1
|
Villegas NK, Gaudreault YR, Keller A, Kearns P, Stapleton JA, Plesa C. Optimizing in vitro Transcribed CRISPR-Cas9 Single-Guide RNA Libraries for Improved Uniformity and Affordability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644170. [PMID: 40196484 PMCID: PMC11974757 DOI: 10.1101/2025.03.24.644170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We describe a scalable and cost-effective sgRNA synthesis workflow that reduces costs by over 70% through the use of large pools of microarray-derived oligos encoding unique sgRNA spacers. These subpool oligos are assembled into full-length dsDNA templates via Golden Gate Assembly before in vitro transcription with T7 RNA polymerase. RNA-seq analysis reveals severe biases in spacer representation, with some spacers being highly overrepresented while others are completely absent. Consistent with previous studies, we identify guanine-rich sequences within the first four nucleotides of the spacer, immediately downstream of the T7 promoter, as the primary driver of this bias. To address this issue, we introduced a guanine tetramer upstream of all spacers, which reduced bias by an average of 19% in sgRNA libraries containing 389 spacers. However, this modification also increased the presence of high-molecular-weight RNA species after transcription. We also tested two alternative bias-reduction strategies: compartmentalizing spacers within emulsions and optimizing DNA input and reaction volumes. Both methods independently reduced bias in 2,626-plex sgRNA libraries, though to a lesser extent than the guanine tetramer approach. These advancements enhance both the affordability and uniformity of sgRNA libraries, with broad implications for improving CRISPR-Cas9 screens and optimizing guide RNA design for other CRISPR and nuclease systems.
Collapse
Affiliation(s)
- Natanya K. Villegas
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon 1229 University of Oregon, 1318 Franklin Blvd., Room 273, Onyx Bridge, Eugene, OR 97403, USA
- Biology Department, University of Oregon 1210 University of Oregon, 77 Klamath Hall, Eugene, OR 97403, USA
| | - Yukiko R. Gaudreault
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Abigail Keller
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Phillip Kearns
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - James A. Stapleton
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Calin Plesa
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| |
Collapse
|
2
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
3
|
Li T, Li X, Kang P, Zhao J. Exploring CX3CR1 as a prognostic biomarker and immunotherapeutic target in sarcoma. Transl Oncol 2025; 53:102283. [PMID: 39837057 PMCID: PMC11787715 DOI: 10.1016/j.tranon.2025.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Sarcomas (SARC) are a diverse group of malignant tumors originating from mesenchymal tissues, characterized by poor prognosis under conventional therapies. CX3CR1, a chemokine receptor involved in immune cell migration, has emerged as a key player in SARC. Post-translational modifications (PTMs) such as phosphorylation and ubiquitination critically modulate CX3CR1, influencing cancer progression, immune responses, and treatment resistance. METHODS This study investigates CX3CR1 expression, its biological functions, and prognostic value in SARC. Using data from The Cancer Genome Atlas (TCGA), we analyzed CX3CR1 gene expression, methylation patterns, CRISPR screening results, and immune infiltration metrics. Functional experiments included knockout and overexpression models, CCK-8 assays and flow cytometry to assess apoptosis. RESULTS CX3CR1 expression was significantly elevated in SARC tissues and positively correlated with overall survival, disease-specific survival, and progression-free intervals. Methylation analysis identified CpG sites associated with CX3CR1 expression, differentiating tumor and adjacent tissues. CRISPR screening highlighted CX3CR1's essential role in tumor growth, while immune infiltration analysis underscored its impact on the tumor microenvironment. PTMs were found to stabilize CX3CR1, enhancing its activity in key signaling pathways. Overexpression of CX3CR1 amplified inflammatory and apoptotic responses, while knockdown showed protective effects in vitro. CONCLUSIONS CX3CR1 serves as a promising prognostic biomarker and therapeutic target in sarcoma. Targeting CX3CR1's PTMs could advance personalized treatments and improve outcomes for sarcoma patients.
Collapse
Affiliation(s)
- Tengfei Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xun Li
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Pengcheng Kang
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Jinmin Zhao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Liang Y, Yao X, Han J, Wang J, Zhang X, Zhao D, Jiang C, Geng L, Lv S, Liu Z, Mu Y. Establishment of a CRISPR-Based Lentiviral Activation Library for Transcription Factor Screening in Porcine Cells. Animals (Basel) 2024; 15:19. [PMID: 39794961 PMCID: PMC11718943 DOI: 10.3390/ani15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
Transcription factors play important roles in the growth and development of various tissues in pigs, such as muscle, fat, and bone. A transcription-factor-scale activation library based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system could facilitate the discovery and functional characterization of the transcription genes involved in a specific gene network. Here, we have designed and constructed a CRISPR activation (CRISPRa) sgRNA library, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs. The sgRNA library, including sgRNA with MS2 loops, is a single-vector system and is packaged with lentivirus for cell screening. Porcine PK15 cells expressing the porcine OCT4 promoter driving EGFP, dCas9 fused with VP64, and MS2-binding protein-p65-HSF1 were constructed, and then, the sgRNA activation library was used to screen the transcription factors regulating OCT4 expression. After the lentiviral transduction and deep sequencing of the CRISPR sgRNAs library, the highest ranking candidate genes were identified, including 31 transcription factors activating OCT4 gene expression and 5 transcription factors inhibiting OCT4 gene expression. The function and gene regulation of the candidate genes were further confirmed by the CRISPR activation system in PK15 cells. The CRISPR activation library targeting pig transcription factors provides a promising platform for the systematic discovery and study of genes that determine cell fate.
Collapse
Affiliation(s)
- Yingjuan Liang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiaoxia Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jingxin Han
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jinpeng Wang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples’ Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Changping District, Beijing 102206, China;
| | - Xiao Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Donglin Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Shihao Lv
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
5
|
Uijttewaal ECH, Lee J, Sell AC, Botay N, Vainorius G, Novatchkova M, Baar J, Yang J, Potzler T, van der Leij S, Lowden C, Sinner J, Elewaut A, Gavrilovic M, Obenauf A, Schramek D, Elling U. CRISPR-StAR enables high-resolution genetic screening in complex in vivo models. Nat Biotechnol 2024:10.1038/s41587-024-02512-9. [PMID: 39681701 DOI: 10.1038/s41587-024-02512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Pooled genetic screening with CRISPR-Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.
Collapse
Affiliation(s)
- Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joonsun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Annika Charlotte Sell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Naomi Botay
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Juliane Baar
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Jiaye Yang
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Potzler
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophie van der Leij
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Christopher Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Sinner
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anais Elewaut
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Milanka Gavrilovic
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria.
- Viverita Discovery, Vienna, Austria.
| |
Collapse
|
6
|
Kim K, Kim J, Kim M, Lee H, Song G. Therapeutic gene target prediction using novel deep hypergraph representation learning. Brief Bioinform 2024; 26:bbaf019. [PMID: 39841592 PMCID: PMC11752618 DOI: 10.1093/bib/bbaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Identifying therapeutic genes is crucial for developing treatments targeting genetic causes of diseases, but experimental trials are costly and time-consuming. Although many deep learning approaches aim to identify biomarker genes, predicting therapeutic target genes remains challenging due to the limited number of known targets. To address this, we propose HIT (Hypergraph Interaction Transformer), a deep hypergraph representation learning model that identifies a gene's therapeutic potential, biomarker status, or lack of association with diseases. HIT uses hypergraph structures of genes, ontologies, diseases, and phenotypes, employing attention-based learning to capture complex relationships. Experiments demonstrate HIT's state-of-the-art performance, explainability, and ability to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Kibeom Kim
- Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Juseong Kim
- Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Minwook Kim
- Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hyewon Lee
- Department of Cardiology, Medical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Busan 49241, South Korea
- College of Medicine, Pusan National University, 20 Geumo-ro, Yangsan 50612, Gyeongsangnam-do, South Korea
| | - Giltae Song
- Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
- Department of Electrical and Computer Engineering, School of Computer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
- Center for Artificial Intelligence Research, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| |
Collapse
|
7
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Thimiri Govinda Raj DB. Advances in CRISPR-Cas systems for blood cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:261-284. [PMID: 39266186 DOI: 10.1016/bs.pmbts.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas systems have revolutionised precision medicine by enabling personalised treatments tailored to an individual's genetic profile. Various CRISPR technologies have been developed to target specific disease-causing genes in blood cancers, and some have advanced to clinical trials. Although some studies have explored the in vivo applications of CRISPR-Cas systems, several challenges continue to impede their widespread use. Furthermore, CRISPR-Cas technology has shown promise in improving the response of immunotherapies to blood cancers. The emergence of CAR-T cell therapy has shown considerable success in the targeting and correcting of disease-causing genes in blood cancers. Despite the promising potential of CRISPR-Cas in the treatment of blood cancers, issues related to safety, ethics, and regulatory approval remain significant hurdles. This comprehensive review highlights the transformative potential of CRISPR-Cas technology to revolutionise blood cancer therapy.
Collapse
Affiliation(s)
- Bernice Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Phumuzile Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Vanelle Larissa Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak Balaji Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
8
|
S. V. S, Augustine D, Mushtaq S, Baeshen HA, Ashi H, Hassan RN, Alshahrani M, Patil S. Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Front Oncol 2024; 14:1383062. [PMID: 38915370 PMCID: PMC11194394 DOI: 10.3389/fonc.2024.1383062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
This review presents an in-depth analysis of the immense potential of CRISPR-Cas9 technology in revolutionizing oral cancer research. It underscores the inherent limitations of conventional treatments while emphasizing the pressing need for groundbreaking approaches. The unparalleled capability of CRISPR-Cas9 to precisely target and modify specific genes involved in cancer progression heralds a new era in therapeutic intervention. Employing genome-wide CRISPR screens, vulnerabilities in oral cancer cells can be identified, thereby unravelling promising targets for therapeutic interventions. In the realm of oral cancer, the disruptive power of CRISPR-Cas9 manifests through its capacity to perturb genes that are intricately associated with drug resistance, consequently augmenting the efficacy of chemotherapy. To address the challenges that arise, this review diligently examines pertinent issues such as off-target effects, efficient delivery mechanisms, and the ethical considerations surrounding germline editing. Through precise gene editing, facilitated by CRISPR/Cas9, it becomes possible to overcome drug resistance by rectifying mutations, thereby enhancing the efficacy of personalized treatment strategies. This review delves into the prospects of CRISPR-Cas9, illuminating its potential applications in the domains of medicine, agriculture, and biotechnology. It is paramount to emphasize the necessity of ongoing research endeavors and the imperative to develop targeted therapies tailored specifically for oral cancer. By embracing this comprehensive overview, we can pave the way for ground-breaking treatments that instill renewed hope for enhanced outcomes in individuals afflicted by oral cancer.
Collapse
Affiliation(s)
- Sowmya S. V.
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shazia Mushtaq
- College of Applied Medical Sciences, Dental Health Department, King Saud University, Riyadh, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulziz University, Jeddah, Saudi Arabia
| | - Heba Ashi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Nabil Hassan
- Biological Sciences Department (Genome), Faculty of Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Alshahrani
- Endodontic Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|
9
|
Ozyerli-Goknar E, Kala EY, Aksu AC, Bulut I, Cingöz A, Nizamuddin S, Biniossek M, Seker-Polat F, Morova T, Aztekin C, Kung SHY, Syed H, Tuncbag N, Gönen M, Philpott M, Cribbs AP, Acilan C, Lack NA, Onder TT, Timmers HTM, Bagci-Onder T. Epigenetic-focused CRISPR/Cas9 screen identifies (absent, small, or homeotic)2-like protein (ASH2L) as a regulator of glioblastoma cell survival. Cell Commun Signal 2023; 21:328. [PMID: 37974198 PMCID: PMC10652464 DOI: 10.1186/s12964-023-01335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumor with extremely poor prognosis, highlighting an urgent need for developing novel treatment options. Identifying epigenetic vulnerabilities of cancer cells can provide excellent therapeutic intervention points for various types of cancers. METHOD In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers. RESULTS Screens conducted in multiple cell lines revealed ASH2L, a histone lysine methyltransferase complex subunit, as a major regulator of glioblastoma cell viability. ASH2L depletion led to cell cycle arrest and apoptosis. RNA sequencing and greenCUT&RUN together identified a set of cell cycle regulatory genes, such as TRA2B, BARD1, KIF20B, ARID4A and SMARCC1 that were downregulated upon ASH2L depletion. Mass spectrometry analysis revealed the interaction partners of ASH2L in glioblastoma cell lines as SET1/MLL family members including SETD1A, SETD1B, MLL1 and MLL2. We further showed that glioblastoma cells had a differential dependency on expression of SET1/MLL family members for survival. The growth of ASH2L-depleted glioblastoma cells was markedly slower than controls in orthotopic in vivo models. TCGA analysis showed high ASH2L expression in glioblastoma compared to low grade gliomas and immunohistochemical analysis revealed significant ASH2L expression in glioblastoma tissues, attesting to its clinical relevance. Therefore, high throughput, robust and affordable screens with focused libraries, such as EpiDoKOL, holds great promise to enable rapid discovery of novel epigenetic regulators of cancer cell survival, such as ASH2L. CONCLUSION Together, we suggest that targeting ASH2L could serve as a new therapeutic opportunity for glioblastoma. Video Abstract.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ezgi Yagmur Kala
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ali Cenk Aksu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ipek Bulut
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ahmet Cingöz
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Sheikh Nizamuddin
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Fidan Seker-Polat
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Can Aztekin
- Koç University School of Medicine, Istanbul, Türkiye
| | - Sonia H Y Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Hamzah Syed
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Lab, KUTTAM, Istanbul, Türkiye
| | - Nurcan Tuncbag
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Türkiye
| | - Mehmet Gönen
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Department of Industrial Engineering, Koç University, Istanbul, Türkiye
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ceyda Acilan
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Nathan A Lack
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Tamer T Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
10
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
11
|
Usluer S, Hallast P, Crepaldi L, Zhou Y, Urgo K, Dincer C, Su J, Noell G, Alasoo K, El Garwany O, Gerety SS, Newman B, Dovey OM, Parts L. Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells. Stem Cell Reports 2023; 18:1061-1074. [PMID: 37028423 PMCID: PMC10202655 DOI: 10.1016/j.stemcr.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Perturbing expression is a powerful way to understand the role of individual genes, but can be challenging in important models. CRISPR-Cas screens in human induced pluripotent stem cells (iPSCs) are of limited efficiency due to DNA break-induced stress, while the less stressful silencing with an inactive Cas9 has been considered less effective so far. Here, we developed the dCas9-KRAB-MeCP2 fusion protein for screening in iPSCs from multiple donors. We found silencing in a 200 bp window around the transcription start site in polyclonal pools to be as effective as using wild-type Cas9 for identifying essential genes, but with much reduced cell numbers. Whole-genome screens to identify ARID1A-dependent dosage sensitivity revealed the PSMB2 gene, and enrichment of proteasome genes among the hits. This selective dependency was replicated with a proteasome inhibitor, indicating a targetable drug-gene interaction. Many more plausible targets in challenging cell models can be efficiently identified with our approach.
Collapse
Affiliation(s)
| | | | | | - Yan Zhou
- Wellcome Sanger Institute, Cambridge, UK
| | - Katie Urgo
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Jing Su
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Kaur Alasoo
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | | | | | - Ben Newman
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Leopold Parts
- Wellcome Sanger Institute, Cambridge, UK; Department of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
12
|
Online Databases of Genome Editing in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:19-33. [DOI: 10.1007/978-981-19-5642-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Yedier-Bayram O, Gokbayrak B, Kayabolen A, Aksu AC, Cavga AD, Cingöz A, Kala EY, Karabiyik G, Günsay R, Esin B, Morova T, Uyulur F, Syed H, Philpott M, Cribbs AP, Kung SHY, Lack NA, Onder TT, Bagci-Onder T. EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities. Cell Death Dis 2022; 13:710. [PMID: 35973998 PMCID: PMC9381743 DOI: 10.1038/s41419-022-05146-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes. We discovered novel epigenetic modifiers that regulate triple-negative breast cancer (TNBC) and prostate cancer cell fitness. We confirmed the growth-regulatory functions of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in TNBC cells. Overall, we show that EPIKOL, a focused sgRNA library targeting ~800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness under in vitro and in vivo conditions and enable the identification of novel anti-cancer targets. Due to its comprehensive epigenome-wide targets and relatively high number of sgRNAs per gene, EPIKOL will facilitate studies examining functional roles of epigenetic modifiers in a wide range of contexts, such as screens in primary cells, patient-derived xenografts as well as in vivo models.
Collapse
Affiliation(s)
- Ozlem Yedier-Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Bengul Gokbayrak
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ali Cenk Aksu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ayse Derya Cavga
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
| | - Ahmet Cingöz
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ezgi Yagmur Kala
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Goktug Karabiyik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Rauf Günsay
- Koç University School of Medicine, Istanbul, Türkiye
| | - Beril Esin
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fırat Uyulur
- Koç University Department of Computational Biology, Istanbul, Türkiye
| | - Hamzah Syed
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sonia H Y Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A Lack
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Tamer T Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
14
|
Vinceti A, Perron U, Trastulla L, Iorio F. Reduced gene templates for supervised analysis of scale-limited CRISPR-Cas9 fitness screens. Cell Rep 2022; 40:111145. [PMID: 35905712 DOI: 10.1016/j.celrep.2022.111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pooled genome-wide CRISPR-Cas9 screens are furthering our mechanistic understanding of human biology and have allowed us to identify new oncology therapeutic targets. Scale-limited CRISPR-Cas9 screens-typically employing guide RNA libraries targeting subsets of functionally related genes, biological pathways, or portions of the druggable genome-constitute an optimal setting for investigating narrow hypotheses and are easier to execute on complex models, such as organoids and in vivo models. Different supervised methods are used for computational analysis of genome-wide CRISPR-Cas9 screens; most are not well suited for scale-limited screens, as they require large sets of positive/negative control genes (gene templates) to be included among the screened ones. Here, we develop a computational framework identifying optimal subsets of known essential and nonessential genes (at different subsampling percentages) that can be used as templates for supervised analyses of scale-limited CRISPR-Cas9 screens, while having a reduced impact on the size of the employed library.
Collapse
Affiliation(s)
- Alessandro Vinceti
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1 - 20157 Milano, Italy
| | - Umberto Perron
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1 - 20157 Milano, Italy
| | - Lucia Trastulla
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1 - 20157 Milano, Italy
| | - Francesco Iorio
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1 - 20157 Milano, Italy; Cancer Dependency Map Analytics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
15
|
Arnan C, Ullrich S, Pulido-Quetglas C, Nurtdinov R, Esteban A, Blanco-Fernandez J, Aparicio-Prat E, Johnson R, Pérez-Lluch S, Guigó R. Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages. BMC Genomics 2022; 23:402. [PMID: 35619054 PMCID: PMC9137126 DOI: 10.1186/s12864-022-08612-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays.
Collapse
Affiliation(s)
- Carme Arnan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Sebastian Ullrich
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Bern University Hospital, University of Bern, Inselspital, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Alexandre Esteban
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Present address: Department of Research and Innovation, "la Caixa" Foundation, Barcelona, Catalonia, Spain
| | - Joan Blanco-Fernandez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Present address: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Estel Aparicio-Prat
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Medical Oncology, Bern University Hospital, University of Bern, Inselspital, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sílvia Pérez-Lluch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona (BIST), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022; 21:85. [PMID: 35337340 PMCID: PMC8953071 DOI: 10.1186/s12943-022-01552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems are the latest addition to the plethora of gene-editing tools. These systems have been repurposed from their natural counterparts by means of both guide RNA and Cas nuclease engineering. These RNA-guided systems offer greater programmability and multiplexing capacity than previous generation gene editing tools based on zinc finger nucleases and transcription activator like effector nucleases. CRISPR-Cas systems show great promise for individualization of cancer precision medicine. Main body The biology of Cas nucleases and dead Cas based systems relevant for in vivo gene therapy applications has been discussed. The CRISPR knockout, CRISPR activation and CRISPR interference based genetic screens which offer opportunity to assess functions of thousands of genes in massively parallel assays have been also highlighted. Single and combinatorial gene knockout screens lead to identification of drug targets and synthetic lethal genetic interactions across different cancer phenotypes. There are different viral and non-viral (nanoformulation based) modalities that can carry CRISPR-Cas components to different target organs in vivo. Conclusion The latest developments in the field in terms of optimization of performance of the CRISPR-Cas elements should fuel greater application of the latter in the realm of precision medicine. Lastly, how the already available knowledge can help in furtherance of use of CRISPR based tools in personalized medicine has been discussed.
Collapse
Affiliation(s)
- Sumit Das
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Shehnaz Bano
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Prachi Kapse
- School of Basic Medical Sciences, S P Pune University, Pune, 411007, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
17
|
Li Y, Yang C, Liu Z, Du S, Can S, Zhang H, Zhang L, Huang X, Xiao Z, Li X, Fang J, Qin W, Sun C, Wang C, Chen J, Chen H. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy. Mol Cancer 2022; 21:2. [PMID: 34980132 PMCID: PMC8722047 DOI: 10.1186/s12943-021-01462-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background In recent years, the application of functional genetic immuno-oncology screens has showcased the striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have yielded substantial data, few studies have attempted to systematically aggregate and analyze them. Methods In this study, a comprehensive data collection of tumor immunity-associated functional screens was performed. Large-scale genomic data sets were exploited to conduct integrative analyses. Results We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeutic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents with the potential to augment the efficacy of ICB were also determined. Conclusion Overall, our findings provide insights into immune oncology and open up novel opportunities for improving the efficacy of current immunotherapy agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01462-z.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Susan Can
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hailin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhenyu Xiao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huimin Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
18
|
Genolet O, Ravid Lustig L, Schulz EG. Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens. Methods Mol Biol 2022; 2520:1-24. [PMID: 35218528 DOI: 10.1007/7651_2021_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pooled CRISPR screens are emerging as a powerful tool to dissect regulatory networks, by assessing how a protein responds to genetic perturbations in a highly multiplexed manner. A large number of genes are perturbed in a cell population through genomic integration of one single-guide RNA (sgRNA) per cell. A subset of cells with the phenotype of interest can then be enriched through fluorescence-activated cell sorting (FACS). SgRNAs with altered abundance after phenotypic enrichment allow identification of genes that either promote or attenuate the investigated phenotype. Here we provide detailed guidelines on how to design and execute a pooled CRISPR screen to investigate molecular phenotypes. We describe how to generate a custom sgRNA library and how to perform a FACS-based screen using readouts such as intracellular antibody staining or Flow-FISH to assess phosphorylation levels or RNA abundance. Through the variety of available perturbation systems and readout options many different molecular and cellular phenotypes can now be tackled with pooled CRISPR screens.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Tsujino T, Komura K, Inamoto T, Azuma H. CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222312777. [PMID: 34884583 PMCID: PMC8658029 DOI: 10.3390/ijms222312777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is one of the common malignancies in male adults. Recent advances in omics technology, especially in next-generation sequencing, have increased the opportunity to identify genes that correlate with cancer diseases, including PCa. In addition, a genetic screen based on CRISPR/Cas9 technology has elucidated the mechanisms of cancer progression and drug resistance, which in turn has enabled the discovery of new targets as potential genes for new therapeutic targets. In the era of precision medicine, such knowledge is crucial for clinicians in their decision-making regarding patient treatment. In this review, we focus on how CRISPR screen for PCa performed to date has contributed to the identification of biologically critical and clinically relevant target genes.
Collapse
Affiliation(s)
- Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| |
Collapse
|
20
|
Exploring liver cancer biology through functional genetic screens. Nat Rev Gastroenterol Hepatol 2021; 18:690-704. [PMID: 34163045 DOI: 10.1038/s41575-021-00465-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
As the fourth leading cause of cancer-related death in the world, liver cancer poses a major threat to human health. Although a growing number of therapies have been approved for the treatment of hepatocellular carcinoma in the past few years, most of them only provide a limited survival benefit. Therefore, an urgent need exists to identify novel targetable vulnerabilities and powerful drug combinations for the treatment of liver cancer. The advent of functional genetic screening has contributed to the advancement of liver cancer biology, uncovering many novel genes involved in tumorigenesis and cancer progression in a high-throughput manner. In addition, this unbiased screening platform also provides an efficient tool for the exploration of the mechanisms involved in therapy resistance as well as identifying potential targets for therapy. In this Review, we describe how functional screens can help to deepen our understanding of liver cancer and guide the development of new therapeutic strategies.
Collapse
|
21
|
A CRISPR knockout screen reveals new regulators of canonical Wnt signaling. Oncogenesis 2021; 10:63. [PMID: 34552058 PMCID: PMC8458386 DOI: 10.1038/s41389-021-00354-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered. Here we applied a genome-scale CRISPR-Cas9 knockout (KO) screen based on Wnt signaling induced cell survival to reveal new inhibitors of the oncogenic, canonical Wnt pathway. We have identified several potential Wnt signaling inhibitors and have characterized the effects of the initiation factor DExH-box protein 29 (DHX29) on the Wnt cascade. We show that KO of DHX29 activates the Wnt pathway leading to upregulation of the Wnt target gene cyclin-D1, while overexpression of DHX29 inhibits the pathway. Together, our data indicate that DHX29 may function as a new canonical Wnt signaling tumor suppressor and demonstrates that this screening approach can be used as a strategy for rapid identification of novel Wnt signaling modulators.
Collapse
|
22
|
Schmieder V, Novak N, Dhiman H, Nguyen LN, Serafimova E, Klanert G, Baumann M, Kildegaard HF, Borth N. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells. ACTA ACUST UNITED AC 2021; 31:e00649. [PMID: 34277363 PMCID: PMC8261548 DOI: 10.1016/j.btre.2021.e00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
• Development of a small-scale CRISPR/AsCpf1 screen in CHO. • Usage of paired gRNAs enables full deletion of coding or noncoding genomic regions. • Growth perturbing paired gRNAs identified. • Key points for considerations in future screens identified.
Chinese hamster ovary (CHO) cells are the most widely used host for the expression of therapeutic proteins. Recently, significant progress has been made due to advances in genome sequence and annotation quality to unravel the black box CHO. Nevertheless, in many cases the link between genotype and phenotype in the context of suspension cultivated production cell lines is still not fully understood. While frameshift approaches targeting coding genes are frequently used, the non-coding regions of the genome have received less attention with respect to such functional annotation. Importantly, for non-coding regions frameshift knock-out strategies are not feasible. In this study, we developed a CRISPR-mediated screening approach that performs full deletions of genomic regions to enable the functional study of both the translated and untranslated genome. An in silico pipeline for the computational high-throughput design of paired guide RNAs (pgRNAs) directing CRISPR/AsCpf1 was established and used to generate a library tackling process-related genes and long non-coding RNAs. Next generation sequencing analysis of the plasmid library revealed a sufficient, but highly variable pgRNA composition. Recombinase-mediated cassette exchange was applied for pgRNA library integration rather than viral transduction to ensure single copy representation of pgRNAs per cell. After transient AsCpf1 expression, cells were cultivated over two sequential batches to identify pgRNAs which massively affected growth and survival. By comparing pgRNA abundance, depleted candidates were identified and individually validated to verify their effect.
Collapse
Key Words
- AsCpf1, Cpf1 from Acidaminococcus sp BV3L6
- CHO, Chinese hamster ovary
- CPM, counts per million reads mapped
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- CRISPR/AsCpf1
- Cas9, CRISPR-associated protein 9
- Chinese hamster ovary cells
- Cpf1, CRISPR-associated protein in Prevotella and Francisella
- DE, differentially expressed
- DOWN-TTS, downstream transcription termination site
- DR, differentially represented
- EV, empty vector
- EpoFc, Erythropoietin Fc fusion protein
- FACS, fluorescence activated cell sorting
- FC, fold change
- FDR, false discovery rate
- GS, glutamine synthetase
- Genetic screen
- NGS, next generation sequencing
- NTC, no template control
- PAM, protospacer adjacent motif
- PCA, principal component analysis
- Qp, specific productivity
- RMCE, recombinase-mediated cassette exchange
- TMM, trimmed mean of M values
- UP-TSS, upstream transcription start site
- VCD, viable cell density
- dCas9, deactivated Cas9
- gRNA, guide RNA
- genomic deletion
- lncRNA, long non-coding RNA
- ncGene, non-coding gene
- oligo, oligonucleotide
- paired gRNAs
- pgRNA, paired gRNA
- sgRNA, single guide RNA
- µ, growth rate
Collapse
Affiliation(s)
- Valerie Schmieder
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Neža Novak
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Heena Dhiman
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Ly Ngoc Nguyen
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Evgenija Serafimova
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Gerald Klanert
- acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Martina Baumann
- acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, Kgs. Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,acib GmbH, Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, Austria
| |
Collapse
|
23
|
Sabary O, Orlev Y, Shafir R, Anavy L, Yaakobi E, Yakhini Z. SOLQC: Synthetic Oligo Library Quality Control tool. Bioinformatics 2021; 37:720-722. [PMID: 32840559 DOI: 10.1093/bioinformatics/btaa740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent years have seen a growing number and an expanding scope of studies using synthetic oligo libraries for a range of applications in synthetic biology. As experiments are growing by numbers and complexity, analysis tools can facilitate quality control and support better assessment and inference. RESULTS We present a novel analysis tool, called SOLQC, which enables fast and comprehensive analysis of synthetic oligo libraries, based on NGS analysis performed by the user. SOLQC provides statistical information such as the distribution of variant representation, different error rates and their dependence on sequence or library properties. SOLQC produces graphical reports from the analysis, in a flexible format. We demonstrate SOLQC by analyzing literature libraries. We also discuss the potential benefits and relevance of the different components of the analysis. AVAILABILITY AND IMPLEMENTATION SOLQC is a free software for non-commercial use, available at https://app.gitbook.com/@yoav-orlev/s/solqc/. For commercial use please contact the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Omer Sabary
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Yoav Orlev
- School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| | - Roy Shafir
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel.,School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| | - Leon Anavy
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Eitan Yaakobi
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Zohar Yakhini
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel.,School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| |
Collapse
|
24
|
Wohlhieter CA, Uddin F, Quintanal-Villalonga À, Poirier JT, Sen T, Rudin CM. An optimized NGS sample preparation protocol for in vitro CRISPR screens. STAR Protoc 2021. [DOI: 10.1016/j.xpro.2021.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Gaillochet C, Develtere W, Jacobs TB. CRISPR screens in plants: approaches, guidelines, and future prospects. THE PLANT CELL 2021; 33:794-813. [PMID: 33823021 PMCID: PMC8226290 DOI: 10.1093/plcell/koab099] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 05/20/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated systems have revolutionized genome engineering by facilitating a wide range of targeted DNA perturbations. These systems have resulted in the development of powerful new screens to test gene functions at the genomic scale. While there is tremendous potential to map and interrogate gene regulatory networks at unprecedented speed and scale using CRISPR screens, their implementation in plants remains in its infancy. Here we discuss the general concepts, tools, and workflows for establishing CRISPR screens in plants and analyze the handful of recent reports describing the use of this strategy to generate mutant knockout collections or to diversify DNA sequences. In addition, we provide insight into how to design CRISPR knockout screens in plants given the current challenges and limitations and examine multiple design options. Finally, we discuss the unique multiplexing capabilities of CRISPR screens to investigate redundant gene functions in highly duplicated plant genomes. Combinatorial mutant screens have the potential to routinely generate higher-order mutant collections and facilitate the characterization of gene networks. By integrating this approach with the numerous genomic profiles that have been generated over the past two decades, the implementation of CRISPR screens offers new opportunities to analyze plant genomes at deeper resolution and will lead to great advances in functional and synthetic biology.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
26
|
Jones CE, Tan WS, Grey F, Hughes DJ. Discovering antiviral restriction factors and pathways using genetic screens. J Gen Virol 2021; 102:001603. [PMID: 34020727 PMCID: PMC8295917 DOI: 10.1099/jgv.0.001603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.
Collapse
Affiliation(s)
- Chloe E. Jones
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wenfang S. Tan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
27
|
Randhawa S. CRISPR-Cas9 in cancer therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:129-163. [PMID: 34127191 DOI: 10.1016/bs.pmbts.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a disease mainly caused by an accumulation of mutations in cells. Consequently, correcting those genetic aberrations could be a potential treatment strategy. The traditional route for cancer drug development is tedious, laborious, and time-consuming. Due to target identification, drug formulation, pre-clinical testing, clinical testing, and regulatory hurdles, on average, it takes 10-15 years for a cancer drug to go from target discovery to a marketable oncology drug. The advent of CRISPR-Cas9 technology has greatly expedited this procedure. CRISPR-Cas9 has single-handedly accelerated target identification and pre-clinical testing. Furthermore, CRISPR-Cas9 has also been used in ex vivo editing of T-cells to specifically target tumor cells. In this chapter, we will discuss the various ways in which CRISPR-Cas9 has been used for the betterment of the cancer drug development process. Additionally, we will discuss various ways in which it is currently being used as therapy and the drawbacks which restrict the use of this groundbreaking technology as direct therapy.
Collapse
|
28
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
29
|
Rother M, Dimmler C, Weege F, Mollenkopf HJ, Meyer TF, Naumann M. Discovery of Zika virus host dependency factors in trophoblasts using CRISPR/Cas9 screening. J Virol Methods 2021; 290:114085. [PMID: 33545196 DOI: 10.1016/j.jviromet.2021.114085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/10/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
Emerging mosquito-borne RNA viruses cause massive health complications worldwide. The Zika virus (ZIKV), in particular, has spread dramatically since 2007 and has provoked epidemics in the Americas and the South Pacific. The lack of antiviral therapy and vaccination has focused research on the investigation of ZIKV-host interactions, in order to understand underlying molecular infection mechanisms. We have established an approach for the analysis of ZIKV host dependency factors in a human trophoblast cell line and applied genome-wide CRISPR/Cas9 knockout mutagenesis. The presented method is especially of value for the identification of factors that are essential for placental infection with the potential to serve as targets for antiviral treatment.
Collapse
Affiliation(s)
- Marion Rother
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany; Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Christiane Dimmler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Friderike Weege
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | | | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
30
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
31
|
DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Res Cardiol 2021; 116:2. [PMID: 33449167 PMCID: PMC7810637 DOI: 10.1007/s00395-020-00839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems.
Collapse
|
32
|
Bowden AR, Morales-Juarez DA, Sczaniecka-Clift M, Agudo MM, Lukashchuk N, Thomas JC, Jackson SP. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. eLife 2020; 9:e55325. [PMID: 32441252 PMCID: PMC7244323 DOI: 10.7554/elife.55325] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas9 genome engineering has revolutionised high-throughput functional genomic screens. However, recent work has raised concerns regarding the performance of CRISPR-Cas9 screens using TP53 wild-type human cells due to a p53-mediated DNA damage response (DDR) limiting the efficiency of generating viable edited cells. To directly assess the impact of cellular p53 status on CRISPR-Cas9 screen performance, we carried out parallel CRISPR-Cas9 screens in wild-type and TP53 knockout human retinal pigment epithelial cells using a focused dual guide RNA library targeting 852 DDR-associated genes. Our work demonstrates that although functional p53 status negatively affects identification of significantly depleted genes, optimal screen design can nevertheless enable robust screen performance. Through analysis of our own and published screen data, we highlight key factors for successful screens in both wild-type and p53-deficient cells.
Collapse
Affiliation(s)
- Anne Ramsay Bowden
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - David A Morales-Juarez
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | | - Maria Martin Agudo
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Natalia Lukashchuk
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - John Christopher Thomas
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
33
|
Cellular thermal shift analysis for interrogation of CRISPR-assisted proteomic changes. Biotechniques 2020; 68:180-184. [DOI: 10.2144/btn-2019-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CRISPR–Cas9 has proven to be a versatile tool for the discovery of essential genetic elements involved in various disease states. CRISPR-assisted dense mutagenesis focused on therapeutically challenging protein complexes allows us to systematically perturb protein-coding sequences in situ and correlate them with functional readouts. Such perturbations can mimic targeting by therapeutics and serve as a foundation for the discovery of highly specific modulators. However, translation of such genomics data has been challenging due to the missing link for proteomics under the physiological state of the cell. We present a method based on cellular thermal shift assays to easily interrogate proteomic shifts generated by CRISPR-assisted dense mutagenesis, as well as a case focused on NuRD epigenetic complex.
Collapse
|
34
|
Bodapati S, Daley TP, Lin X, Zou J, Qi LS. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol 2020; 21:62. [PMID: 32151271 PMCID: PMC7063732 DOI: 10.1186/s13059-020-01972-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genome-wide pooled CRISPR-Cas-mediated knockout, activation, and repression screens are powerful tools for functional genomic investigations. Despite their increasing importance, there is currently little guidance on how to design and analyze CRISPR-pooled screens. Here, we provide a review of the commonly used algorithms in the computational analysis of pooled CRISPR screens. We develop a comprehensive simulation framework to benchmark and compare the performance of these algorithms using both synthetic and real datasets. Our findings inform parameter choices of CRISPR screens and provide guidance to researchers on the design and analysis of pooled CRISPR screens.
Collapse
Affiliation(s)
- Sunil Bodapati
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, 94305, USA
| | - Timothy P Daley
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, 94305, USA.,Department of Statistics, Stanford University, 450 Serra Mall, Stanford, 94305, USA.,Present Address: Affirm Inc., San Francisco, USA
| | - Xueqiu Lin
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, 94305, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, 94305, USA. .,Department of Chemical and Systems Biology, Stanford University, 450 Serra Mall, Stanford, 94305, USA. .,ChEM-H Institute, Stanford University, 450 Serra Mall, Stanford, 94305, USA.
| |
Collapse
|
35
|
So RWL, Chung SW, Lau HHC, Watts JJ, Gaudette E, Al-Azzawi ZAM, Bishay J, Lin LTW, Joung J, Wang X, Schmitt-Ulms G. Application of CRISPR genetic screens to investigate neurological diseases. Mol Neurodegener 2019; 14:41. [PMID: 31727120 PMCID: PMC6857349 DOI: 10.1186/s13024-019-0343-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome-scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. The emphasis here will be on design considerations and concepts underlying this methodology. We will highlight groundbreaking studies in the CRISPR-Cas9 functional genetics field and discuss strengths and limitations of this technology for neurological disease applications. Finally, we will provide practical guidance on navigating the many choices that need to be made when implementing a CRISPR-Cas9 functional genetic screen for the study of neurological diseases.
Collapse
Affiliation(s)
- Raphaella W. L. So
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Sai Wai Chung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Heather H. C. Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Jeremy J. Watts
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Erin Gaudette
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Zaid A. M. Al-Azzawi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Jossana Bishay
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Lilian Tsai-Wei Lin
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Julia Joung
- Departments of Biological Engineering and Brain and Cognitive Science, and McGovern Institute for Brain Research at MIT, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Xinzhu Wang
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| |
Collapse
|
36
|
Shelake RM, Pramanik D, Kim JY. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019; 7:E269. [PMID: 31426522 PMCID: PMC6723455 DOI: 10.3390/microorganisms7080269] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant-microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement. This review focuses on applying GE techniques in plants or associated microbiota for discovering the fundamentals of the PM interactions, disease resistance, PGP activity, and future implications in agriculture.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
37
|
Sayed S, Paszkowski-Rogacz M, Schmitt LT, Buchholz F. CRISPR/Cas9 as a tool to dissect cancer mutations. Methods 2019; 164-165:36-48. [PMID: 31078796 DOI: 10.1016/j.ymeth.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
The CRISPR/Cas9 system is transforming many biomedical disciplines, including cancer research. Through its flexible programmability and efficiency to induce DNA double strand breaks it has become straightforward to introduce cancer mutations into cells in vitro and/or in vivo. However, not all mutations contribute equally to tumorigenesis and distinguishing essential mutations for tumor growth and survival from biologically inert mutations is cumbersome. Here we present a method to screen for the functional relevance of mutations in high throughput in established cancer cell lines. We employ the CRISPR/Cas9 system to probe cancer vulnerabilities in a colorectal carcinoma cell line in an attempt to identify novel cancer driver mutations. We designed 100 high quality sgRNAs that are able to specifically cleave mutations present in the colorectal carcinoma cell line RKO. An all-in-one lentiviral library harboring these sgRNAs was then generated and used in a pooled screen to probe possible growth dependencies on these mutations. Genomic DNA at different time points were collected, the sgRNA cassettes were PCR amplified, purified and sgRNA counts were quantified by means of deep sequencing. The analysis revealed two sgRNAs targeting the same mutation (UTP14A: S99delS) to be depleted over time in RKO cells. Validation and characterization confirmed that the inactivation of this mutation impairs cell growth, nominating UTP14A: S99delS as a putative driver mutation in RKO cells. Overall, our approach demonstrates that the CRISPR/Cas9 system is a powerful tool to functionally dissect cancer mutations at large-scale.
Collapse
Affiliation(s)
- Shady Sayed
- Carl Gustav Carus Faculty of Medicine, UCC, Section Medical Systems Biology, TU Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Carl Gustav Carus Faculty of Medicine, UCC, Section Medical Systems Biology, TU Dresden, Germany
| | - Lukas Theo Schmitt
- Carl Gustav Carus Faculty of Medicine, UCC, Section Medical Systems Biology, TU Dresden, Germany
| | - Frank Buchholz
- Carl Gustav Carus Faculty of Medicine, UCC, Section Medical Systems Biology, TU Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
38
|
Canver MC, Bauer DE, Maeda T, Pinello L. DrugThatGene: integrative analysis to streamline the identification of druggable genes, pathways and protein complexes from CRISPR screens. Bioinformatics 2019; 35:1981-1984. [PMID: 30395160 PMCID: PMC6546128 DOI: 10.1093/bioinformatics/bty913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) nuclease system has allowed for high-throughput, large scale pooled screens for functional genomic studies. To aid in the translation of functional genomics to therapeutics, we developed DrugThatGene (DTG) as a web-based application that streamlines analysis of potential therapeutic targets identified from functional genetic screens. RESULTS Starting from a gene list as input, DTG offers automated identification of small molecules along with supporting information from human genetic and other relevant databases. Furthermore, DTG aids in the identification of common biological pathways and protein complexes in conjunction with associated small molecule inhibitors. Taken together, DTG aims to expedite the identification of small molecules from the abundance of functional genetic data generated from CRISPR screens. AVAILABILITY AND IMPLEMENTATION DTG is an open-source and free software available as a website at http://drugthatgene.pinellolab.org. Source code is available at: https://github.com/pinellolab/DrugThatGene, which can be downloaded in order to run DTG locally.
Collapse
Affiliation(s)
- Matthew C Canver
- Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Luca Pinello
- Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
39
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR-Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19:12. [PMID: 30636933 PMCID: PMC6325665 DOI: 10.1186/s12935-019-0726-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genome editing allows for the precise manipulation of DNA sequences in a cell making this technology essential for understanding gene function. CRISPR/Cas9 is a targeted genome-editing platform derived from bacterial adaptive immune system and has been repurposed into a genome-editing tool. The RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, making this technology easier, more efficient, scalable and an indispensable tool in biological research. This technology has helped genetically engineer animal models to understand disease mechanisms and elucidate molecular details that can be exploited for improved therapeutic outcomes. In this review, we describe the CRISPR-Cas9 gene-editing mechanism, CRISPR-screening methods, therapeutic targeting of CRISPR in animal models and in cancer immunotherapy. We also discuss the ongoing clinical trials using this tool, limitations of this tool that might impede the clinical applicability of CRISPR-Cas9 and future directions for developing effective CRISPR-Cas9 delivery systems that may improve cancer therapeutics.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | |
Collapse
|
41
|
Ford K, McDonald D, Mali P. Functional Genomics via CRISPR-Cas. J Mol Biol 2019; 431:48-65. [PMID: 29959923 PMCID: PMC6309720 DOI: 10.1016/j.jmb.2018.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/02/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas proteins have recently emerged as versatile tools to investigate and engineer the genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic function in high-throughput. Facile single-guide RNA library synthesis allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas perturbations with downstream single-cell analyses (flow cytometry, expression profiling, etc.), forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. In the following review, we highlight recent advances in CRISPR-Cas genomic screening while outlining protocols and pitfalls associated with screen implementation. Finally, we describe current challenges limiting the utility of CRISPR-Cas screening as well as future research needed to resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical applications. Looking ahead, patient centric functional screening in primary cells will likely play a greater role in disease management and therapeutic development.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
42
|
Xu X, Qi LS. A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. J Mol Biol 2019; 431:34-47. [DOI: 10.1016/j.jmb.2018.06.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
43
|
Krishnamani V, Stamnes MA, Piper RC. MALTA: a calculator for estimating the coverage with shRNA, CRISPR, and cDNA libraries. SOFTWAREX 2019; 9:154-160. [PMID: 31304228 PMCID: PMC6625779 DOI: 10.1016/j.softx.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genetic screens using shRNA, CRISPR, or cDNA libraries rely on adequately transferring the library into cells for further assay. These libraries can have many different elements and each element can be present at different copy numbers within a given pooled library. Calculating how many recipient cells are needed to adequately sample all or most of the different elements within a library is important, especially if one wants to compare the outcomes of different genetic screens that rely on accurately reproducing the starting population of library-containing cells. Here we present a simple application that starts with a list of library elements and their abundance and calculates the minimum sampling number to achieve full transfer of the library to an acceptor cell population to a user-specified level of probability. Users can adjust several input parameters including designating a subpopulation over which the calculation is made. Finally, the program performs a series of Monte Carlo simulations of a user-specified number of picks to produce an empirically determined distribution of each library element.
Collapse
Affiliation(s)
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, 52242
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
44
|
Abstract
The growing scale and declining cost of single-cell RNA-sequencing (RNA-seq) now permit a repetition of cell sampling that increases the power to detect rare cell states, reconstruct developmental trajectories, and measure phenotype in new terms such as cellular variance. The characterization of anatomy and developmental dynamics has not had an equivalent breakthrough since groundbreaking advances in live fluorescent microscopy. The new resolution obtained by single-cell RNA-seq is a boon to genetics because the novel description of phenotype offers the opportunity to refine gene function and dissect pleiotropy. In addition, the recent pairing of high-throughput genetic perturbation with single-cell RNA-seq has made practical a scale of genetic screening not previously possible.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
45
|
Jeong HH, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z. CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics 2018; 33:2963-2965. [PMID: 28541456 DOI: 10.1093/bioinformatics/btx335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 11/14/2022] Open
Abstract
Summary We present a user-friendly, cloud-based, data analysis pipeline for the deconvolution of pooled screening data. This tool, CRISPRcloud, serves a dual purpose of extracting, clustering and analyzing raw next generation sequencing files derived from pooled screening experiments while at the same time presenting them in a user-friendly way on a secure web-based platform. Moreover, CRISPRcloud serves as a useful web-based analysis pipeline for reanalysis of pooled CRISPR screening datasets. Taken together, the framework described in this study is expected to accelerate development of web-based bioinformatics tool for handling all studies which include next generation sequencing data. Availability and implementation http://crispr.nrihub.org. Contact zhandong.liu@bcm.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seon Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics.,Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics
| |
Collapse
|
46
|
Narimatsu Y, Joshi HJ, Yang Z, Gomes C, Chen YH, Lorenzetti FC, Furukawa S, Schjoldager KT, Hansen L, Clausen H, Bennett EP, Wandall HH. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology 2018; 28:295-305. [PMID: 29315387 DOI: 10.1093/glycob/cwx101] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Over 200 glycosyltransferases are involved in the orchestration of the biosynthesis of the human glycome, which is comprised of all glycan structures found on different glycoconjugates in cells. The glycome is vast, and despite advancements in analytic strategies it continues to be difficult to decipher biological roles of glycans with respect to specific glycan structures, type of glycoconjugate, particular glycoproteins, and distinct glycosites on proteins. In contrast to this, the number of glycosyltransferase genes involved in the biosynthesis of the human glycome is manageable, and the biosynthetic roles of most of these enzymes are defined or can be predicted with reasonable confidence. Thus, with the availability of the facile CRISPR/Cas9 gene editing tool it now seems easier to approach investigation of the functions of the glycome through genetic dissection of biosynthetic pathways, rather than by direct glycan analysis. However, obstacles still remain with design and validation of efficient gene targeting constructs, as well as with the interpretation of results from gene targeting and the translation of gene function to glycan structures. This is especially true for glycosylation steps covered by isoenzyme gene families. Here, we present a library of validated high-efficiency gRNA designs suitable for individual and combinatorial targeting of the human glycosyltransferase genome together with a global view of the predicted functions of human glycosyltransferases to facilitate and guide gene targeting strategies in studies of the human glycome.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay Aps, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay Aps, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catarina Gomes
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Instituto de Investigação e Inovação em Saúde,i3S; Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Flaminia C Lorenzetti
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
47
|
Heiderscheit EA, Eguchi A, Spurgat MC, Ansari AZ. Reprogramming cell fate with artificial transcription factors. FEBS Lett 2018; 592:888-900. [PMID: 29389011 DOI: 10.1002/1873-3468.12993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
Transcription factors (TFs) reprogram cell states by exerting control over gene regulatory networks and the epigenetic landscape of a cell. Artificial transcription factors (ATFs) are designer regulatory proteins comprised of modular units that can be customized to overcome challenges faced by natural TFs in establishing and maintaining desired cell states. Decades of research on DNA-binding proteins and synthetic molecules has provided a molecular toolkit for ATF design and the construction of genome-scale libraries of ATFs capable of phenotypic manipulation and reprogramming of cell states. Here, we compare the unique strengths and limitations of different ATF platforms, highlight the advantages of cooperative assembly, and present the potential of ATF libraries in revealing gene regulatory networks that govern cell fate choices.
Collapse
Affiliation(s)
- Evan A Heiderscheit
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Asuka Eguchi
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Mackenzie C Spurgat
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
48
|
Piccioni F, Younger ST, Root DE. Pooled Lentiviral-Delivery Genetic Screens. ACTA ACUST UNITED AC 2018; 121:32.1.1-32.1.21. [PMID: 29337374 DOI: 10.1002/cpmb.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pooled cell-based screens of mammalian genetic perturbations enable systematic large-scale, even genome-scale, evaluation of gene function. Pooled screens introduce genetic perturbations into a cell population through viral transduction such that each cell integrates into its DNA a single or small number of library perturbations with barcodes identifying the perturbations. One then selects and physically isolates the subset of cells that exhibit the phenotype of interest. Sequencing the barcodes in the hit cells reveals which genes favored or inhibited the hit phenotype. Various genetic perturbations are possible, including CRISPR gene knockout, ectopic gene expression, and RNA interference. Regardless of the type of library being screened or the type of cell model being tested, such screens involve many common steps and procedures. This unit describes detailed experimental protocols for the key steps, and also highlights some of the key factors to achieving a well-powered, reproducible screen result. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Scott T Younger
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
49
|
Chenette EJ, Martin SJ. 50 years of The FEBS Journal: looking back as well as ahead. FEBS J 2018; 284:4162-4171. [PMID: 29251437 DOI: 10.1111/febs.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this last issue of 2017, we're celebrating the 50th anniversary of The FEBS Journal. This Editorial considers how the journal has grown and changed from volume 1, issue 1 and outlines our exciting plans for the future.
Collapse
Affiliation(s)
| | - Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
50
|
New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resist Updat 2018; 36:30-46. [PMID: 29499836 PMCID: PMC5844649 DOI: 10.1016/j.drup.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 12/26/2022]
Abstract
Despite substantial advances in the treatment of various cancers, many patients still receive anti-cancer therapies that hardly eradicate tumor cells but inflict considerable side effects. To provide the best treatment regimen for an individual patient, a major goal in molecular oncology is to identify predictive markers for a personalized therapeutic strategy. Regarding novel targeted anti-cancer therapies, there are usually good markers available. Unfortunately, however, targeted therapies alone often result in rather short remissions and little cytotoxic effect on the cancer cells. Therefore, classical chemotherapy with frequent long remissions, cures, and a clear effect on cancer cell eradication remains a corner stone in current anti-cancer therapy. Reliable biomarkers which predict the response of tumors to classical chemotherapy are rare, in contrast to the situation for targeted therapy. For the bulk of cytotoxic therapeutic agents, including DNA-damaging drugs, drugs targeting microtubules or antimetabolites, there are still no reliable biomarkers used in the clinic to predict tumor response. To make progress in this direction, meticulous studies of classical chemotherapeutic drug action and resistance mechanisms are required. For this purpose, novel functional screening technologies have emerged as successful technologies to study chemotherapeutic drug response in a variety of models. They allow a systematic analysis of genetic contributions to a drug-responsive or −sensitive phenotype and facilitate a better understanding of the mode of action of these drugs. These functional genomic approaches are not only useful for the development of novel targeted anti-cancer drugs but may also guide the use of classical chemotherapeutic drugs by deciphering novel mechanisms influencing a tumor’s drug response. Moreover, due to the advances of 3D organoid cultures from patient tumors and in vivo screens in mice, these genetic screens can be applied using conditions that are more representative of the clinical setting. Patient-derived 3D organoid lines furthermore allow the characterization of the “essentialome”, the specific set of genes required for survival of these cells, of an individual tumor, which could be monitored over the course of treatment and help understanding how drug resistance evolves in clinical tumors. Thus, we expect that these functional screens will enable the discovery of novel cancer-specific vulnerabilities, and through clinical validation, move the field of predictive biomarkers forward. This review focuses on novel advanced techniques to decipher the interplay between genetic alterations and drug response.
Collapse
|