1
|
Liu S, Liu Y, Fan W, Zhou H, Cai H. Yeast models of mutations in NFU1 gene for biochemical characterization and drug screening. Biochem Biophys Res Commun 2025; 763:151760. [PMID: 40233434 DOI: 10.1016/j.bbrc.2025.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
The mutations in the NFU1 gene result in the autosomal recessive hereditary disorder known as Multiple Mitochondrial Dysfunction Syndrome 1 (MMDS1). Pathogenic mutations cause the intra-mitochondrial target proteins of NFU1 (known as Nfu1 in yeast) to become dysfunctional. There have been reports of 20 NFU1 mutations to date, however the precise pathogenic mechanism of MMDS1 is yet unknown. In this study, we simulated the missense mutations identified in patients and constructed four yeast models to confirm the pathogenic relevance of these mutations in humans. We analyzed the mitochondrial phenotype of yeast cells, including their respiration and oxidative stress. Mutated yeast strains exhibited a higher frequency of small colony formation, suggesting enhanced mutability of mtDNA. There are differences in the effects of mutations at different sites on cells, and their severity may be related to the CxxC motif. Finally, we established an efficient, yeast-based method to select drugs capable of alleviating oxidative stress caused by NFU1 mutations. These yeast models are useful for studying the pathogenic association of novel mutations or rare polymorphisms in NFU1, which will provide theoretical guidance for treating MMDS1 disease or other mitochondrial diseases.
Collapse
Affiliation(s)
- Siru Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Yi Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Wanyan Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China
| | - Hua Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, China
| | - Heng Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China.
| |
Collapse
|
2
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
3
|
Kropp PA, Rogers P, Kelly SE, McWhirter R, Goff WD, Levitan IM, Miller DM, Golden A. Patient-specific variants of NFU1/NFU-1 disrupt cholinergic signaling in a model of multiple mitochondrial dysfunctions syndrome 1. Dis Model Mech 2023; 16:286662. [PMID: 36645076 PMCID: PMC9922734 DOI: 10.1242/dmm.049594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Neuromuscular dysfunction is a common feature of mitochondrial diseases and frequently presents as ataxia, spasticity and/or dystonia, all of which can severely impact individuals with mitochondrial diseases. Dystonia is one of the most common symptoms of multiple mitochondrial dysfunctions syndrome 1 (MMDS1), a disease associated with mutations in the causative gene (NFU1) that impair iron-sulfur cluster biogenesis. We have generated Caenorhabditis elegans strains that recreated patient-specific point variants in the C. elegans ortholog (nfu-1) that result in allele-specific dysfunction. Each of these mutants, Gly147Arg and Gly166Cys, have altered acetylcholine signaling at neuromuscular junctions, but opposite effects on activity and motility. We found that the Gly147Arg variant was hypersensitive to acetylcholine and that knockdown of acetylcholine release rescued nearly all neuromuscular phenotypes of this variant. In contrast, we found that the Gly166Cys variant caused predominantly postsynaptic acetylcholine hypersensitivity due to an unclear mechanism. These results are important for understanding the neuromuscular conditions of MMDS1 patients and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Peter A Kropp
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Biology Department, Kenyon College, Gambier, OH 43022, USA
| | - Philippa Rogers
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney E Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Willow D Goff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Biology Department, Colgate University, Hamilton, NY 13346, USA
| | - Ian M Levitan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA.,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Yang L, Chen YX, Li YY, Liu XJ, Jiang YM, Mai J. Systematic analysis of expression profiles and prognostic significance for MMDS-related iron-sulfur proteins in renal clear cell carcinoma. Sci Rep 2022; 12:19637. [PMID: 36385109 PMCID: PMC9669015 DOI: 10.1038/s41598-022-22479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial metabolism disorders play an important role in the occurrence and development of tumors, and iron-sulfur protein is an important molecule for maintaining the normal function of mitochondria. However, the relationship between the expression, prognostic value, and immune infiltration of MMDS-related iron-sulfur protein genes in kidney renal clear cell carcinoma (KIRC) remains unclear. Based on online databases bioinformatics analysis was performed to evaluate the expression differences, survival impacts, immune infiltration, and prognostic significance of multiple mitochondrial dysfunction syndrome (MMDS)-related iron-sulfur protein genes in KIRC patients. For example, the protein-protein interaction (PPI) network was constructed using STRING and GEPIA database; Survival impacts were constructed by TCGA database; Immune infiltration was analyzed using TIMER database. There were significant differences in the mRNA expression levels of ISCA1, ISCA2, C1ORF69 and NFU1 in KIRC among different tumor grades and individual cancer stages. Furthermore, KIRC with high transcription levels of ISCA1, ISCA2, C1ORF69 and NFU1 (p < 0.01) was significantly associated with long overall survival (OS) and disease-free survival (DFS). In addition, overexpression of four genes, NFU1, ISCA1, ISCA2, and C1ORF69 in KIRC indicated a better prognosis. Further studies showed that immune cells had a significantly positive correlation with iron-sulfur protein family genes, including CD8+ T cells, CD4+ T cells and B cells. More importantly, the results of immunohistochemistry showed that the expression of NFU1, ISCA1, ISCA2 and C1ORF69 in normal tissues was higher than that in renal clear cell carcinoma tissues. In this study, we systematically analyzed the expression and prognostic value of iron-sulfur protein family genes in KIRC. More importantly, NFU1, ISCA1, ISCA2, and C1ORF69 are expected to become potential therapeutic targets for KIRC, as well as potential prognostic markers for improving the survival rate and prognostic accuracy of KIRC.
Collapse
Affiliation(s)
- Ling Yang
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| | - Yu-Xin Chen
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| | - Ying-Ying Li
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| | - Xiao-Juan Liu
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| | - Yong-Mei Jiang
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| | - Jia Mai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan China
| |
Collapse
|
5
|
Warui D, Sil D, Lee KH, Neti SS, Esakova OA, Knox HL, Krebs C, Booker SJ. In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS BIO & MED CHEM AU 2022; 2:456-468. [PMID: 36281303 PMCID: PMC9585516 DOI: 10.1021/acsbiomedchemau.2c00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an n-octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment. All radical SAM enzymes have at least one [4Fe-4S] cluster that is used in the reductive cleavage of SAM to generate the 5'-dA·; however, LSs contain an additional auxiliary [4Fe-4S] cluster from which sulfur atoms are extracted during turnover, leading to degradation of the cluster. Therefore, these enzymes catalyze only 1 turnover in the absence of a system that restores the auxiliary cluster. In Escherichia coli, the auxiliary cluster of LS can be regenerated by the iron-sulfur (Fe-S) cluster carrier protein NfuA as fast as catalysis takes place, and less efficiently by IscU. NFU1 is the human ortholog of E. coli NfuA and has been shown to interact directly with human LS (i.e., LIAS) in yeast two-hybrid analyses. Herein, we show that NFU1 and LIAS form a tight complex in vitro and that NFU1 can efficiently restore the auxiliary cluster of LIAS during turnover. We also show that BOLA3, previously identified as being critical in the biosynthesis of the lipoyl cofactor in humans and Saccharomyces cerevisiae, has no direct effect on Fe-S cluster transfer from NFU1 or GLRX5 to LIAS. Further, we show that ISCA1 and ISCA2 can enhance LIAS turnover, but only slightly.
Collapse
Affiliation(s)
- Douglas
M. Warui
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Debangsu Sil
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Kyung-Hoon Lee
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Syam Sundar Neti
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Olga A. Esakova
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Camponeschi F, Ciofi-Baffoni S, Calderone V, Banci L. Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins. Biomolecules 2022; 12:biom12071009. [PMID: 35883565 PMCID: PMC9313013 DOI: 10.3390/biom12071009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron–sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety of functions, such as electron transport, enzymatic catalysis, DNA maintenance, and gene expression regulation. The synthesis and distribution of Fe-S clusters are strictly controlled cellular processes that involve several mitochondrial proteins that specifically interact each other to form a complex machinery (Iron Sulfur Cluster assembly machinery, ISC machinery hereafter). This machinery ensures the correct assembly of both [2Fe-2S] and [4Fe-4S] clusters and their insertion in the mitochondrial target proteins. The present review provides a structural and molecular overview of the rare diseases associated with the genes encoding for the accessory proteins of the ISC machinery (i.e., GLRX5, ISCA1, ISCA2, IBA57, FDX2, BOLA3, IND1 and NFU1) involved in the assembly and insertion of [4Fe-4S] clusters in mitochondrial proteins. The disease-related missense mutations were mapped on the 3D structures of these accessory proteins or of their protein complexes, and the possible impact that these mutations have on their specific activity/function in the frame of the mitochondrial [4Fe-4S] protein biogenesis is described.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Allele-specific mitochondrial stress induced by Multiple Mitochondrial Dysfunctions Syndrome 1 pathogenic mutations modeled in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009771. [PMID: 34449775 PMCID: PMC8428684 DOI: 10.1371/journal.pgen.1009771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/09/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1) is a rare, autosomal recessive disorder caused by mutations in the NFU1 gene. NFU1 is responsible for delivery of iron-sulfur clusters (ISCs) to recipient proteins which require these metallic cofactors for their function. Pathogenic variants of NFU1 lead to dysfunction of its target proteins within mitochondria. To date, 20 NFU1 variants have been reported and the unique contributions of each variant to MMDS1 pathogenesis is unknown. Given that over half of MMDS1 individuals are compound heterozygous for different NFU1 variants, it is valuable to investigate individual variants in an isogenic background. In order to understand the shared and unique phenotypes of NFU1 variants, we used CRISPR/Cas9 gene editing to recreate exact patient variants of NFU1 in the orthologous gene, nfu-1 (formerly lpd-8), in C. elegans. Five mutant C. elegans alleles focused on the presumptive iron-sulfur cluster interaction domain were generated and analyzed for mitochondrial phenotypes including respiratory dysfunction and oxidative stress. Phenotypes were variable between the mutant nfu-1 alleles and generally presented as an allelic series indicating that not all variants have lost complete function. Furthermore, reactive iron within mitochondria was evident in some, but not all, nfu-1 mutants indicating that iron dyshomeostasis may contribute to disease pathogenesis in some MMDS1 individuals. Functional mitochondria are essential to life in eukaryotes, but they can be perterbured by inherent dysfunction of important proteins or stressors. Mitochondrial dysfunction is the root cause of dozens of diseases many of which involve complex phenotypes. One such disease is Multiple Mitochondrial Dysfunctions Syndrome 1, a pediatric-fatal disease that is poorly understood in part due to the lack of clarity about how mutations in the causative gene, NFU1, affect protein function and phenotype development and severity. Here we employ the power of CRISPR/Cas9 gene editing in the small nematode Caenorhabditis elegans to recreate five patient-specific mutations known to cause Multiple Mitochondrial Dysfunctions Syndrome 1. We are able to analyze each of these mutations individually, evaluate how mitochondrial dysfunction differs between them, and whether or not the phenotypes can be improved. We find that there are meaningful differences between each mutation which not only effects the types of stress that develop, but also the ability to rescue deleterious phenotypes. This work thus provides insight into disease pathogenesis and establishes a foundation for potential future therapeutic intervention.
Collapse
|
8
|
Sen S, Thompson Z, Wachnowsky C, Cleary S, Harvey SR, Cowan JA. Biochemical impact of a disease-causing Ile67Asn substitution on BOLA3 protein. Metallomics 2021; 13:mfab010. [PMID: 33693876 PMCID: PMC8046136 DOI: 10.1093/mtomcs/mfab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022]
Abstract
Iron-sulfur (Fe-S) cluster biosynthesis involves the action of a variety of functionally distinct proteins, most of which are evolutionarily conserved. Mutations in these Fe-S scaffold and trafficking proteins can cause diseases such as multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalopathy. Herein, we investigate the effect of Ile67Asn substitution in the BOLA3 protein that results in the MMDS2 phenotype. Although the exact functional role of BOLA3 in Fe-S cluster biosynthesis is not known, the [2Fe-2S]-bridged complex of BOLA3 with GLRX5, another Fe-S protein, has been proposed as a viable intermediary cluster carrier to downstream targets. Our investigations reveal that the Ile67Asn substitution impairs the ability of BOLA3 to bind its physiological partner GLRX5, resulting in a failure to form the [2Fe-2S]-bridged complex. Although no drastic structural change in BOLA3 arises from the substitution, as evidenced by wild-type and mutant BOLA3 1H-15N HSQC and ion mobility native mass spectrometry experiments, this substitution appears to influence cluster reconstitution on downstream proteins leading to the disease phenotype. By contrast, substituted derivatives of the holo homodimeric form of BOLA3 are formed and remain active toward cluster exchange.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Zechariah Thompson
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Sean Cleary
- The Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- The Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Azam T, Przybyla-Toscano J, Vignols F, Couturier J, Rouhier N, Johnson MK. [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. J Biol Chem 2020; 295:18367-18378. [PMID: 33122194 PMCID: PMC7939391 DOI: 10.1074/jbc.ra120.015726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coliIn vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.
Collapse
Affiliation(s)
- Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA
| | | | - Florence Vignols
- BPMP, Université de Montpellier, INRAE, CNRS, SupAgro, Montpellier, France
| | | | | | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
Seo SH, Kim JH, Kim MJ, Cho SI, Kim SJ, Kang H, Shin CS, Park SS, Lee KE, Seong MW. Whole Exome Sequencing Identifies Novel Genetic Alterations in Patients with Pheochromocytoma/Paraganglioma. Endocrinol Metab (Seoul) 2020; 35:909-917. [PMID: 33397043 PMCID: PMC7803589 DOI: 10.3803/enm.2020.756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pheochromocytoma and paragangliomas (PPGL) are known as tumors with the highest level of heritability, approximately 30% of all cases. Clinical practice guidelines of PPGL recommend genetic testing for germline variants in all patients. In this study, we used whole exome sequencing to identify novel causative variants associated with PPGL to improve the detection of rare genetic variants in our cohort. METHODS Thirty-six tested negative for pathogenic variants in previous Sanger sequencing or targeted gene panel testing for PPGL underwent whole exome sequencing. Whole exome sequencing was performed using DNA samples enriched using TruSeq Custom Enrichment Kit and sequenced with MiSeq (Illumina Inc.). Sequencing alignment and variant calling were performed using SAMtools. RESULTS Among previously mutation undetected 36 patients, two likely pathogenic variants and 13 variants of uncertain significance (VUS) were detected in 32 pheochromocytoma-related genes. SDHA c.778G>A (p.Gly260Arg) was detected in a patient with head and neck paraganglioma, and KIF1B c.2787-2A>C in a patient with a bladder paraganglioma. Additionally, a likely pathogenic variant in BRCA2, VUS in TP53, and VUS in NFU1 were detected. CONCLUSION Exome sequencing further identified genetic alterations by 5.6% in previously mutation undetected patients in PPGL. Implementation of targeted gene sequencing consisted of extended genes of PPGL in routine clinical screening can support the level of comprehensive patient assessment.
Collapse
Affiliation(s)
- Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Man Jin Kim
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sung Im Cho
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Su Jin Kim
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyein Kang
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sung Sup Park
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Kyu Eun Lee
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Moon-Woo Seong
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
11
|
Uzunhan TA, Çakar NE, Seyhan S, Aydin K. A genetic mimic of cerebral palsy: Homozygous NFU1 mutation with marked intrafamilial phenotypic variation. Brain Dev 2020; 42:756-761. [PMID: 32747156 DOI: 10.1016/j.braindev.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic defects in the NFU1, an iron-sulfur cluster scaffold protein coding gene, which is vital in the final stage of assembly for iron sulfur proteins, have been defined as multiple mitochondrial dysfunctions syndrome I. This disorder is a severe autosomal recessive disease with onset in early infancy. It is characterized by disruption of the energy metabolism, resulting in weakness, neurological regression, hyperglycinemia, lactic acidosis, and early death. PATIENT DESCRIPTION This report documents the case of a 27-month-old girl, who showed clinical signs and symptoms of spastic paraparesis with a relapsing-remitting course. The patient had a sister with a severe phenotype who died at the age of 16 months. RESULTS Magnetic resonance imaging revealed hyperintensity of the cerebral white matter that was more prominent in the frontal regions, with milder involvement in the posterior periventricular regions. There was also evidence of partial cystic degeneration and cavitation in the frontal regions. In addition, she had hyperglycinemia. Homozygous NM_001002755.4:c.565G>A (p.Gly189Arg) mutation was identified in the NFU1 gene; this had not previously been reported as homozygous. CONCLUSION Hyperglycinemia and cavitating leukodystrophy are suggestive of an NFU1 mutation diagnosis. An intrafamilial phenotypic variation has not been published in NFU1-associated disorders before. Presenting with spasticity as a rare phenotype, NFU1 mutations could be considered a genetic mimic of cerebral palsy.
Collapse
Affiliation(s)
- Tuğçe Aksu Uzunhan
- University of Health Sciences, Okmeydanı Training and Research Hospital, Division of Pediatric Neurology, Istanbul, Turkey.
| | - Nafiye Emel Çakar
- University of Health Sciences, Okmeydanı Training and Research Hospital, Division of Paediatric Metabolism, Istanbul, Turkey
| | - Serhat Seyhan
- Medipol University, Department of Medical Genetics, Istanbul, Turkey
| | - Kürşad Aydin
- Medipol University, Department of Pediatric Neurology, Istanbul, Turkey
| |
Collapse
|
12
|
Wachnowsky C, Hendricks AL, Wesley NA, Ferguson C, Fidai I, Cowan JA. Understanding the Mechanism of [4Fe-4S] Cluster Assembly on Eukaryotic Mitochondrial and Cytosolic Aconitase. Inorg Chem 2019; 58:13686-13695. [PMID: 31436962 DOI: 10.1021/acs.inorgchem.9b01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron-sulfur (Fe-S) clusters are common prosthetic groups that are found within a variety of proteins responsible for functions that include electron transfer, regulation of gene expression, and substrate binding and activation. Acquisition of a [4Fe-4S] cluster is essential for the functionality of many such roles, and dysfunctions in Fe-S cluster synthesis and trafficking often result in human disease, such as multiple mitochondrial dysfunctions syndrome. While the topic of [2Fe-2S] cluster biosynthesis and trafficking has been relatively well studied, the understanding of such processes involving [4Fe-4S] centers is less developed. Herein, we focus on the mechanism of the assembly of [4Fe-4S] clusters on two members of the aconitase family, differing also in organelle placement (mitochondrion and cytosol) and biochemical function. Two mechanistic models are evaluated by a combination of kinetic and spectroscopic models, namely, a consecutive model (I), in which two [2Fe-2S] clusters are sequentially delivered to the target, and a prereaction equilibrium model (II), in which a [4Fe-4S] cluster transiently forms on a donor protein before transfer to the target. The paper also addresses the issue of cluster nuclearity for functionally active forms of ISCU, NFU, and ISCA trafficking proteins, each of which has been postulated to exist in both [2Fe-2S] and [4Fe-4S] bound states. By the application of kinetic assays and electron paramagnetic resonance spectroscopy to examine delivery pathways from a variety of potential [2Fe-2S] donor proteins to eukaryotic forms of both aconitase and iron regulatory protein, we conclude that a consecutive model following the delivery of [2Fe-2S] clusters from NFU1 is the most likely mechanism for these target proteins.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States.,The Ohio State Biochemistry Program , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Amber L Hendricks
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Nathaniel A Wesley
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Connor Ferguson
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Insiya Fidai
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States.,The Biophysics Graduate Program , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - J A Cowan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States.,The Ohio State Biochemistry Program , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States.,The Biophysics Graduate Program , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
13
|
Olive JA, Cowan JA. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5. J Inorg Biochem 2018; 184:100-107. [PMID: 29689452 DOI: 10.1016/j.jinorgbio.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.
Collapse
Affiliation(s)
- Joshua A Olive
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|