1
|
Stevenson ZC, Laufer E, Estevez AO, Robinson K, Phillips PC. Precise Lineage Tracking Using Molecular Barcodes Demonstrates Fitness Trade-offs for Ivermectin Resistance in Nematodes. G3 (BETHESDA, MD.) 2025:jkaf081. [PMID: 40208109 DOI: 10.1093/g3journal/jkaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
A fundamental tenet of evolutionary genetics is that the direction and strength of selection on individual loci varies with the environment. Barcoded evolutionary lineage tracking is a powerful approach for high-throughput measurement of selection within experimental evolution that to date has largely been restricted to studies within microbial systems, largely because the random integration of barcodes within animals is limited by physical and molecular protection of the germline. Here, we use the recently developed TARDIS barcoding system in Caenorhabditis elegans (Stevenson et al., 2023) to implement the first randomly inserted genomic-barcode fitness experiment within an animal model and use this system to precisely measure the influence of the concentration of the anthelmintic compound ivermectin on the strength of selection on an ivermectin resistance cassette. The combination of the trio of knockouts in neuronally expressed GluCl channels, avr-14, avr-15, and glc-1, has been previously demonstrated to provide resistance to ivermectin at high concentrations. Varying the concentration of ivermectin in liquid culture allows the strength of selection on these genes to be precisely controlled within populations of millions of individuals, with the frequency of each barcode then being measured at multiple time points via sequencing at deep coverage and used to estimate the fitness of the individual lineages in the population. The mutations display a high cost to resistance at low concentrations, rapidly losing out to wildtype genotypes, but the balance tips in their favor when the ivermectin concentration exceeds 2nM. This trade-off in resistance is likely generated by a hindered rate of development in resistant individuals. Our results demonstrate that C. elegans can be used to generate high precision estimates of fitness using a high-throughput barcoding approach to yield novel insights into evolutionarily and economically important traits.
Collapse
Affiliation(s)
- Zachary C Stevenson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Eleanor Laufer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Annette O Estevez
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Kristin Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|
2
|
Chaturvedi R, Sharma A. Key Facets for the Elimination of Vector-Borne Diseases Filariasis, Leishmaniasis, and Malaria. ACS Infect Dis 2025; 11:287-304. [PMID: 39784679 DOI: 10.1021/acsinfecdis.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention. By identifying these commonalities and fostering cooperation among disease control programs, we can strengthen our efforts to combat them and hence enhance the health of at-risk populations. This review summarizes the key points associated with the epidemiology, transmission dynamics, and therapeutic regimes for each disease, presenting a holistic overview of these three eliminable diseases.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Amit Sharma
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India
| |
Collapse
|
3
|
Stevenson ZC, Laufer E, Estevez AO, Robinson K, Phillips PC. Precise Lineage Tracking Using Molecular Barcodes Demonstrates Fitness Trade-offs for Ivermectin Resistance in Nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622685. [PMID: 39574588 PMCID: PMC11581038 DOI: 10.1101/2024.11.08.622685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A fundamental tenet of evolutionary genetics is that the direction and strength of selection on individual loci varies with the environment. Barcoded evolutionary lineage tracking is a powerful approach for high-throughput measurement of selection within experimental evolution that to date has largely been restricted to studies within microbial systems, largely because the random integration of barcodes within animals is limited by physical and molecular protection of the germline. Here, we use the recently developed TARDIS barcoding system in Caenorhabditis elegans (Stevenson et al., 2023) to implement the first randomly inserted genomic-barcode experimental evolution animal model and use this system to precisely measure the influence of the concentration of the anthelmintic compound ivermectin on the strength of selection on an ivermectin resistance cassette. The combination of the trio of knockouts in neuronally expressed GluCl channels, avr-14, avr-15, and glc-1, has been previously demonstrated to provide resistance to ivermectin at high concentrations. Varying the concentration of ivermectin in liquid culture allows the strength of selection on these genes to be precisely controlled within populations of millions of individuals, yielding the largest animal experimental evolution study to date. The frequency of each barcode was determined at multiple time points via sequencing at deep coverage and then used to estimate the fitness of the individual lineages in the population. The mutations display a high cost to resistance at low concentrations, rapidly losing out to wildtype genotypes, but the balance tips in their favor when the ivermectin concentration exceeds 2nM. This trade-off in resistance is likely generated by a hindered rate of development in resistant individuals. Our results demonstrate that C. elegans can be used to generate high precision estimates of fitness using a high-throughput barcoding approach to yield novel insights into evolutionarily and economically important traits.
Collapse
Affiliation(s)
| | - Eleanor Laufer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Annette O. Estevez
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Kristin Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|
4
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024; 40:1016-1028. [PMID: 39426911 PMCID: PMC11560492 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
6
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Song N, Chu Y, Tang J, Yang D. Lipid-, Inorganic-, Polymer-, and DNA-Based Nanocarriers for Delivery of the CRISPR/Cas9 system. Chembiochem 2023; 24:e202300180. [PMID: 37183575 DOI: 10.1002/cbic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) system has been widely explored for the precise manipulation of target DNA and has enabled efficient genomic editing in cells. Recently, CRISPR/Cas9 has shown promising potential in biomedical applications, including disease treatment, transcriptional regulation and genome-wide screening. Despite these exciting achievements, efficient and controlled delivery of the CRISPR/Cas9 system has remained a critical obstacle to its further application. Herein, we elaborate on the three delivery forms of the CRISPR/Cas9 system, and discuss the composition, advantages and limitations of these forms. Then we provide a comprehensive overview of the carriers of the system, and focus on the nonviral nanocarriers in chemical methods that facilitate efficient and controlled delivery of the CRISPR/Cas9 system. Finally, we discuss the challenges and prospects of the delivery methods of the CRISPR/Cas9 system in depth, and propose strategies to address the intracellular and extracellular barriers to delivery in clinical applications.
Collapse
Affiliation(s)
- Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yiwen Chu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
9
|
Sinha A, Li Z, Poole CB, Morgan RD, Ettwiller L, Lima NF, Ferreira MU, Fombad FF, Wanji S, Carlow CKS. Genomes of the human filarial parasites Mansonella perstans and Mansonella ozzardi. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The filarial parasites Mansonella ozzardi and Mansonella perstans, causative agents of mansonellosis, infect hundreds of millions of people worldwide, yet remain among the most understudied of the human filarial pathogens. M. ozzardi is highly prevalent in Latin American countries and Caribbean Islands, while M. perstans is predominantly found in sub-Saharan Africa as well as in a few areas in South America. In addition to the differences in their geographical distribution, the two parasites are transmitted by different insect vectors, as well as exhibit differences in their responses to commonly used anthelminthic drugs. The lack of genome information has hindered investigations into the biology and evolution of Mansonella parasites and understanding the molecular basis of the clinical differences between species. In the current study, high quality genomes of two independent clinical isolates of M. perstans from Cameroon and two M. ozzardi isolates one from Brazil and one from Venezuela are reported. The genomes are approximately 76 Mb in size, encode about 10,000 genes each, and are largely complete based on BUSCO scores of about 90%, similar to other completed filarial genomes. These sequences represent the first genomes from Mansonella parasites and enabled a comparative genomic analysis of the similarities and differences between Mansonella and other filarial parasites. Horizontal DNA transfers (HDT) from mitochondria (nuMTs) as well as transfers from genomes of endosymbiotic Wolbachia bacteria (nuWTs) to the host nuclear genome were identified and analyzed. Sequence comparisons and phylogenetic analysis of known targets of anti-filarial drugs diethylcarbamazine (DEC), ivermectin and mebendazole revealed that all known target genes were present in both species, except for the DEC target encoded by gon-2 gene, which is fragmented in genome assemblies from both M. ozzardi isolates. These new reference genome sequences will provide a valuable resource for further studies on biology, symbiosis, evolution and drug discovery.
Collapse
|
10
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Kenney ET, Mann VH, Ittiprasert W, Rosa BA, Mitreva M, Bracken BK, Loukas A, Brindley PJ, Sotillo J. Differential Excretory/Secretory Proteome of the Adult Female and Male Stages of the Human Blood Fluke, Schistosoma mansoni. FRONTIERS IN PARASITOLOGY 2022; 1:950744. [PMID: 39816473 PMCID: PMC11732030 DOI: 10.3389/fpara.2022.950744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2025]
Abstract
Intricate molecular communication between schistosome flatworms and their mammalian host, as well as between paired male and female schistosomes has shaped the secreted proteome of these flatworms. Whereas the schistosome egg is responsible for the disease manifestations of chronic schistosomiasis, the long lived, adult female and male stages also release different mediators including glycans, lipids, proteins and small molecules, known as excretory/secretory products (ESPs), that facilitate their survival. Given their importance, deeper analysis focused on analyzing the ESPs from adult schistosomes would likely be informative, beyond current understanding of the complement of ESP proteins. Here, taking advantage of highly accurate and sensitive mass spectrometers, the excretory/secretory proteome from cultured Schistosoma mansoni male or female adult worms was identified, quantified, compared and contrasted using a label-free proteomic approach. Approximately 1,000 proteins were identified, from which almost 800 could be quantified. Considering the proteins uniquely identified and proteins with a significantly regulated expression pattern in male or female flukes, a total of 370 and 140 proteins were uniquely or more abundantly secreted by males and females, respectively. Using functional analysis networks showing the gene ontology terms and KEGG pathways with the highest significance, we observed that male schistosomes secrete proteins related to carbohydrate metabolism and cytoskeletal organization more abundantly than females, while female worms secreted more hydrolases and proteins involved in cellular homeostasis than males. This analysis doubles the number of reported excreted/secreted proteins from S. mansoni, contributing to deeper understanding of the host-parasite interaction and parasitism. Furthermore, these findings expand potential vaccine and diagnostic candidates for this neglected tropical disease pathogen, and thereby also provide leads for novel intervention to control this disease and its transmission.
Collapse
Affiliation(s)
- Eric T. Kenney
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Bruce A. Rosa
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | | | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Joshi I, Kohli D, Pal A, Chaudhury A, Sirohi A, Jain PK. Host delivered-RNAi of effector genes for imparting resistance against root-knot and cyst nematodes in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2022; 118:101802. [DOI: 10.1016/j.pmpp.2022.101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
13
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
14
|
Ittiprasert W, Chatupheeraphat C, Mann VH, Li W, Miller A, Ogunbayo T, Tran K, Alrefaei YN, Mentink-Kane M, Brindley PJ. RNA-Guided AsCas12a- and SpCas9-Catalyzed Knockout and Homology Directed Repair of the Omega-1 Locus of the Human Blood Fluke, Schistosoma mansoni. Int J Mol Sci 2022; 23:631. [PMID: 35054816 PMCID: PMC8775552 DOI: 10.3390/ijms23020631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022] Open
Abstract
The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Chawalit Chatupheeraphat
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Wenhui Li
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Taiwo Ogunbayo
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Kenny Tran
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Yousef N. Alrefaei
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Department of Medical Laboratory Technology, College of Health Sciences, PAEET, Adailiya, Kuwait City 73101, Kuwait
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| |
Collapse
|
15
|
Yadav N, Narang J, Chhillar AK, Rana JS. CRISPR: A new paradigm of theranostics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102350. [PMID: 33359413 PMCID: PMC7831819 DOI: 10.1016/j.nano.2020.102350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Infectious and hereditary diseases are the primary cause of human mortality globally. Applications of conventional techniques require significant improvement in sensitivity and specificity in therapeutics. However, clustered regularly interspaced short palindromic repeats (CRISPRs) is an innovative genome editing technology which has provided a significant therapeutic tool exhibiting high sensitivity, fast and precise investigation of distinct pathogens in an epidemic. CRISPR technology has also facilitated the understanding of the biology and therapeutic mechanism of cancer and several other hereditary diseases. Researchers have used the CRISPR technology as a theranostic approach for a wide range of diseases causing pathogens including distinct bacteria, viruses, fungi and parasites and genetic mutations as well. In this review article, besides various therapeutic applications of infectious and hereditary diseases we have also explained the structure and mechanism of CRISPR tools and role of CRISPR integrated biosensing technology in provoking diagnostic applications.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana.
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| | | | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat.
| |
Collapse
|
16
|
Evans KS, Wit J, Stevens L, Hahnel SR, Rodriguez B, Park G, Zamanian M, Brady SC, Chao E, Introcaso K, Tanny RE, Andersen EC. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses. PLoS Pathog 2021; 17:e1009297. [PMID: 33720993 PMCID: PMC7993787 DOI: 10.1371/journal.ppat.1009297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Steffen R. Hahnel
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Briana Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Grace Park
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Mostafa Zamanian
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Shannon C. Brady
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Ellen Chao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Katherine Introcaso
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wit J, Dilks CM, Andersen EC. Complementary Approaches with Free-living and Parasitic Nematodes to Understanding Anthelmintic Resistance. Trends Parasitol 2020; 37:240-250. [PMID: 33317926 DOI: 10.1016/j.pt.2020.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Anthelmintic drugs are the major line of defense against parasitic nematode infections, but the arsenal is limited and resistance threatens sustained efficacy of the available drugs. Discoveries of the modes of action of these drugs and mechanisms of resistance have predominantly come from studies of a related nonparasitic nematode species, Caenorhabditis elegans, and the parasitic nematode Haemonchus contortus. Here, we discuss how our understanding of anthelmintic resistance and modes of action came from the interplay of results from each of these species. We argue that this 'cycle of discovery', where results from one species inform the design of experiments in the other, can use the complementary strengths of both to understand anthelmintic modes of action and mechanisms of resistance.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clayton M Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
18
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
19
|
CRISPR-mediated Transfection of Brugia malayi. PLoS Negl Trop Dis 2020; 14:e0008627. [PMID: 32866158 PMCID: PMC7485969 DOI: 10.1371/journal.pntd.0008627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 07/21/2020] [Indexed: 01/25/2023] Open
Abstract
The application of reverse genetics in the human filarial parasites has lagged due to the difficult biology of these organisms. Recently, we developed a co-culture system that permitted the infective larval stage of Brugia malayi to be transfected and efficiently develop to fecund adults. This was exploited to develop a piggyBac transposon-based toolkit that can be used to produce parasites with transgene sequences stably integrated into the parasite genome. However, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which allows precise editing of a genome. Here we report adapting the piggyBac mediated transfection system of B. malayi for CRISPR mediated knock-in insertion into the parasite genome. Suitable CRISPR insertion sites were identified in intergenic regions of the B. malayi genome. A dual reporter piggybac vector was modified, replacing the piggyBac inverted terminal repeat regions with sequences flanking the insertion site. B. malayi molting L3 were transfected with a synthetic guide RNA, the modified plasmid and the CAS9 nuclease. The transfected parasites were implanted into gerbils and allowed to develop into adults. Progeny microfilariae were recovered and screened for expression of a secreted luciferase reporter encoded in the plasmid. Approximately 3% of the microfilariae were found to secrete luciferase; all contained the transgenic sequences inserted at the expected location in the parasite genome. Using an adaptor mediated PCR assay, transgenic microfilariae were examined for the presence of off target insertions; no off-target insertions were found. These data demonstrate that CRISPR can be used to modify the genome of B. malayi, opening the way to precisely edit the genome of this important human filarial parasite. Human filarial parasites are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness) and are some of the most important causes of morbidity worldwide. A large obstacle to research on these organisms has been the inability to employ reverse genetic methods and to develop integrated transgenic parasite lines. Recently, we developed a piggyBac transposon-based method that employed a co-culture system that permitted the infective larval stage of B. malayi to be transfected by lipofection in culture, resulting in the production of developmentally competent transgenic parasites. However, the piggyBac system cannot be used to precisely edit particular sequences in the genome. Thus, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which permits precise targeting (and editing) of particular sequences in the genome. Here, we report building upon the methods developed for piggyBac mediated transfection of B. malayi to develop a CRISPR mediated method for precise transgenesis in this parasite.
Collapse
|
20
|
McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020; 18:799-805. [PMID: 32366131 PMCID: PMC7212535 DOI: 10.1080/14787210.2020.1761333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clustered regularly interspaced short palindromic repeats (CRISPR) are segments of nucleic acid that play a role in prokaryotic defense and form the basis of a genome editing technology that allows permanent alteration of genetic material. This methodology, known as CRISPR-Cas9, is poised to revolutionize molecular biology, but no literature yet exists on how these advances will affect hospitalists. AREAS COVERED These specialists in inpatient medicine care for a wide variety of hospitalized patients, including those with infectious disease, cancer, cardiovascular disease, autoimmune disease, hematologic disease, and a variety of other conditions that may soon be impacted by advances in gene-modifying technology provided by CRISPR-Cas9. A Literature search was performed using PubMed [1 December 2019-17 April 2020]. EXPERT OPINION This paper reviews the remarkable diagnostic and therapeutic potential of the CRISPR-Cas9 platform and concludes with a look at ethical issues and technical hurdles pertaining to the implementation of permanent gene modification in the practice of Hospital Medicine.
Collapse
Affiliation(s)
- Matthew W. McCarthy
- Weill Cornell Medical College, Division of General Internal Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
21
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
22
|
Liu C, De SL, Miley K, Unnasch TR. In vivo imaging of transgenic Brugia malayi. PLoS Negl Trop Dis 2020; 14:e0008182. [PMID: 32243453 PMCID: PMC7122700 DOI: 10.1371/journal.pntd.0008182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Studies of the human filarial parasite have been hampered by the fact that they are obligate parasites with long life cycles. In other pathogenic infections, in vivo imaging systems (IVIS) have proven extremely useful in studying pathogenesis, tissue tropism and in vivo drug efficacy. IVIS requires the use of transgenic parasites expressing a florescent reporter. Developing a method to produce transgenic filarial parasites expressing a florescent reporter would permit IVIS to be applied to the study of tissue tropism and provide a non-invasive way to screen for in vivo drug efficacy against these parasites. Methodology/Principal findings We report the development of a dual luciferase reporter construct in a piggyBac backbone that may be used to stably transfect Brugia malayi, a causative agent of human filariasis. Parasites transfected with this construct were visible in IVIS images obtained from infected gerbils. The signal in these infected animals increased dramatically when the transgenic parasites matured to the adult stage and began to produce transgenic progeny microfilaria. We demonstrate that the IVIS system can be used to develop an effective method for cryopreservation of transgenic parasites, to non-invasively monitor the effect of treatment with anti-filarial drugs, and to rapidly identify transgenic F1 microfilariae. Conclusions To our knowledge, this represents the first application of IVIS to the study of a human filarial parasite. This method should prove useful in studies of tissue tropism and as an efficient in vivo assay for candidate anti-filarial drugs. The human filarial parasites are responsible for two major debilitating diseases; lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness). Both have been identified as diseases that can be eliminated as a public health problem. However, the current elimination programs rely upon prolonged distribution of a limited number of drugs, a process which is logistically difficult to accomplish and may encourage the development of resistance. Thus, more effective drugs are needed. In other infectious diseases, in vivo imaging systems (IVIS) have proven to be very effective tools to study the pathogenesis of infection and to develop rapid and non-invasive assays for new drugs. Here we report the adaptation of IVIS to a human filarial parasitic infection and demonstrate in principal that it may be used to non-invasively monitor the efficacy of anti-filarial treatment in vivo. This system should prove useful as an in vivo screen for new anti-filarial compounds, as well as studies of the basic biology of these parasites.
Collapse
Affiliation(s)
- Canhui Liu
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Sai Lata De
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Kristi Miley
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
26
|
Minet C, Thévenon S, Chantal I, Solano P, Berthier D. Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:326-331. [PMID: 29486366 DOI: 10.1016/j.meegid.2018.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
The CRISPR-Cas system, which was originally identified as a prokaryotic defense mechanism, is increasingly being used for the functional study of genes. This technology, which is simple, inexpensive and efficient, has aroused a lot of enthusiasm in the scientific community since its discovery, and every month many publications emanate from very different communities reporting on the use of CRISPR-Cas9. Currently, there are no vaccines to control neglected tropical diseases (NTDs) caused by Trypanosomatidae, particularly Human African Trypanosomiasis (HAT) and Animal African Trypanosomoses (AAT), and treatments are cumbersome and sometimes not effective enough. CRISPR-Cas9 has the potential to functionally analyze new target molecules that could be used for therapeutic and vaccine purposes. In this review, after briefly describing CRIPSR-Cas9 history and how it works, different applications on diseases, especially on parasitic diseases, are reviewed. We then focus the review on the use of CRISPR-Cas9 editing on Trypanosomatidae parasites, the causative agents of NTDs, which are still a terrible burden for human populations in tropical regions, and their vectors.
Collapse
MESH Headings
- Animals
- Anopheles/genetics
- Anopheles/parasitology
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Cattle
- Clustered Regularly Interspaced Short Palindromic Repeats
- Disease Models, Animal
- Drosophila/genetics
- Drosophila/parasitology
- Gene Editing/methods
- Genome, Protozoan
- Leishmania/genetics
- Leishmania/pathogenicity
- Leishmaniasis/parasitology
- Leishmaniasis/prevention & control
- Leishmaniasis/transmission
- Neglected Diseases/parasitology
- Neglected Diseases/prevention & control
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Trypanosoma/genetics
- Trypanosoma/pathogenicity
- Trypanosomiasis, African/parasitology
- Trypanosomiasis, African/prevention & control
- Trypanosomiasis, African/transmission
- Trypanosomiasis, Bovine/parasitology
- Trypanosomiasis, Bovine/prevention & control
- Trypanosomiasis, Bovine/transmission
Collapse
Affiliation(s)
- Cécile Minet
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Sophie Thévenon
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Isabelle Chantal
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Philippe Solano
- IRD, UMR INTERTRYP IRD, CIRAD, University of Montpellier, F-34398 Montpellier, France.
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| |
Collapse
|
27
|
Liu C, Mhashilkar AS, Chabanon J, Xu S, Lustigman S, Adams JH, Unnasch TR. Development of a toolkit for piggyBac-mediated integrative transfection of the human filarial parasite Brugia malayi. PLoS Negl Trop Dis 2018; 12:e0006509. [PMID: 29782496 PMCID: PMC5983866 DOI: 10.1371/journal.pntd.0006509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The human filarial parasites cause diseases that are among the most important causes of morbidity in the developing world. The elimination programs targeting these infections rely on a limited number of drugs, making the identification of new chemotherapeutic agents a high priority. The study of these parasites has lagged due to the lack of reverse genetic methods. METHODOLOGY/PRINCIPAL FINDINGS We report a novel co-culture method that results in developmentally competent infective larvae of one of the human filarial parasites (Brugia malayi) and describe a method to efficiently transfect the larval stages of this parasite. We describe the production of constructs that result in integrative transfection using the piggyBac transposon system, and a selectable marker that can be used to identify transgenic parasites. We describe the production and use of dual reporter plasmids containing both a secreted luciferase selectable marker and fluorescent protein reporters that will be useful to study temporal and spatial patterns of gene expression. CONCLUSIONS/SIGNIFICANCE The methods and constructs reported here will permit the efficient production of integrated transgenic filarial parasite lines, allowing reverse genetic technologies to be applied to all life cycle stages of the parasite.
Collapse
Affiliation(s)
- Canhui Liu
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Amruta S. Mhashilkar
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Johan Chabanon
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Shulin Xu
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, NY, United States of America
| | - John H. Adams
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zamanian M, Cook DE, Zdraljevic S, Brady SC, Lee D, Lee J, Andersen EC. Discovery of genomic intervals that underlie nematode responses to benzimidazoles. PLoS Negl Trop Dis 2018; 12:e0006368. [PMID: 29601575 PMCID: PMC5895046 DOI: 10.1371/journal.pntd.0006368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/11/2018] [Accepted: 03/05/2018] [Indexed: 01/21/2023] Open
Abstract
Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole target resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control. The treatment of roundworm (nematode) infections in both humans and animals relies on a small number of anti-parasitic drugs. Resistance to these drugs has appeared in veterinary parasite populations and is a growing concern in human medicine. A better understanding of the genetic basis for parasite drug resistance can be used to help maintain the effectiveness of anti-parasitic drugs and to slow or to prevent the spread of drug resistance in parasite populations. This goal is hampered by the experimental intractability of nematode parasites. Here, we use non-parasitic model nematodes to systematically explore responses to the critical benzimidazole class of anti-parasitic compounds. Using a quantitative genetics approach, we discovered unique genomic intervals that control drug effects, and we identified differences in the effects of these intervals across compounds and doses. We were able to narrow a major-effect genomic region associated with albendazole resistance and to establish that candidate genes discovered in our genetic mappings are largely conserved in important human and animal parasites. This work provides new leads for understanding parasite drug resistance and contributes a powerful template that can be extended to other anti-parasitic drug classes.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.,Interdisciplinary Biological Science Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.,Interdisciplinary Biological Science Program, Northwestern University, Evanston, Illinois, United States of America
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.,Interdisciplinary Biological Science Program, Northwestern University, Evanston, Illinois, United States of America
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.,Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America.,Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
29
|
Leonetti P, Accotto GP, Hanafy MS, Pantaleo V. Viruses and Phytoparasitic Nematodes of Cicer arietinum L.: Biotechnological Approaches in Interaction Studies and for Sustainable Control. FRONTIERS IN PLANT SCIENCE 2018; 9:319. [PMID: 29599788 PMCID: PMC5862823 DOI: 10.3389/fpls.2018.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 05/31/2023]
Abstract
Cicer arietinum L. (chickpea) is the world's fourth most widely grown pulse. Chickpea seeds are a primary source of dietary protein for humans, and chickpea cultivation contributes to biological nitrogen fixation in the soil, given its symbiotic relationship with rhizobia. Therefore, chickpea cultivation plays a pivotal role in innovative sustainable models of agro-ecosystems inserted in crop rotation in arid and semi-arid environments for soil improvement and the reduction of chemical inputs. Indeed, the arid and semi-arid tropical zones of Africa and Asia have been primary areas of cultivation and diversification. Yet, nowadays, chickpea is gaining prominence in Canada, Australia, and South America where it constitutes a main ingredient in vegetarian and vegan diets. Viruses and plant parasitic nematodes (PPNs) have been considered to be of minor and local impact in primary areas of cultivation. However, the introduction of chickpea in new environments exposes the crop to these biotic stresses, compromising its yields. The adoption of high-throughput genomic technologies, including genome and transcriptome sequencing projects by the chickpea research community, has provided major insights into genome evolution as well as genomic architecture and domestication. This review summarizes the major viruses and PPNs that affect chickpea cultivation worldwide. We also present an overview of the current state of chickpea genomics. Accordingly, we explore the opportunities that genomics, post-genomics and novel editing biotechnologies are offering in order to understand chickpea diseases and stress tolerance and to design innovative control strategies.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute for Sustainable Plant Protection, Research Unit of Bari, National Research Council, Bari, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, Research Unit of Turin, National Research Council, Turin, Italy
| | - Moemen S. Hanafy
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection, Research Unit of Bari, National Research Council, Bari, Italy
| |
Collapse
|
30
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
31
|
Chenette EJ, Martin SJ. 50 years of The FEBS Journal: looking back as well as ahead. FEBS J 2018; 284:4162-4171. [PMID: 29251437 DOI: 10.1111/febs.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this last issue of 2017, we're celebrating the 50th anniversary of The FEBS Journal. This Editorial considers how the journal has grown and changed from volume 1, issue 1 and outlines our exciting plans for the future.
Collapse
Affiliation(s)
| | - Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
32
|
Janssen BD, Chen YP, Molgora BM, Wang SE, Simoes-Barbosa A, Johnson PJ. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci Rep 2018; 8:270. [PMID: 29321601 PMCID: PMC5762654 DOI: 10.1038/s41598-017-18442-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The sexually-transmitted parasite Trichomonas vaginalis infects ~1/4 billion people worldwide. Despite its prevalence and myriad adverse outcomes of infection, the mechanisms underlying T. vaginalis pathogenesis are poorly understood. Genetic manipulation of this single-celled eukaryote has been hindered by challenges presented by its complex, repetitive genome and inefficient methods for introducing DNA (i.e. transfection) into the parasite. Here, we have developed methods to increase transfection efficiency using nucleofection, with the goal of efficiently introducing multiple DNA elements into a single T. vaginalis cell. We then created DNA constructs required to express several components essential to drive CRISPR/Cas9-mediated DNA modification: guide RNA (gRNA), the Cas9 endonuclease, short oligonucleotides and large, linearized DNA templates. Using these technical advances, we have established CRISPR/Cas9-mediated repair of mutations in genes contained on circular DNA plasmids harbored by the parasite. We also engineered CRISPR/Cas9 directed homologous recombination to delete (i.e. knock out) two non-essential genes within the T. vaginalis genome. This first report of the use of the CRISPR/Cas9 system in T. vaginalis greatly expands the ability to manipulate the genome of this pathogen and sets the stage for testing of the role of specific genes in many biological processes.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Brenda M Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Shuqi E Wang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA.
- Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
33
|
Famakinde DO. Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Trop Med Infect Dis 2018; 3:E4. [PMID: 30274403 PMCID: PMC6136629 DOI: 10.3390/tropicalmed3010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug administration (MDA) and morbidity management, achieving the global LF elimination slated for the year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often encumbered by reintroduction and resurgence emanating from human residual or new infections being widely disseminated by the vectors even when chemotherapy proves effective, but especially in the absence of effective vaccines. This created impetus for strengthening the current defective mosquito control approach, and profound research in vector⁻pathogen systems and vector biology has been pushing the boundaries of ideas towards developing refined vector-harnessed control strategies. Eventual implementation of these emerging concepts will offer a synergistic approach that will not only accelerate LF elimination, but also augurs well for its future eradication. This brief review focuses on advances in mosquito⁻filaria research and considers the emerging prospects for future eradication of LF.
Collapse
Affiliation(s)
- Damilare O Famakinde
- Department of Medical Microbiology and Parasitology, College of Medicine of the University of Lagos, Idi-Araba, Lagos 100254, Nigeria.
| |
Collapse
|
34
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
35
|
Abstract
The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.
Collapse
|
36
|
Tool-Driven Advances in Neuropeptide Research from a Nematode Parasite Perspective. Trends Parasitol 2017; 33:986-1002. [DOI: 10.1016/j.pt.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023]
|
37
|
Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017; 15:1001-1013. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Collapse
Affiliation(s)
- Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
38
|
Quintana JF, Babayan SA, Buck AH. Small RNAs and extracellular vesicles in filarial nematodes: From nematode development to diagnostics. Parasite Immunol 2017; 39. [PMID: 27748953 DOI: 10.1111/pim.12395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
Parasitic nematodes have evolved sophisticated mechanisms to communicate with their hosts in order to survive and successfully establish an infection. The transfer of RNA within extracellular vesicles (EVs) has recently been described as a mechanism that could contribute to this communication in filarial nematodes. It has been shown that these EVs are loaded with several types of RNAs, including microRNAs, leading to the hypothesis that parasites could actively use these molecules to manipulate host gene expression and to the exciting prospect that these pathways could result in new diagnostic and therapeutic strategies. Here, we review the literature on the diverse RNAi pathways that operate in nematodes and more specifically our current knowledge of extracellular RNA (exRNA) and EVs derived from filarial nematodes in vitro and within their hosts. We further detail some of the issues and questions related to the capacity of RNA-mediated communication to function in parasite-host interactions and the ability of exRNA to enable us to distinguish and detect different nematode parasites in their hosts.
Collapse
Affiliation(s)
- J F Quintana
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S A Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - A H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Abstract
This Special Issue on CRISPR comprises a series of nine reviews that cover the development and application of this technology to an array of biological systems. We hope that you will find these pieces to be of interest; we certainly found them to be practically helpful and thoughtfully written, and we are grateful to their authors for taking the time to write for The FEBS Journal.
Collapse
Affiliation(s)
- John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
40
|
Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2017; 8:834. [PMID: 28580003 PMCID: PMC5437379 DOI: 10.3389/fpls.2017.00834] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 05/20/2023]
Abstract
Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.
Collapse
Affiliation(s)
- Sagar Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
- Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anamika Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | | | - Om P. Gupta
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology (ICAR)New Delhi, India
| | - Anil Sirohi
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| |
Collapse
|