pathway as a major negative regulator of cellular growth upon ATM inhibition. Indeed, genetic perturbation of the Hippo pathway genes SAV1 and NF2, as well as chemical inhibition of this pathway, specifically promoted the growth of ATM-knockout cells. This effect was demonstrated in both human embryonic stem cells and neural progenitor cells. Therefore, we suggest the Hippo pathway as a candidate target for the treatment of the devastating cerebellar atrophy associated with A-T. In addition to the Hippo pathway, our work points out additional genes, such as the apoptotic regulator BAG6, as synthetic viable with ATM-deficiency. These genes may help to develop drugs for the treatment of A-T patients as well as to define biomarkers for resistance to ATM inhibition-based chemotherapies and to gain new insights into the ATM genetic network.
Collapse
Affiliation(s)
- Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Michal Goldberg
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Rutten MGS, Lei Y, Hoogerland JH, Bloks VW, Yang H, Bos T, Krishnamurthy KA, Bleeker A, Koster MH, Thomas RE, Wolters JC, van den Bos H, Mithieux G, Rajas F, Mardinoglu A, Spierings DCJ, de Bruin A, van de Sluis B, Oosterveer MH. Normalization of hepatic ChREBP activity does not protect against liver disease progression in a mouse model for Glycogen Storage Disease type Ia. Cancer Metab 2023; 11:5. [PMID: 37085901 PMCID: PMC10122297 DOI: 10.1186/s40170-023-00305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by a defect in glucose-6-phosphatase (G6PC1) activity, which induces severe hepatomegaly and increases the risk for liver cancer. Hepatic GSD Ia is characterized by constitutive activation of Carbohydrate Response Element Binding Protein (ChREBP), a glucose-sensitive transcription factor. Previously, we showed that ChREBP activation limits non-alcoholic fatty liver disease (NAFLD) in hepatic GSD Ia. As ChREBP has been proposed as a pro-oncogenic molecular switch that supports tumour progression, we hypothesized that ChREBP normalization protects against liver disease progression in hepatic GSD Ia. METHODS Hepatocyte-specific G6pc knockout (L-G6pc-/-) mice were treated with AAV-shChREBP to normalize hepatic ChREBP activity. RESULTS Hepatic ChREBP normalization in GSD Ia mice induced dysplastic liver growth, massively increased hepatocyte size, and was associated with increased hepatic inflammation. Furthermore, nuclear levels of the oncoprotein Yes Associated Protein (YAP) were increased and its transcriptional targets were induced in ChREBP-normalized GSD Ia mice. Hepatic ChREBP normalization furthermore induced DNA damage and mitotic activity in GSD Ia mice, while gene signatures of chromosomal instability, the cytosolic DNA-sensing cGAS-STING pathway, senescence, and hepatocyte dedifferentiation emerged. CONCLUSIONS In conclusion, our findings indicate that ChREBP activity limits hepatomegaly while decelerating liver disease progression and protecting against chromosomal instability in hepatic GSD Ia. These results disqualify ChREBP as a therapeutic target for treatment of liver disease in GSD Ia. In addition, they underline the importance of establishing the context-specific roles of hepatic ChREBP to define its therapeutic potential to prevent or treat advanced liver disease.
Collapse
Affiliation(s)
- Martijn G. S. Rutten
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yu Lei
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joanne H. Hoogerland
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Trijnie Bos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kishore A. Krishnamurthy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rachel E. Thomas
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- Institut National de La Santé Et de La Recherche Médicale, U1213 Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de La Santé Et de La Recherche Médicale, U1213 Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike H. Oosterveer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Calses PC, Pham VC, Guarnaccia AD, Choi M, Verschueren E, Bakker ST, Pham TH, Hinkle T, Liu C, Chang MT, Kljavin N, Bakalarski C, Haley B, Zou J, Yan C, Song X, Lin X, Rowntree R, Ashworth A, Dey A, Lill JR. TEAD Proteins Associate With DNA Repair Proteins to Facilitate Cellular Recovery From DNA Damage. Mol Cell Proteomics 2023; 22:100496. [PMID: 36640924 PMCID: PMC9947421 DOI: 10.1016/j.mcpro.2023.100496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.
Collapse
Affiliation(s)
- Philamer C Calses
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA; Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Victoria C Pham
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Alissa D Guarnaccia
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA; Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Meena Choi
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Sietske T Bakker
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Trang H Pham
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Trent Hinkle
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Chad Liu
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Corey Bakalarski
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Benjamin Haley
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Jianing Zou
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Cuicui Yan
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Xia Song
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Xiaoyan Lin
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Rebecca Rowntree
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Anwesha Dey
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA.
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
16
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
17
|
Lu X, Yu H, Ma J, Wang K, Guo L, Zhang Y, Li B, Zhao Z, Li H, Sun S. Loss of Mst1/2 activity promotes non-mitotic hair cell generation in the neonatal organ of Corti. NPJ Regen Med 2022; 7:64. [PMID: 36280668 PMCID: PMC9592590 DOI: 10.1038/s41536-022-00261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Mammalian sensory hair cells (HCs) have limited capacity for regeneration, which leads to permanent hearing loss after HC death. Here, we used in vitro RNA-sequencing to show that the Hippo signaling pathway is involved in HC damage and self-repair processes. Turning off Hippo signaling through Mst1/2 inhibition or Yap overexpression induces YAP nuclear accumulation, especially in supporting cells, which induces supernumerary HC production and HC regeneration after injury. Mechanistically, these effects of Hippo signaling work synergistically with the Notch pathway. Importantly, the supernumerary HCs not only express HC markers, but also have cilia structures that are able to form neural connections to auditory regions in vivo. Taken together, regulating Hippo suggests new strategies for promoting cochlear supporting cell proliferation, HC regeneration, and reconnection with neurons in mammals.
Collapse
Affiliation(s)
- Xiaoling Lu
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Huiqian Yu
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Jiaoyao Ma
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Kunkun Wang
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Luo Guo
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Yanping Zhang
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| | - Boan Li
- grid.12955.3a0000 0001 2264 7233Xiamen University School of Life Sciences, 361100 Xiamen, P. R. China
| | - Zehang Zhao
- grid.12955.3a0000 0001 2264 7233Xiamen University School of Life Sciences, 361100 Xiamen, P. R. China
| | - Huawei Li
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Institutes of Biomedical Sciences, Fudan University, 200032 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Shan Sun
- grid.8547.e0000 0001 0125 2443ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, 200031 Shanghai, P. R. China
| |
Collapse
|
18
|
Tsaridou S, Velimezi G, Willenbrock F, Chatzifrangkeskou M, Elsayed W, Panagopoulos A, Karamitros D, Gorgoulis V, Lygerou Z, Roukos V, O'Neill E, Pefani DE. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep 2022; 23:e54483. [PMID: 35758159 PMCID: PMC9346497 DOI: 10.15252/embr.202154483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Velimezi
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | - Dimitris Karamitros
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, Manchester Academic Health Centre, University of Manchester, Manchester, UK.,Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Roukos
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
Feng P, Zhang J, Zhang J, Liu X, Pan L, Chen D, Ji M, Lu F, Li P, Li G, Sun T, Li J, Ye J, Ji C. Deacetylation of YAP1 Promotes the Resistance to Chemo- and Targeted Therapy in FLT3-ITD+ AML Cells. Front Cell Dev Biol 2022; 10:842214. [PMID: 35656547 PMCID: PMC9152322 DOI: 10.3389/fcell.2022.842214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
The FLT3-ITD mutation occurs in about 30% of acute myeloid leukemia (AML) and is associated with poor prognosis. However, FLT3 inhibitors are only partially effective and prone to acquired resistance. Here, we identified Yes-associated protein 1 (YAP1) as a tumor suppressor in FLT3-ITD+ AML. YAP1 inactivation conferred FLT3-ITD+ AML cell resistance to chemo- and targeted therapy. Mass spectrometric assay revealed that DNA damage repair gene poly (ADP-ribose) polymerase 1 (PARP1) might be the downstream of YAP1, and the pro-proliferative effect by YAP1 knockdown was partly reversed via PARP1 inhibitor. Importantly, histone deacetylase 10 (HDAC10) contributed to decreased YAP1 acetylation levels through histone H3 lysine 27 (H3K27) acetylation, leading to the reduced nuclear accumulation of YAP1. Selective HDAC10 inhibitor chidamide or HDAC10 knockdown activated YAP1, enhanced DNA damage, and significantly attenuated FLT3-ITD+ AML cell resistance. In addition, combination chidamide with FLT3 inhibitors or chemotherapy agents synergistically inhibited growth and increased apoptosis of FLT3-ITD+ AML cell lines and acquired resistant cells from the relapse FLT3-ITD+ AML patients. These findings demonstrate that the HDAC10-YAP1-PARP1 axis maintains FLT3-ITD+ AML cells and targeting this axis might improve clinical outcomes in FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Panpan Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lina Pan
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, GIGA-Stem Cells, Faculty of Medicine, University of Liege, CHU, Liege, Belgium
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| |
Collapse
|
20
|
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. Int J Mol Sci 2021; 22:ijms222413431. [PMID: 34948224 PMCID: PMC8705144 DOI: 10.3390/ijms222413431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.
Collapse
Affiliation(s)
- Giacomo Casati
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
- Correspondence:
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Arianna Marturano
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Luisa Galli
- Infectious Disease Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| |
Collapse
|
21
|
Kachris S, Papadaki C, Rounis K, Tsitoura E, Kokkinaki C, Nikolaou C, Sourvinos G, Mavroudis D. Circulating miRNAs as Potential Biomarkers in Prostate Cancer Patients Undergoing Radiotherapy. Cancer Manag Res 2021; 13:8257-8271. [PMID: 34754245 PMCID: PMC8572024 DOI: 10.2147/cmar.s325246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Disease recurrence is a major concern in patients with localized prostate cancer (PCa) following treatment with radiotherapy (RT), and few studies have evaluated the clinical relevance of microRNAs (miRNAs) prior and post-RT. Purpose We aimed to investigate the significance of miRNAs in the outcomes of prostate cancer patients undergoing radiotherapy and to identify the related pathways through bioinformatics analysis. Materials and Methods The expression levels of miR-21, miR-106b, miR-141 and miR-375 involved in the response to radiotherapy were assessed by RT-qPCR in the serum of PCa patients (n=56) prior- and post-RT. Results Low expression levels of miR-106b prior-RT were associated with extracapsular extension and seminal vesicles invasion by the tumor (p=0.031 and 0.044, respectively). In the high-risk subgroup (n=47), post-RT expression levels of miR-21 were higher in patients with biochemical relapse (BR) compared to non-relapse (p=0.043). Also, in the salvage treatment subgroup (post-operative BR; n=20), post-RT expression levels of miR-21 and miR-106b were higher in patients with BR compared to non-relapse (p=0.043 and p=0.032, respectively). In the whole group of patients, high expression levels of miR-21 prior-RT and of miR-106b post-RT were associated with significantly shorter overall survival (OS; p=0.049 and p=0.050, respectively). No associations were observed among miR-141 and miR-375 expression levels with clinicopathological features or treatment outcome. Bioinformatics analysis revealed significant enrichment in DNA damage response pathways. Conclusion Circulating miRNAs prior or post-RT may hold prognostic implications in patients with PCa.
Collapse
Affiliation(s)
- Stefanos Kachris
- Department of Radiation Oncology, University General Hospital, Heraklion, Crete, Greece
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital, Heraklion, Crete, Greece
| | - Eliza Tsitoura
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Chrysanthi Kokkinaki
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), Heraklion, Crete, Greece.,Institute of Bioinnovation, Biomedical Science Research Center "Alexander Fleming", Athens, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital, Heraklion, Crete, Greece
| |
Collapse
|
22
|
Li L, Wang X. Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis Oncol 2021; 5:46. [PMID: 34079012 PMCID: PMC8172826 DOI: 10.1038/s41698-021-00186-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is highly heterogeneous in the stromal and immune microenvironment, genome instability (GI), and oncogenic signatures. However, a classification of GC by combining these features remains lacking. Using the consensus clustering algorithm, we clustered GCs based on the activities of 15 pathways associated with immune, DNA repair, oncogenic, and stromal signatures in three GC datasets. We identified three GC subtypes: immunity-deprived (ImD), stroma-enriched (StE), and immunity-enriched (ImE). ImD showed low immune infiltration, high DNA damage repair activity, high tumor aneuploidy level, high intratumor heterogeneity (ITH), and frequent TP53 mutations. StE displayed high stromal signatures, low DNA damage repair activity, genomic stability, low ITH, and poor prognosis. ImE had strong immune infiltration, high DNA damage repair activity, high tumor mutation burden, prevalence of microsatellite instability, frequent ARID1A mutations, elevated PD-L1 expression, and favorable prognosis. Based on the expression levels of four genes (TAP2, SERPINB5, LTBP1, and LAMC1) in immune, DNA repair, oncogenic, and stromal pathways, we developed a prognostic model (IDOScore). The IDOScore was an adverse prognostic factor and correlated inversely with immunotherapy response in cancer. Our identification of new GC subtypes provides novel insights into tumor biology and has potential clinical implications for the management of GCs.
Collapse
Affiliation(s)
- Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
23
|
Lin L, Wen J, Lin B, Bhandari A, Zheng D, Kong L, Wang Y, Wang O, Chen Y. Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer. J Cell Mol Med 2020; 24:14059-14072. [PMID: 33094920 PMCID: PMC7754061 DOI: 10.1111/jcmm.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Danni Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
24
|
Chen PH, Tseng WHS, Chi JT. The Intersection of DNA Damage Response and Ferroptosis-A Rationale for Combination Therapeutics. BIOLOGY 2020; 9:E187. [PMID: 32718025 PMCID: PMC7464484 DOI: 10.3390/biology9080187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis are gaining recognition, much remains unknown about its interaction with other biological processes and pathways. Recently, several studies have identified intricate and complicated interplay between ferroptosis, ionizing radiation (IR), ATM (ataxia-telangiectasia mutated)/ATR (ATM and Rad3-related), and tumor suppressor p53, which signifies the participation of the DNA damage response (DDR) in iron-related cell death. DDR is an evolutionarily conserved response triggered by various DNA insults to attenuate proliferation, enable DNA repairs, and dispose of cells with damaged DNA to maintain genome integrity. Deficiency in proper DDR in many genetic disorders or tumors also highlights the importance of this pathway. In this review, we will focus on the biological crosstalk between DDR and ferroptosis, which is mediated mostly via noncanonical mechanisms. For clinical applications, we also discuss the potential of combining ionizing radiation and ferroptosis-inducers for synergistic effects. At last, various ATM/ATR inhibitors under clinical development may protect ferroptosis and treat many ferroptosis-related diseases to prevent cell death, delay disease progression, and improve clinical outcomes.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Watson Hua-Sheng Tseng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
25
|
Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res 2019; 98:796-814. [PMID: 31705587 DOI: 10.1002/jnr.24551] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegeneration refers to the complex process of progressive degeneration or neuronal apoptosis leading to a set of incurable and debilitating conditions. Physiologically, apoptosis is important in proper growth and development. However, aberrant and unrestricted apoptosis can lead to a variety of degenerative conditions including neurodegenerative diseases. Although dysregulated apoptosis has been implicated in various neurodegenerative disorders, the triggers and molecular mechanisms underlying such untimely and faulty apoptosis are still unknown. Hippo signaling pathway is one such apoptosis-regulating mechanism that has remained evolutionarily conserved from Drosophila to mammals. This pathway has gained a lot of attention for its tumor-suppressing task, but recent studies have emphasized the soaring role of this pathway in inflaming neurodegeneration. In addition, strategies promoting inactivation of this pathway have aided in the rescue of neurons from anomalous apoptosis. So, a thorough understanding of the relationship between the Hippo pathway and neurodegeneration may serve as a guide for the development of therapy for various degenerative diseases. The current review focuses on the mechanism of the Hippo signaling pathway, its upstream and downstream regulatory molecules, and its role in the genesis of numerous neurodegenerative diseases. The recent efforts employing the Hippo pathway components as targets for checking neurodegeneration have also been highlighted.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
El Husseini N, Hales BF. The Roles of P53 and Its Family Proteins, P63 and P73, in the DNA Damage Stress Response in Organogenesis-Stage Mouse Embryos. Toxicol Sci 2019; 162:439-449. [PMID: 29228353 DOI: 10.1093/toxsci/kfx270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Members of the P53 transcription factor family, P53, P63, and P73, play important roles in normal development and in regulating the expression of genes that control apoptosis and cell cycle progression in response to genotoxic stress. P53 is involved in the DNA damage response pathway that is activated by hydroxyurea in organogenesis-stage murine embryos. The extent to which P63 and P73 contribute to this stress response is not known. To address this question, we examined the roles of P53, P63, and P73 in mediating the response of Trp53-positive and Trp53-deficient murine embryos to a single dose of hydroxyurea (400 mg/kg) on gestational day 9. Hydroxyurea treatment downregulated the expression of Trp63 and upregulated Trp73 in the absence of effects on the levels of Trp53 transcripts; Trp73 upregulation was P53-dependent. At the protein level, hydroxyurea treatment increased the levels and phosphorylation of P53 in the absence of effects on P63 and P73. Upregulation of the expression of genes that regulate cell cycle arrest and apoptosis, Cdkn1a, Rb1, Fas, Trp53inp1, and Pmaip1, was P53-dependent in hydroxyurea-treated embryos. The increase in cleaved caspase-3 and cleaved mammalian sterile-20-like-1 kinase levels induced by hydroxyurea was also P53-dependent; in contrast, the increase in phosphorylated H2AX, a marker of DNA double-strand breaks, in response to hydroxyurea treatment was only partially P53-dependent. Together, our data show that P53 is the principal P53 family member that is activated in the embryonic DNA damage response.
Collapse
Affiliation(s)
- Nazem El Husseini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
27
|
Degan P, Cappelli E, Longobardi M, Pulliero A, Cuccarolo P, Dufour C, Ravera S, Calzia D, Izzotti A. A Global MicroRNA Profile in Fanconi Anemia: A Pilot Study. Metab Syndr Relat Disord 2018; 17:53-59. [PMID: 30376422 DOI: 10.1089/met.2018.0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Fanconi anemia (FA) is a complex tumor-prone disease defined by an entangled genotype and phenotype. Despite enormous efforts in the last 20 years, a comprehensive and integrated view of the disease is still missing. The aim of this pilot study was to establish whether a global microRNA (miRNA) analysis approach could be helpful in defining aspects in FA phenotype, which might deserve future attention with the perspective to develop miRNA-based therapies. METHODS miRNA array were employed to characterize the global miRNA (miRNoma) profile of FA RNA samples with respect to normal samples. RESULTS We report and compare miRNA profile from two FA established cell lines and three FA patients. This analysis reveals that 36 and 64 miRNAs, respectively, are found differentially expressed (>2-fold variation and P < 0.05) in the samples from FA cell lines and FA patients. Overlap of these data results in 24 miRNAs as shared in the two sample populations. Available bioinformatics methods were used to predict target genes for the differentially expressed miRNAs and to perform pathway enrichment analysis. CONCLUSIONS Seven pathway results associated with the FA phenotype. It is interesting to note that some of these pathways were previously unrelated to FA phenotype. It might be important to focus on these pathways not previously emerged as dysfunctional in FA to better define the pathophysiological context of this disease. This is the first report of a global miRNA analysis in FA.
Collapse
Affiliation(s)
- Paolo Degan
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Alessandra Pulliero
- 3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| | - Paola Cuccarolo
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | - Carlo Dufour
- 2 Hematology, Istituto Giannina Gaslini, Genova, Italy
| | - Silvia Ravera
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Daniela Calzia
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Alberto Izzotti
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy.,3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| |
Collapse
|
28
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
29
|
Sharif AA, Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 2018; 48:104-114. [PMID: 28579171 DOI: 10.1016/j.semcancer.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
30
|
Ercolani C, Di Benedetto A, Terrenato I, Pizzuti L, Di Lauro L, Sergi D, Sperati F, Buglioni S, Ramieri MT, Mentuccia L, Gamucci T, Perracchio L, Pescarmona E, Mottolese M, Barba M, Vici P, De Maria R, Maugeri-Saccà M. Expression of phosphorylated Hippo pathway kinases (MST1/2 and LATS1/2) in HER2-positive and triple-negative breast cancer patients treated with neoadjuvant therapy. Cancer Biol Ther 2017; 18:339-346. [PMID: 28387539 DOI: 10.1080/15384047.2017.1312230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Hippo kinases MST1/2 and LATS1/2 inhibit the oncoproteins TAZ/YAP and regulate T cell function. Hippo kinases also cooperate with the ATR-Chk1 and ATM-Chk2 pathways, central orchestrators of the DNA damage response (DDR). We hypothesized that MST1/2 and LATS1/2 localization differently impacts the efficacy of neoadjuvant therapy (NAT) in breast cancer, being protective when expressed in the cytoplasm of tumor cells and in tumor-infiltrating lymphocytes, whereas representing molecular determinants of chemoresistance when present in the nucleus as a consequence of their cooperation with the DDR. Diagnostic biopsies from 57 HER2-positive and triple-negative breast cancer patients treated with NAT were immunostained for evaluating the expression of phosphorylated MST1/2 (pMST1/2) and LATS1/2 (pLATS1/2) in tumor-infiltrating lymphocytes (TILs) and in cancer cells. TAZ and Chk1 immunostaining was exploited for investigating subcellular compartment-dependent activity of Hippo kinases. Nuclear pMST1/2 (pMST1/2nuc) expression was significantly associated with nuclear expression of Chk1 (p = 0.046), whereas cytoplasmic pMST1/2 (pMST1/2cyt) expression was marginally associated with cytoplasmic TAZ staining (p = 0.053). Patients whose tumors expressed pMST1/2nuc were at increased risk of residual disease after NAT (pCR ypT0/is ypN0: OR 4.91, 95%CI: 1.57-15.30; pCR ypT0 ypN0: OR 3.59, 95%CI 1.14-11.34). Conversely, exclusive cytoplasmic localization of pMST1/2 (pMST1/2cyt)seemed to be a protective factor (pCR ypT0/is ypN0: OR 0.34, 95%CI: 0.11-1.00; pCR ypT0 ypN0: OR 0.31, 95%CI 0.10-0.93). The subcellular localization-dependent significance of pMST1/2 expression suggests their involvement in different molecular networks with opposite impact on NAT efficacy. Larger studies are warranted to confirm these novel findings.
Collapse
Affiliation(s)
- Cristiana Ercolani
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Anna Di Benedetto
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Irene Terrenato
- b Biostatistics-Scientific Direction , "Regina Elena" National Cancer Institute , Via Elio Chianes, Rome , Italy
| | - Laura Pizzuti
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy
| | - Luigi Di Lauro
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy
| | - Domenico Sergi
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy
| | - Francesca Sperati
- b Biostatistics-Scientific Direction , "Regina Elena" National Cancer Institute , Via Elio Chianes, Rome , Italy
| | - Simonetta Buglioni
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | | | - Lucia Mentuccia
- e Medical Oncology Unit, ASL Frosinone , Frosinone, Via Armando Fabi , Frosinone , Italy
| | - Teresa Gamucci
- e Medical Oncology Unit, ASL Frosinone , Frosinone, Via Armando Fabi , Frosinone , Italy
| | - Letizia Perracchio
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Edoardo Pescarmona
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Marcella Mottolese
- a Department of Pathology , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Maddalena Barba
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy.,f Scientific Direction , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| | - Patrizia Vici
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy
| | - Ruggero De Maria
- g Institute of General Pathology, Catholic University of the Sacred Heart, Largo Agostino Gemelli , Rome , Italy
| | - Marcello Maugeri-Saccà
- c Division of Medical Oncology 2 , "Regina Elena" National Cancer Institute , Via Elio Chianesi, Rome , Italy.,f Scientific Direction , "Regina Elena" National Cancer Institute, Via Elio Chianesi , Rome , Italy
| |
Collapse
|
31
|
Szatmári T, Kis D, Bogdándi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszályi LN, Kadhim M, Sáfrány G, Lumniczky K. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front Immunol 2017; 8:347. [PMID: 28396668 PMCID: PMC5366932 DOI: 10.3389/fimmu.2017.00347] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation-induced systemic effects. In conclusion, we proved the role of EVs in transmitting certain radiation effects, identified miRNAs carried by EVs potentially responsible for these effects, and showed that the pattern of changes was often different in the directly irradiated and EV-recipient bystander mice, suggesting different mechanisms.
Collapse
Affiliation(s)
- Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Dávid Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Noémi Bogdándi
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Anett Benedek
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Scott Bright
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Deborah Bowler
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Eszter Persa
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Andrea Balogh
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Lívia N Naszályi
- Research Group for Molecular Biophysics, Hungarian Academy of Sciences, Semmelweis University , Budapest , Hungary
| | - Munira Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| |
Collapse
|
32
|
Di Benedetto A, Mottolese M, Sperati F, Ercolani C, Di Lauro L, Pizzuti L, Vici P, Terrenato I, Shaaban AM, Humphries MP, Sundara-Rajan S, Barba M, Speirs V, De Maria R, Maugeri-Saccà M. Association between AXL, Hippo Transducers, and Survival Outcomes in Male Breast Cancer. J Cell Physiol 2017; 232:2246-2252. [PMID: 27987320 DOI: 10.1002/jcp.25745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Male breast cancer (MBC) is an uncommon malignancy. We have previously reported that the expression of the Hippo transducers TAZ/YAP and their target CTGF was associated with inferior survival in MBC patients. Preclinical evidence demonstrated that Axl is a transcriptional target of TAZ/YAP. Thus, we herein assessed AXL expression to further investigate the significance of active TAZ/YAP-driven transcription in MBC. For this study, 255 MBC samples represented in tissue microarrays were screened for AXL expression, and 116 patients were included. The association between categorical variables was verified by the Pearson's Chi-squared test of independence (2-tailed) or the Fisher Exact test. The relationship between continuous variables was tested with the Pearson's correlation coefficient. The Kaplan-Meier method was used for estimating survival curves, which were compared by log-rank test. Factors potentially impacting 10-year and overall survival were verified in Cox proportional regression models. AXL was positively associated with the TAZ/CTGF and YAP/CTGF phenotypes (P = 0.001 and P = 0.002, respectively). Patients with TAZ/CTGF/AXL- or YAP/CTGF/AXL-expressing tumors had inferior survival compared with non-triple-positive patients (log rank P = 0.042 and P = 0.048, respectively). The variables TAZ/CTGF/AXL and YAP/CTGF/AXL were adverse factors for 10-year survival in the multivariate Cox models (HR 2.31, 95%CI:1.02-5.22, P = 0.045, and HR 2.27, 95%CI:1.00-5.13, P = 0.050). Nearly comparable results were obtained from multivariate analyses of overall survival. The expression pattern of AXL corroborates the idea of the detrimental role of TAZ/YAP activation in MBC. Overall, Hippo-linked biomarkers deserve increased attention in this rare disease. J. Cell. Physiol. 232: 2246-2252, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Di Benedetto
- Departmentof Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Departmentof Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Francesca Sperati
- Biostatistics-Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Departmentof Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Luigi Di Lauro
- Division of Medical Oncology 2, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics-Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Abeer M Shaaban
- Department of Histopathology, Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Matthew P Humphries
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Sreekumar Sundara-Rajan
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Maddalena Barba
- Division of Medical Oncology 2, "Regina Elena" National Cancer Institute, Rome, Italy.,Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Largo Agostino Gemelli, Rome, Lazio, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, "Regina Elena" National Cancer Institute, Rome, Italy.,Scientific Direction, "Regina Elena" National Cancer Institute, Rome, Italy
| |
Collapse
|
33
|
Kemppainen K, Wentus N, Lassila T, Laiho A, Törnquist K. Sphingosylphosphorylcholine regulates the Hippo signaling pathway in a dual manner. Cell Signal 2016; 28:1894-1903. [DOI: 10.1016/j.cellsig.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
34
|
Alam M, Bouillez A, Tagde A, Ahmad R, Rajabi H, Maeda T, Hiraki M, Suzuki Y, Kufe D. MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway. Mol Cancer Res 2016; 14:1266-1276. [PMID: 27658423 DOI: 10.1158/1541-7786.mcr-16-0233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 01/12/2023]
Abstract
Apical-basal polarity and epithelial integrity are maintained in part by the Crumbs (CRB) complex. The C--terminal subunit of MUC1 (MUC1-C) is a transmembrane protein that is expressed at the apical border of normal epithelial cells and aberrantly at high levels over the entire surface of their transformed counterparts. However, it is not known whether MUC1-C contributes to this loss of polarity that is characteristic of carcinoma cells. Here it is demonstrated that MUC1-C downregulates expression of the Crumbs complex CRB3 protein in triple-negative breast cancer (TNBC) cells. MUC1-C associates with ZEB1 on the CRB3 promoter and represses CRB3 transcription. Notably, CRB3 activates the core kinase cassette of the Hippo pathway, which includes LATS1 and LATS2. In this context, targeting MUC1-C was associated with increased phosphorylation of LATS1, consistent with activation of the Hippo pathway, which is critical for regulating cell contact, tissue repair, proliferation, and apoptosis. Also shown is that MUC1-C--mediated suppression of CRB3 and the Hippo pathway is associated with dephosphorylation and activation of the oncogenic YAP protein. In turn, MUC1-C interacts with YAP, promotes formation of YAP/β-catenin complexes, and induces the WNT target gene MYC. These data support a previously unrecognized pathway in which targeting MUC1-C in TNBC cells (i) induces CRB3 expression, (ii) activates the CRB3-driven Hippo pathway, (iii) inactivates YAP, and thereby (iv) suppresses YAP/β-catenin-mediated induction of MYC expression. IMPLICATIONS These findings demonstrate a previously unrecognized role for the MUC1-C oncoprotein in the regulation of polarity and the Hippo pathway in breast cancer. Mol Cancer Res; 14(12); 1266-76. ©2016 AACR.
Collapse
Affiliation(s)
- Maroof Alam
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Audrey Bouillez
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ashujit Tagde
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takahiro Maeda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yozo Suzuki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Pefani DE, Pankova D, Abraham AG, Grawenda AM, Vlahov N, Scrace S, O' Neill E. TGF-β Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation. Mol Cell 2016; 63:156-66. [PMID: 27292796 DOI: 10.1016/j.molcel.2016.05.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 03/11/2016] [Accepted: 05/06/2016] [Indexed: 02/01/2023]
Abstract
Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function.
Collapse
Affiliation(s)
- Dafni-Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Daniela Pankova
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Aswin G Abraham
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Anna M Grawenda
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Nikola Vlahov
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Simon Scrace
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Eric O' Neill
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK.
| |
Collapse
|
36
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
37
|
Abstract
Initially identified inDrosophila melanogaster, the Hippo signaling pathway regulates organ size through modulation of cell proliferation, survival and differentiation. This pathway is evolutionarily conserved and canonical signaling involves a kinase cascade that phosphorylates and inhibits the downstream effector Yes-associated protein (YAP). Recent research has demonstrated a fundamental role of Hippo signaling in cardiac development, homeostasis, injury and regeneration, and remains the subject of intense investigation. However, 2 prominent members of this pathway, RASSF1A and Mst1, have been shown to influence heart function and stress responses through YAP-independent mechanisms. This review summarizes non-canonical targets of RASSF1A and Mst1 and discusses their role in the context of cardiac hypertrophy, autophagy, apoptosis and function. (Circ J 2016; 80: 1504-1510).
Collapse
Affiliation(s)
- Dominic P Del Re
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School
| |
Collapse
|