1
|
Horaguchi Y, Saitoh H, Konno H, Makabe K, Yano S. Crystal structure of GH71 α-1,3-glucanase Agn1p from Schizosaccharomyces pombe: an enzyme regulating cell division in fission yeast. Biochem Biophys Res Commun 2025; 766:151907. [PMID: 40306164 DOI: 10.1016/j.bbrc.2025.151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Agn1p is a glycoside hydrolase family 71 α-1,3-glucanase from Schizosaccharomyces pombe. It is involved in cell division and releases nigero-pentaose from α-1,3-glucan as a primary hydrolysate. In this study, we used x-ray crystallography to determine the molecular structure of Agn1p, achieving a resolution of 1.80 Å for its free form and 2.10 Å for the substrate complex structure of an inactive mutant. We find that Agn1p comprises eight α-helices and sixteen β-strands, and these combined into a classical (α/β)8 TIM-barrel core domain and a β-sandwich accessory domain. The TIM-barrel had a deep cavity in the center. Next, to determine which amino acid residues are involved in the catalytic reaction, we conducted substitution experiments on Asp-69, Asp-237, and Glu-240, three residues located in the cavity, preparing the corresponding substitution mutants D69N, D237A, D237N, E240A and E240Q. We found that the far-UV CD spectra of the five substitution mutants were similar to those of wild-type Agn1p, but all five mutants lost α-1,3-glucan hydrolyzing activity. We also obtained the cocrystal of the D237N mutant and nigero-heptaose, and its structure was determined. Specifically, we observed the electron density for the hexamer or pentamer sugar portion of nigero-heptaose. Moreover, the substrates were located in the vicinity of Asp-69, Asp-237, and Glu-240. Overall, these results suggest that Agn1p contains a stable substrate binding site for the hexamer or pentamer sugar structure of nigero-oligosaccharide.
Collapse
Affiliation(s)
- Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Honoka Saitoh
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
2
|
Gambino M, Kushwaha SK, Wu Y, van Haastrecht P, Klein-Sousa V, Lutz VT, Bejaoui S, Jensen CMC, Bojer MS, Song W, Xiao M, Taylor NMI, Nobrega FL, Brøndsted L. Diversity and phage sensitivity to phages of porcine enterotoxigenic Escherichia coli. Appl Environ Microbiol 2024; 90:e0080724. [PMID: 38940562 PMCID: PMC11267873 DOI: 10.1128/aem.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Conservation, The Royal Danish Academy, Copenhagen, Denmark
| | - Simran Krishnakant Kushwaha
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Yi Wu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pauline van Haastrecht
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Victor Klein-Sousa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Veronika T. Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Semeh Bejaoui
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Franklin L. Nobrega
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Konishi Y, Sato K, Nabetani K, Shirasaka N, Fukuta Y. Expression and characterization of α-1,3-glucanase from Paenibacillus alginolyticus NBRC15375, which is classified into subgroup 2 (minor group) of GH family 87. Biosci Biotechnol Biochem 2024; 88:538-545. [PMID: 38331414 DOI: 10.1093/bbb/zbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.
Collapse
Affiliation(s)
- Yasuhito Konishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Department of Food and Nutrition, Kyoto Bunkyo Junior College, Uji, Kyoto, Japan
| | - Kaito Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Kai Nabetani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Norifumi Shirasaka
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yasuhisa Fukuta
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
4
|
Takahashi M, Yano S, Horaguchi Y, Otsuka Y, Suyotha W, Makabe K, Konno H, Kokeguchi S. α-1,3-Glucanase from the gram-negative bacterium Flavobacterium sp. EK-14 hydrolyzes fungal cell wall α-1,3-glucan. Sci Rep 2023; 13:21420. [PMID: 38049513 PMCID: PMC10696023 DOI: 10.1038/s41598-023-48627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuitsu Otsuka
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Wasana Suyotha
- Enzyme Technology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Susumu Kokeguchi
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| |
Collapse
|
5
|
Maciejewska B, Squeglia F, Latka A, Privitera M, Olejniczak S, Switala P, Ruggiero A, Marasco D, Kramarska E, Drulis-Kawa Z, Berisio R. Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae. mBio 2023; 14:e0132923. [PMID: 37707438 PMCID: PMC10653864 DOI: 10.1128/mbio.01329-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Mario Privitera
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sebastian Olejniczak
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Paulina Switala
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
6
|
Cortez AA, de Queiroz MX, de Oliveira Arnoldi Pellegrini V, Pellegrini VOA, de Mello Capetti CC, Dabul ANG, Liberato MV, Pratavieira S, Ricomini Filho AP, Polikarpov I. Recombinant Prevotella melaninogenica α-1,3 glucanase and Capnocytophaga ochracea α-1,6 glucanase as enzymatic tools for in vitro degradation of S. mutans biofilms. World J Microbiol Biotechnol 2023; 39:357. [PMID: 37882859 DOI: 10.1007/s11274-023-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Dental biofilms represent a serious oral health problem playing a key role in the development of caries and other oral diseases. In the present work, we cloned and expressed in E. coli two glucanases, Prevotella melaninogenica mutanase (PmGH87) and Capnocytophaga ochracea dextranase (CoGH66), and characterized them biochemically and biophysically. Their three-dimensional structures were elucidated and discussed. Furthermore, we tested the capacity of the enzymes to hydrolyze mutan and dextran to prevent formation of Streptococcus mutans biofilms, as well as to degrade pre- formed biofilms in low and abundant sugar conditions. The percentage of residual biofilm was calculated for each treatment group in relation to the control, as well as the degree of synergism. Our results suggest that both PmGH87 and CoGH66 are capable of inhibiting biofilm formation grown under limited or abundant sucrose conditions. Degradation of pre-formed biofilms experiments reveal a time-dependent effect for the treatment with each enzyme alone. In addition, a synergistic and dose-dependent effects of the combined enzymatic treatment with the enzymes were observed. For instance, the highest biomass degradation was 95.5% after 30 min treatment for the biofilm grown in low sucrose concentration, and 93.8% after 2 h treatment for the biofilm grown in sugar abundant condition. Strong synergistic effects were observed, with calculated degree of synergism of 5.54 and 3.18, respectively and their structural basis was discussed. Jointly, these data can pave the ground for the development of biomedical applications of the enzymes for controlling growth and promoting degradation of established oral biofilms.
Collapse
Affiliation(s)
- Anelyse Abreu Cortez
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Mateus Xavier de Queiroz
- Piracicaba Dental School, University of Campinas, Avenida Limeira, nº 901, CEP 13414-903, Areião, Piracicaba, SP, Brazil
| | | | - Vanessa Oliveira Arnoldi Pellegrini
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Caio Cesar de Mello Capetti
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Andrei Nicoli Gebieluca Dabul
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Marcelo Vizoná Liberato
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Antonio Pedro Ricomini Filho
- Piracicaba Dental School, University of Campinas, Avenida Limeira, nº 901, CEP 13414-903, Areião, Piracicaba, SP, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function. Essays Biochem 2023; 67:505-520. [PMID: 36876882 DOI: 10.1042/ebc20220219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.
Collapse
|
8
|
Laemthong T, Bing RG, Crosby JR, Adams MWW, Kelly RM. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. Appl Environ Microbiol 2022; 88:e0127422. [PMID: 36169328 PMCID: PMC9599439 DOI: 10.1128/aem.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited β-1,3-glucanase activity, Calkro_0402 was active on both β-1,3/1,4-glucan and β-1,4-xylan, Calkro_2036 exhibited activity on both β-1,3/1,4-glucan and β-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Zhang JT, Yang F, Du K, Li WF, Chen Y, Jiang YL, Li Q, Zhou CZ. Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1. Structure 2021; 30:240-251.e4. [PMID: 34727518 DOI: 10.1016/j.str.2021.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/18/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
Despite previous structural analyses of bacteriophages, quite little is known about the structures and assembly patterns of cyanophages. Using cryo-EM combined with crystallography, we solve the near-atomic-resolution structure of a freshwater short-tailed cyanophage, Pam1, which comprises a 400-Å-long tail and an icosahedral capsid of 650 Å in diameter. The outer capsid surface is reinforced by trimeric cement proteins with a β-sandwich fold, which structurally resemble the distal motif of Pam1's tailspike, suggesting its potential role in host recognition. At the portal vertex, the dodecameric portal and connected adaptor, followed by a hexameric needle head, form a DNA ejection channel, which is sealed by a trimeric needle. Moreover, we identify a right-handed rifling pattern that might help DNA to revolve along the wall of the ejection channel. Our study reveals the precise assembly pattern of a cyanophage and lays the foundation to support its practical biotechnological and environmental applications.
Collapse
Affiliation(s)
- Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kang Du
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
10
|
Itoh T. Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7. Biosci Biotechnol Biochem 2021; 85:1314-1323. [PMID: 33792636 DOI: 10.1093/bbb/zbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022]
Abstract
Chitin and its derivatives have valuable potential applications in various fields that include medicine, agriculture, and food industries. Paenibacillus sp. str. FPU-7 is one of the most potent chitin-degrading bacteria identified. This review introduces the chitin degradation system of P. str. FPU-7. In addition to extracellular chitinases, P. str. FPU-7 uses a unique multimodular chitinase (ChiW) to hydrolyze chitin to oligosaccharides on the cell surface. Chitin oligosaccharides are converted to N-acetyl-d-glucosamine by β-N-acetylhexosaminidase (PsNagA) in the cytosol. The functions and structures of ChiW and PsNagA are also summarized. The genome sequence of P. str. FPU-7 provides opportunities to acquire novel enzymes. Genome mining has identified a novel alginate lyase, PsAly. The functions and structure of PsAly are reviewed. These findings will inform further improvement of the sustainable conversion of polysaccharides to functional materials.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| |
Collapse
|
11
|
McGuire BE, Hettle AG, Vickers C, King DT, Vocadlo DJ, Boraston AB. The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J Biol Chem 2020; 295:18426-18435. [PMID: 33127644 PMCID: PMC7939477 DOI: 10.1074/jbc.ra120.015776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Indexed: 11/30/2022] Open
Abstract
α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1-3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure-function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1-3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1-3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Andrew G Hettle
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Chelsea Vickers
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Dustin T King
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
12
|
Itoh T, Panti N, Hayashi J, Toyotake Y, Matsui D, Yano S, Wakayama M, Hibi T. Crystal structure of the catalytic unit of thermostable GH87 α-1,3-glucanase from Streptomyces thermodiastaticus strain HF3-3. Biochem Biophys Res Commun 2020; 533:1170-1176. [PMID: 33041007 DOI: 10.1016/j.bbrc.2020.09.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
α-1,3-Glucan is a homopolymer composed of D-glucose (Glc) and it is an extracellular polysaccharide found in dental plaque due to Streptococcus species. α-1,3-Glucanase from Streptomyces thermodiastaticus strain HF3-3 (Agl-ST) has been identified as a thermostable α-1,3-glucanase, which is classified into glycoside hydrolase family 87 (GH87) and specifically hydrolyzes α-1,3-glucan with an endo-action. The enzyme has a potential to inhibit the production of dental plaque and to be used for biotechnological applications. Here we show the structure of the catalytic unit of Agl-ST determined at 1.16 Å resolution using X-ray crystallography. The catalytic unit is composed of two modules, a β-sandwich fold module, and a right-handed β-helix fold module, which resembles other structural characterized GH87 enzymes from Bacillus circulans str. KA-304 and Paenibacillus glycanilyticus str. FH11, with moderate sequence identities between each other (approximately 27% between the catalytic units). However, Agl-ST is smaller in size and more thermally stable than the others. A disulfide bond that anchors the C-terminal coil of the β-helix fold, which is expected to contribute to thermal stability only exists in the catalytic unit of Agl-ST.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Niphawan Panti
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Yosuke Toyotake
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Johnan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|