1
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
2
|
Döring C, Basen M. Propionate production by Bacteroidia gut bacteria and its dependence on substrate concentrations differs among species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:95. [PMID: 38987848 PMCID: PMC11238397 DOI: 10.1186/s13068-024-02539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Propionate is a food preservative and platform chemical, but no biological process competes with current petrochemical production routes yet. Although propionate production has been described for gut bacteria of the class Bacteroidia, which also carry great capacity for the degradation of plant polymers, knowledge on propionate yields and productivities across species is scarce. This study aims to compare propionate production from glucose within Bacteroidia and characterize good propionate producers among this group. RESULTS We collected published information on propionate producing Bacteroidia, and selected ten species to be further examined. These species were grown under defined conditions to compare their product formation. While propionate, acetate, succinate, lactate and formate were produced, the product ratios varied greatly among the species. The two species with highest propionate yield, B. propionicifaciens (0.39 gpro/ggluc) and B. graminisolvens (0.25 gpro/ggluc), were further examined. Product formation and growth behavior differed significantly during CO2-limited growth and in resting cells experiments, as only B. graminisolvens depended on external-added NaHCO3, while their genome sequences only revealed few differences in the major catabolic pathways. Carbon mass and electron balances in experiments with resting cells were closed under the assumption that the oxidative pentose pathway was utilized for glucose oxidation next to glycolysis in B. graminisolvens. Finally, during pH-controlled fed-batch cultivation B. propionicifaciens and B. graminisolvens grew up to cell densities (OD600) of 8.1 and 9.8, and produced 119 mM and 33 mM of propionate from 130 and 105 mM glucose, respectively. A significant production of other acids, particularly lactate (25 mM), was observed in B. graminisolvens only. CONCLUSIONS We obtained the first broad overview and comparison of propionate production in Bacteroidia strains. A closer look at two species with comparably high propionate yields, showed significant differences in their physiology. Further studies may reveal the molecular basis for high propionate yields in Bacteroidia, paving the road towards their biotechnological application for conversion of biomass-derived sugars to propionate.
Collapse
Affiliation(s)
- Carolin Döring
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Mirko Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Yamashita Y, Tokunaga A, Aoki K, Ishizuka T, Fujita S, Tanoue S. A 28-Day Repeated Oral Administration Study of Mechanically Fibrillated Cellulose Nanofibers According to OECD TG407. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1082. [PMID: 38998688 PMCID: PMC11242936 DOI: 10.3390/nano14131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
The impact of oral administration of mechanically fibrillated cellulose nanofibers (fib-CNF), a commonly used nanofiber, on toxicity and health remains unclear, despite reports of the safety and beneficial effects of chitin-based nanofibers. Thus, evaluating the oral toxicity of fib-CNF in accordance with OECD Test Guideline 407 (TG407) is essential. This study aimed to assess the safety of orally administered fib-CNF through an acute toxicity study in rats, following the OECD TG407 guidelines for 4 weeks. CNF "BiNFi-s" FMa-10005, derived from mechanically fibrillated pulp cellulose, was administered via gavage to male and female Crl:CD(SD) rats at doses of 50, 150, 500, and 1000 mg/kg/day for 28 days, with a control group receiving water for injection. The study evaluated the toxic effects of repeated administration, and the rats were monitored for an additional 14 days post-administration to assess recovery from any toxic effects. The results showed no mortality in either sex during the administration period, and no toxicological effects related to the test substance were observed in various assessments, including general condition and behavioral function observations, urinalysis, hematological examination, blood biochemical examination, necropsy findings, organ weights, and histopathological examination. Notably, only female rats treated with 1000 mg/kg/day of CNF exhibited a consistent reduction in body weight during the 14-day recovery period after the end of treatment. They also showed a slight decrease in pituitary and liver weights. However, hematological and blood biochemical tests did not reveal significant differences, suggesting a potential weight-suppressive effect of CNF ingestion.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Akinori Tokunaga
- Life Science Research Laboratory, School of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho 910-1193, Japan
| | - Koji Aoki
- Department of Pharmacology, Faculty of Medicine, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho 910-1193, Japan
| | - Tamotsu Ishizuka
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho 910-1193, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Shuichi Tanoue
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
4
|
Hirayama H, Takaki Y, Abe M, Miyazaki M, Uematsu K, Matsui Y, Takai K. Methylomarinovum tepidoasis sp. nov., a moderately thermophilic methanotroph of the family Methylothermaceae isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 2024; 74:006288. [PMID: 38478579 PMCID: PMC10950024 DOI: 10.1099/ijsem.0.006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024] Open
Abstract
A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.
Collapse
Affiliation(s)
- Hisako Hirayama
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mariko Abe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | - Yohei Matsui
- Research Institute for Global Change (RIGC), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
5
|
Clausen U, Vital ST, Lambertus P, Gehler M, Scheve S, Wöhlbrand L, Rabus R. Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. Microb Physiol 2024; 34:88-107. [PMID: 38262373 DOI: 10.1159/000536327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (mMATP/mMC) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to d-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected. CONCLUSIONS The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.
Collapse
Affiliation(s)
- Urte Clausen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sören-Tobias Vital
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Pia Lambertus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martina Gehler
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Hunter S, Flaten E, Petersen C, Gervain J, Werker JF, Trainor LJ, Finlay BB. Babies, bugs and brains: How the early microbiome associates with infant brain and behavior development. PLoS One 2023; 18:e0288689. [PMID: 37556397 PMCID: PMC10411758 DOI: 10.1371/journal.pone.0288689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Growing evidence is demonstrating the connection between the microbiota gut-brain axis and neurodevelopment. Microbiota colonization occurs before the maturation of many neural systems and is linked to brain health. Because of this it has been hypothesized that the early microbiome interactions along the gut-brain axis evolved to promote advanced cognitive functions and behaviors. Here, we performed a pilot study with a multidisciplinary approach to test if the microbiota composition of infants is associated with measures of early cognitive development, in particular neural rhythm tracking; language (forward speech) versus non-language (backwards speech) discrimination; and social joint attention. Fecal samples were collected from 56 infants between four and six months of age and sequenced by shotgun metagenomic sequencing. Of these, 44 performed the behavioral Point and Gaze test to measure joint attention. Infants were tested on either language discrimination using functional near-infrared spectroscopy (fNIRS; 25 infants had usable data) or neural rhythm tracking using electroencephalogram (EEG; 15 had usable data). Infants who succeeded at the Point and Gaze test tended to have increased Actinobacteria and reduced Firmicutes at the phylum level; and an increase in Bifidobacterium and Eggerthella along with a reduction in Hungatella and Streptococcus at the genus level. Measurements of neural rhythm tracking associated negatively to the abundance of Bifidobacterium and positively to the abundance of Clostridium and Enterococcus for the bacterial abundances, and associated positively to metabolic pathways that can influence neurodevelopment, including branched chain amino acid biosynthesis and pentose phosphate pathways. No associations were found for the fNIRS language discrimination measurements. Although the tests were underpowered due to the small pilot sample sizes, potential associations were identified between the microbiome and measurements of early cognitive development that are worth exploring further.
Collapse
Affiliation(s)
- Sebastian Hunter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erica Flaten
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- University of Padua, Padova Neuroscience Center, Padua, Italy
- Université Paris Cité & CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Janet F. Werker
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Laurel J. Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Ontario, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| | - Brett B. Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Yamada R, Han SR, Park H, Oh TJ. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms 2023; 11:1480. [PMID: 37374983 DOI: 10.3390/microorganisms11061480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.
Collapse
Affiliation(s)
- Ryoichi Yamada
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
8
|
Cui X, Wang Z, Guo P, Li F, Chang S, Yan T, Zheng H, Hou F. Shift of Feeding Strategies from Grazing to Different Forage Feeds Reshapes the Rumen Microbiota To Improve the Ability of Tibetan Sheep (Ovis aries) To Adapt to the Cold Season. Microbiol Spectr 2023; 11:e0281622. [PMID: 36809032 PMCID: PMC10100778 DOI: 10.1128/spectrum.02816-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
The dynamics of ruminant-rumen microbiome symbiosis associated with feeding strategies in the cold season were examined. Twelve pure-grazing adult Tibetan sheep (Ovis aries) (18 months old; body weight, 40 ± 0.23 kg) were transferred from natural pasture to two indoor feedlots and fed either a native-pasture diet (NPF group) or an oat hay diet (OHF group) (n = 6 per treatment), and then the flexibility of rumen microbiomes to adapt to these compositionally different feeding strategies was examined. Principal-coordinate analysis and similarity analysis indicated that the rumen bacterial composition correlated with altered feeding strategies. Microbial diversity was higher in the grazing group than in those fed with native pasture and an oat hay diet (P < 0.05). The dominant microbial phyla were Bacteroidetes and Firmicutes, and the core bacterial taxa comprised mostly (42.49% of shared operational taxonomic units [OTUs]) Ruminococcaceae (408 taxa), Lachnospiraceae (333 taxa), and Prevotellaceae (195 taxa), which were relatively stable across different treatments. Greater relative abundances of Tenericutes at the phylum level, Pseudomonadales at the order level, Mollicutes at the class level, and Pseudomonas at the genus level were observed in a grazing period than in the other two treatments (NPF and OHF) (P < 0.05). In the OHF group, due to the high nutritional quality of the forage, Tibetan sheep can produce high concentrations of short-chain fatty acids (SCFAs) and NH3-N by increasing the relative abundances of key bacteria in the rumen, such as Lentisphaerae, Negativicutes, Selenomonadales, Veillonellaceae, Ruminococcus 2, Quinella, Bacteroidales RF16 group, and Prevotella 1, to aid in nutrients degradation and energy utilization. The levels of beneficial bacteria were increased by the oat hay diet; these microbiotas are likely to help improve and maintain host health and metabolic ability in Tibetan sheep to adapt to cold environments. The rumen fermentation parameters were significantly influenced by feeding strategy in the cold season (P < 0.05). Overall, the results of this study demonstrate the strong effect of feeding strategies on the rumen microbiota of Tibetan sheep, which provided a new idea for the nutrition regulation of Tibetan sheep grazing in the cold season on the Qinghai-Tibetan Plateau. IMPORTANCE During the cold season, like other high-altitude mammals, Tibetan sheep have to adapt their physiological and nutritional strategies, as well as the structure and function of their rumen microbial community, to the seasonal variation of lower food availability and quality. This study focused on the changes and adaptability in the rumen microbiota of Tibetan sheep when they adapted from grazing to a high-efficiency feeding strategy during the cold season by analyzing the rumen microbiota of Tibetan sheep raised under the different management systems, and it shows the linkages among the rumen core and pan-bacteriomes, nutrient utilization, and rumen short-chain fatty acids. The findings from this study suggest that the feeding strategies potentially contribute to variations in the pan-rumen bacteriome, together with the core bacteriome. Fundamental knowledge on the rumen microbiomes and their roles in nutrient utilization furthers our understanding of how rumen microbial adaptation to harsh environments may function in hosts. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of feeding strategy on nutrient utilization and rumen fermentation in harsh environments.
Collapse
Affiliation(s)
- Xiongxiong Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaofeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Penghui Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fuhou Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tianhai Yan
- Livestock Production Science Branch, Agri-Food and Biosciences Institute, Hillsborough, County Down, United Kingdom
| | - Huiru Zheng
- School of Computing, University of Ulster, Belfast, United Kingdom
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Galvan S, Madderson O, Xue S, Teixeira AP, Fussenegger M. Regulation of Transgene Expression by the Natural Sweetener Xylose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203193. [PMID: 36316222 PMCID: PMC9731693 DOI: 10.1002/advs.202203193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Next-generation gene and engineered-cell therapies benefit from incorporating synthetic gene networks that can precisely regulate the therapeutic output in response to externally administered signal inputs that are safe, readily bioavailable and pleasant to take. To enable such therapeutic control, a mammalian gene switch is designed to be responsive to the natural sweetener xylose and its functionality is assessed in mouse studies. The gene switch consists of the bacterial transcription regulator XylR fused to a mammalian transactivator, which binds to an optimized promoter in the presence of xylose, thereby allowing dose-dependent transgene expression. The sensitivity of SWEET (sweetener-inducible expression of transgene) is improved by coexpressing a xylose transporter. Mice implanted with encapsulated SWEET-engineered cells show increased blood levels of cargo protein when taking xylose-sweetened water or coffee, or highly concentrated apple extract, while they do not respond to intake of a usual amount of carrots, which contain xylose. In a proof-of-concept therapeutic application study, type-1 diabetic mice engineered with insulin-expressing SWEET show lowered glycemia and increased insulin levels when administered this fairly diabetic-compliant sweetener, compared to untreated mice. A SWEET-based therapy appears to have the potential to integrate seamlessly into patients' life-style and food habits in the move toward personalized medicine.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Oliver Madderson
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- Faculty of Life ScienceUniversity of BaselMattenstrasse 26BaselCH‐4058Switzerland
| |
Collapse
|
10
|
Thomann AK, Wüstenberg T, Wirbel J, Knoedler LL, Thomann PA, Zeller G, Ebert MP, Lis S, Reindl W. Depression and fatigue in active IBD from a microbiome perspective-a Bayesian approach to faecal metagenomics. BMC Med 2022; 20:366. [PMID: 36244970 PMCID: PMC9575298 DOI: 10.1186/s12916-022-02550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraintestinal symptoms are common in inflammatory bowel diseases (IBD) and include depression and fatigue. These are highly prevalent especially in active disease, potentially due to inflammation-mediated changes in the microbiota-gut-brain axis. The aim of this study was to investigate the associations between structural and functional microbiota characteristics and severity of fatigue and depressive symptoms in patients with active IBD. METHODS We included clinical data of 62 prospectively enrolled patients with IBD in an active disease state. Patients supplied stool samples and completed the questionnaires regarding depression and fatigue symptoms. Based on taxonomic and functional metagenomic profiles of faecal gut microbiota, we used Bayesian statistics to investigate the associative networks and triangle motifs between bacterial genera, functional modules and symptom severity of self-reported fatigue and depression. RESULTS Associations with moderate to strong evidence were found for 3 genera (Odoribacter, Anaerotruncus and Alistipes) and 3 functional modules (pectin, glycosaminoglycan and central carbohydrate metabolism) with regard to depression and for 4 genera (Intestinimonas, Anaerotruncus, Eubacterium and Clostridiales g.i.s) and 2 functional modules implicating amino acid and central carbohydrate metabolism with regard to fatigue. CONCLUSIONS This study provides the first evidence of association triplets between microbiota composition, function and extraintestinal symptoms in active IBD. Depression and fatigue were associated with lower abundances of short-chain fatty acid producers and distinct pathways implicating glycan, carbohydrate and amino acid metabolism. Our results suggest that microbiota-directed therapeutic approaches may reduce fatigue and depression in IBD and should be investigated in future research.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Torsten Wüstenberg
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Core Facility for Neuroscience of Self-Regulation (CNSR), Field of Focus 4 (FoF4), Heidelberg University, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Laura-Louise Knoedler
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Centre of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Sattley WM, Swingley WD, Burchell BM, Dewey ED, Hayward MK, Renbarger TL, Shaffer KN, Stokes LM, Gurbani SA, Kujawa CM, Nuccio DA, Schladweiler J, Touchman JW, Wang-Otomo ZY, Blankenship RE, Madigan MT. Complete genome of the thermophilic purple sulfur Bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. PHOTOSYNTHESIS RESEARCH 2022; 151:125-142. [PMID: 34669148 DOI: 10.1007/s11120-021-00870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.
Collapse
Affiliation(s)
- W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA.
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Brad M Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Emma D Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Mackenzie K Hayward
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Tara L Renbarger
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Kathryn N Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Lynn M Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Sonja A Gurbani
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Catrina M Kujawa
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - D Adam Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jacob Schladweiler
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jeffrey W Touchman
- School of Life Sciences, Arizona State University, Tempe, AR, 85287, USA
| | | | - Robert E Blankenship
- Departments of Chemistry and Biology, Washington University, St. Louis, MO, 63130, USA
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
12
|
Bai J, Li Y, Li T, Zhang W, Fan M, Zhang K, Qian H, Zhang H, Qi X, Wang L. Comparison of Different Soluble Dietary Fibers during the In Vitro Fermentation Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7446-7457. [PMID: 33951908 DOI: 10.1021/acs.jafc.1c00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble dietary fibers being fermented by gut microbiota constitute a pivotal prerequisite for soluble dietary fibers exhibiting physiological functions. However, the relationship between fiber type and gut microbiota metabolism remains unclear. The purpose of this study was to investigate and compare the effect of fiber types on short-chain fatty acid (SCFA) biosynthesis in a simulated colon. Results showed that different soluble dietary fibers caused distinct metabolic profiles both in SCFAs and organic acids. Further analysis revealed that the SCFA biosynthesis pathway was related to the chain structure of fiber polysaccharides. Moreover, the microbial community structure showed substantial difference among experimental groups. Parabacteroides was substantially elevated in the resistant starch group, while Lactobacillus was the predominant genus in other groups. Correlation analysis further revealed that SCFA biosynthesis was correlated with microbial taxa at different taxonomic levels. Totally, the present study provided an insight into targeted intervention of gut microorganisms for dictating SCFA and organic acid production.
Collapse
Affiliation(s)
- Junying Bai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Wenhui Zhang
- Institute of Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa 850000, China
| | - Mingcong Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Huang F, Sardari RRR, Jasilionis A, Böök O, Öste R, Rascón A, Heyman‐Lindén L, Holst O, Karlsson EN. Cultivation of the gut bacterium Prevotella copri DSM 18205 T using glucose and xylose as carbon sources. Microbiologyopen 2021; 10:e1213. [PMID: 34180602 PMCID: PMC8236902 DOI: 10.1002/mbo3.1213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Prevotella copri DSM18205T is a human gut bacterium, suggested as a next-generation probiotic. To utilize it as such, it is, however, necessary to grow the species in a reproducible manner. Prevotella copri has previously been reported to be highly sensitive to oxygen, and hence difficult to isolate and cultivate. This study presents successful batch cultivation strategies for viable strain inoculations and growth in both serum bottles and a stirred tank bioreactor (STR), without the use of an anaerobic chamber, as long as the cells were kept in the exponential growth phase. A low headspace volume in the STR was important to reach high cell density. P. copri utilized xylose cultivated in Peptone Yeast Xylose medium (PYX medium), resulting in a comparable growth rate and metabolite production as in Peptone Yeast Glucose medium (PYG medium) in batch cultivations at pH 7.2.Up to 5 g/L of the carbon source was consumed, leading to the production of succinic acid, acetic acid, and formic acid, and cell densities (OD620 nm ) in the range 6-7.5. The highest yield of produced succinic acid was 0.63 ± 0.05 g/g glucose in PYG medium cultivations and 0.88 ± 0.06 g/g xylose in PYX medium cultivations.
Collapse
Affiliation(s)
- Fang Huang
- Division of BiotechnologyDepartment of ChemistryLund UniversityLundSweden
- Aventure ABLundSweden
| | - Roya R. R. Sardari
- Division of BiotechnologyDepartment of ChemistryLund UniversityLundSweden
| | - Andrius Jasilionis
- Division of BiotechnologyDepartment of ChemistryLund UniversityLundSweden
| | | | | | - Ana Rascón
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | | | - Olle Holst
- Division of BiotechnologyDepartment of ChemistryLund UniversityLundSweden
| | | |
Collapse
|