1
|
Nejadebrahim S, Houserová J, Ječmen T, Kalousková B, Abreu C, Herynek Š, Skořepa O, Bláha J, Vaněk O. Multiple O- and an N-glycosylation of the stalk region of the NK cell activation receptor NKp46 mediates its interaction with the Candida glabrata epithelial adhesin 1. Int J Biol Macromol 2025; 310:143037. [PMID: 40216117 DOI: 10.1016/j.ijbiomac.2025.143037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Natural killer (NK) cells are critical components of the innate immune system. Their primary role is to induce apoptosis in target cells, such as cancerous or virally infected cells. These targets are recognized through interactions between activating or inhibitory receptors on the NK cell surface. Among the activating receptors is the natural cytotoxicity receptor NKp46. Several ligands for this receptor have been identified, including the epithelial adhesin Epa1 from the yeast Candida glabrata. Invasive candidiasis caused by this yeast is a significant complication for patients with hematological diseases. The interaction between NKp46 and Epa1 is thought to depend specifically on an O-glycan at threonine 225 of NKp46. To elucidate the molecular details of this interaction, we optimized the recombinant production of soluble NKp46 and Epa1, generated glycosylation variants of multiple NKp46 mutants, and evaluated the role of NKp46 glycosylation in Epa1 binding using microscale thermophoresis and isothermal titration calorimetry. Additionally, for the first time, we provide a comprehensive glycosylation profile of NKp46, determined through mass spectrometry of intact glycopeptides obtained by O-glycoprotease and trypsin proteolysis. Our findings demonstrate that the NKp46 stalk is glycosylated at multiple sites, involving both an N-glycan and more than one O-glycan. These glycans are critical for the interaction with Epa1, providing NK cells with enhanced sensitivity to Candida glabrata epitopes.
Collapse
Affiliation(s)
- Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Jana Houserová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Štěpán Herynek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic.
| |
Collapse
|
2
|
Abreu C, Di Carluccio C, Ječmen T, Skořepa O, Bláha J, Marchetti R, Silipo A, Vaněk O. Insights into stability, dimerisation, and ligand binding properties of Siglec-7: Isotope labelling in HEK293 cells for protein characterisation by NMR spectroscopy. Int J Biol Macromol 2025; 309:142672. [PMID: 40164254 DOI: 10.1016/j.ijbiomac.2025.142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Siglec-7, an immune checkpoint receptor, has emerged as a promising target for cancer immunotherapy due to its involvement in the regulation of immune and inflammatory responses. However, while its participation in immunoediting and immune evasion is well established, understanding its biological context, relevant ligands, and associated signalling pathways remains limited. Understanding these aspects is crucial for the development of effective immunotherapies targeting Siglec-7. In this study, three expression constructs of Siglec-7 were designed, expressed, and characterised, including an analysis of the oligomeric state of its extracellular domain. The N-terminal V-set Ig carbohydrate recognition domain was also produced in an isotopically double-labelled (13C,15N) mammalian cell growth medium. Two stable constructs suitable for biophysical and structural studies were identified. These findings reveal the noncovalent dimerisation of Siglec-7, offering new insights into its possible ligand interactions, signal transduction mechanisms, or receptor/ligand clustering. The dimerisation of Siglec-7 may be essential to achieve multivalent, high-avidity interactions with glycoconjugates, which may result in enhanced or alternative signalling processes within the NK cell immune synapse. In addition, a detailed protocol for generating double-labelled Siglec-7 in HEK293 cells, which may apply to other proteins under similar conditions, was described. These findings contribute to a better understanding of the biophysical and structural properties of Siglec-7 and are key to the design of more precise and effective cancer immunotherapies targeting Siglec-7.
Collapse
Affiliation(s)
- Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
| | - Jan Bláha
- EMBL, Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy; Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043 Osaka, Japan
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
| |
Collapse
|
3
|
Costa AF, Teixeira A, Reis CA, Gomes C. Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs. Expert Opin Drug Discov 2025; 20:193-203. [PMID: 39749684 DOI: 10.1080/17460441.2024.2444375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles. AREAS COVERED In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field. EXPERT OPINION Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.
Collapse
Affiliation(s)
- Ana F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Ferraresi F, Anticoli S, Salvioli S, Pirazzini C, Calzari L, Gentilini D, Albano C, Di Prinzio RR, Zaffina S, Carsetti R, Garagnani P, Ruggieri A, Kwiatkowska KM. Epigenetic Drift Is Involved in the Efficacy of HBV Vaccination. Vaccines (Basel) 2024; 12:1330. [PMID: 39771992 PMCID: PMC11680278 DOI: 10.3390/vaccines12121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma. Vaccines allow us to save more than 2.5 million lives each year; however, up to 10% of vaccinated individuals may not develop sufficient protective antibody levels. The aim of this study was to investigate the epigenetic drift in the response to HBV vaccine in isolated B cells. Methods: Epigenetic drift was measured by counting rare DNA methylation variants. These epivariants were detected in epigenome-wide data collected from isolated B cell samples from 41 responders and 30 non-responders (age range 22-62 years) to vaccination against HBV. Results: We found an accumulation of epivariants in the NR group, with a significant increase in hyper-methylated aberrations. We identified the chromosomes (1, 3, 11, 12, and 14) and genes (e.g., RUSC1_AS1 or TROVE2) particularly enriched in epivariants in NRs. The literature search and pathway analysis indicate that such genes are involved in the correct functioning of the immune system. Moreover, we observed a correlation between epigenetic drift and DNA methylation entropy in the male population of the cohort. Finally, we confirmed the correlation between epivariant loads and age-related epigenetic clocks. Conclusions: Our findings support the idea that an age-related derangement of the epigenetic architecture is involved in unresponsiveness to the HBV vaccine. Furthermore, the overall results highlight the interconnection between various epigenetic dynamics (such as drift, clocks, and entropy), although these interconnections seem not to be involved in the altered immunological activity.
Collapse
Affiliation(s)
- Francesca Ferraresi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Simona Anticoli
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (S.S.); (C.P.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (S.S.); (C.P.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (S.S.); (C.P.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Anna Ruggieri
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | | |
Collapse
|
5
|
Hu J, Huynh DT, Boyce M. Sugar Highs: Recent Notable Breakthroughs in Glycobiology. Biochemistry 2024; 63:2937-2947. [PMID: 39475524 DOI: 10.1021/acs.biochem.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosylation is biochemically complex and functionally critical to a wide range of processes and disease states, making it a vibrant area of contemporary research. Here, we highlight a selection of notable recent advances in the glycobiology of SARS-CoV-2 infection and immunity, cancer biology and immunotherapy, and newly discovered glycosylated RNAs. Together, these studies illustrate the significance of glycosylation in normal biology and the great promise of manipulating glycosylation for therapeutic benefit in disease.
Collapse
Affiliation(s)
- Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
Chattopadhyay AN, Jiang M, Makabenta JMV, Park J, Geng Y, Rotello V. Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages. BIOSENSORS 2024; 14:360. [PMID: 39194589 DOI: 10.3390/bios14080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use immunosensing of specific biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids, making detection difficult, time-consuming, and challenging to generalize. Intracellular infections can induce changes in macrophage glycosylation, providing a potential strategy for signature-based detection of intracellular infections. We report here the detection of bacterial infection in macrophages using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic and screening applications.
Collapse
Affiliation(s)
- Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Deng G, Chen X, Shao L, Wu Q, Wang S. Glycosylation in autoimmune diseases: A bibliometric and visualization study. Heliyon 2024; 10:e30026. [PMID: 38707406 PMCID: PMC11066412 DOI: 10.1016/j.heliyon.2024.e30026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
An increasing amount of research has shown that glycosylation plays a crucial role in autoimmune diseases (ADs), prompting our interest in conducting research on the knowledge framework and hot topics in this field based on bibliometric analysis. Studies on glycosylation in the field of ADs from 2003 to 2023 were collected by searching the Web of Science Core Collection database. Bibliometric analysis was conducted using VOSviewer, CiteSpace, and Bibliometrix software. This study included a total of 530 studies. According to the H, G, and M indices, the United States has made the most contributions worldwide, with China making significant contributions in recent years. Leiden University from the Netherlands ranks among the top institutions in terms of publication and citation rankings, with the institution's author Manfred Wuhrer contributing the most to this field. Frontiers in Immunology is the journal with the highest H-index. Research in this field has focused on antibody glycosylation, particularly the specific glycosylation of IgG and IgA, and its role in various ADs. The application of glycoengineering glycosylated proteins in the synthesis of targeted monoclonal antibodies, drug delivery, and regenerative medical materials may be a new trend in the treatment of ADs. Artificial intelligence is an emerging tool in glycobiology. This study summarizes the objective data on glycosylation in the field of AD publications in recent years, providing a reference for researchers in this field.
Collapse
Affiliation(s)
- Guoqian Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyi Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Shenzhi Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Tricomi J, Aoun M, Xu B, Holmdahl R, Richichi B. Stereoselective Synthesis of the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc Trisaccharide: a new Ligand for DCAR and Mincle C-Type Lectin Receptors. Chembiochem 2024; 25:e202400026. [PMID: 38506247 DOI: 10.1002/cbic.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
In this work, we have discovered that the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| | - Mike Aoun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Bingze Xu
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| |
Collapse
|
9
|
Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P. Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med 2024; 30:178-196. [PMID: 38142190 DOI: 10.1016/j.molmed.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Protein glycosylation controls cell-cell and cell-extracellular matrix (ECM) communication in immune, vascular, and inflammatory processes, underlining the critical role of this process in the identification of disease biomarkers and the design of novel therapies. Emerging evidence highlights the critical role of blood cell glycosylation in the pathophysiology of atherosclerosis (ATH) and myocardial infarction (MI). Here, we review the role of glycosylation in the interplay between blood cells, particularly erythrocytes, and endothelial cells (ECs), highlighting the involvement of this critical post/cotranslational modification in settings of cardiovascular disease (CVD). Importantly, we focus on emerging preclinical studies and clinical trials based on glycan-targeted drugs to validate their therapeutic potential. These findings may help establish new trends in preventive medicine and delineate novel targeted therapies in CVD.
Collapse
Affiliation(s)
- Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - José L Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
11
|
Biagiotti G, Toniolo G, Albino M, Severi M, Andreozzi P, Marelli M, Kokot H, Tria G, Guerri A, Sangregorio C, Rojo J, Berti D, Marradi M, Cicchi S, Urbančič I, van Kooyk Y, Chiodo F, Richichi B. Simple engineering of hybrid cellulose nanocrystal-gold nanoparticles results in a functional glyconanomaterial with biomolecular recognition properties. NANOSCALE HORIZONS 2023; 8:776-782. [PMID: 36951189 DOI: 10.1039/d3nh00063j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Gianluca Toniolo
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Martin Albino
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- ICCOM CNR via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Patrizia Andreozzi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", SCITEC-CNR, Via G. Fantoli 16/15, 20138, Milano, Italy
| | - Hana Kokot
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | | | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville, 41092, Spain
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Italian Center for Colloid and Surface Science (CSGI), 50019 Sesto Fiorentino (Firenze), Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Stefano Cicchi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Napoli, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
12
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Makandar AI, Jain M, Yuba E, Sethi G, Gupta RK. Canvassing Prospects of Glyco-Nanovaccines for Developing Cross-Presentation Mediated Anti-Tumor Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10122049. [PMID: 36560459 PMCID: PMC9784904 DOI: 10.3390/vaccines10122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Amina I. Makandar
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| |
Collapse
|
14
|
Chou PY, Lin SY, Wu YN, Shen CY, Sheu MT, Ho HO. Glycosylation of OVA antigen-loaded PLGA nanoparticles enhances DC-targeting for cancer vaccination. J Control Release 2022; 351:970-988. [DOI: 10.1016/j.jconrel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/30/2022]
|
15
|
Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells. Metab Eng 2022; 74:61-71. [PMID: 36152932 DOI: 10.1016/j.ymben.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.
Collapse
|
16
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
17
|
Halder T, Yadav SK, Yadav S. Synthesis of the trisaccharide repeating unit of Stenotrophomonas maltophilia O6 antigen through step-wise and one-pot approaches. Carbohydr Res 2022; 521:108669. [PMID: 36099720 DOI: 10.1016/j.carres.2022.108669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Synthetic conjugate vaccines are an important area of research for the prevention and occurrence of diseases caused by Gram-negative bacteria. For the development of such vaccines, access to the pure and homogeneous oligosaccharide fragments of the bacterial cell surface polysaccharides are necessary. Stenotrophomonas maltophilia is a typical opportunistic Gram-negative bacteria that causes severe pulmonary and other infections; often in hospitalized patients. With the emergence of multidrug resistant strains and increased virulence, new therapeutic strategies are needed to combat the threat. Herein, we report the syntheses of the trisaccharide repeating unit of S. maltophilia O6 antigen through stepwise and one-pot assemblies of the trisaccharide. The target trisaccharide was appended with a 2-aminoethyl linker that could provide the opportunity for conjugation to carrier proteins for the synthesis of vaccine candidates.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Sunil K Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
18
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
19
|
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Modified E2 Glycoprotein of Hepatitis C Virus Enhances Proinflammatory Cytokines and Protective Immune Response. J Virol 2022; 96:e0052322. [PMID: 35612312 DOI: 10.1128/jvi.00523-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) is characterized by a high number of chronic cases owing to an impairment of innate and adaptive immune responses. CD81 on the cell surface facilitates HCV entry by interacting with the E2 envelope glycoprotein. In addition, CD81/E2 binding on immunity-related cells may also influence host response outcome to HCV infection. Here, we performed site-specific amino acid substitution in the front layer of E2 sequence to reduce CD81 binding and evaluate the potential of the resulting immunogen as an HCV vaccine candidate. The modified sE2 protein (F442NYT), unlike unmodified sE2, exhibited a significant reduction in CD81 binding, induced higher levels of proinflammatory cytokines, repressed anti-inflammatory response in primary monocyte-derived macrophages as antigen-presenting cells, and stimulated CD4+ T cell proliferation. Immunization of BALB/c mice with an E1/sE2F442NYT nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine resulted in improved IgG1-to-IgG2a isotype switching, an increase in neutralizing antibodies against HCV pseudotype virus, a B and T cell proliferative response to antigens, and improved protection against infection with a surrogate recombinant vaccinia virus-expressing HCV E1-E2-NS2aa134-966 challenge model compared to E1/unmodified sE2 mRNA-LNP vaccine. Further investigation of the modified E2 antigen may provide helpful information for HCV vaccine development. IMPORTANCE Hepatitis C virus (HCV) E2-CD81 binding dampens protective immune response. We have identified that an alteration of amino acids in the front layer of soluble E2 (sE2) disrupts CD81 interaction and alters the cytokine response. Immunization with modified sE2F442NYT (includes an added potential N-linked glycosylation site and reduces CD81 binding activity)-mRNA-LNP candidate vaccine generates improved proinflammatory response and protective efficacy against a surrogate HCV vaccinia challenge model in mice. The results clearly suggested that HCV E2 exhibits immunoregulatory activity that inhibits induction of robust protective immune responses. Selection of engineered E2 antigen in an mRNA-LNP platform amenable to nucleic acid sequence alterations may open a novel approach for multigenotype HCV vaccine development.
Collapse
|
21
|
Toraskar S, Madhukar Chaudhary P, Kikkeri R. The Shape of Nanostructures Encodes Immunomodulation of Carbohydrate Antigen and Vaccine Development. ACS Chem Biol 2022; 17:1122-1130. [PMID: 35426652 DOI: 10.1021/acschembio.1c00998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gold nanoparticles (AuNPs) have shown remarkable potential for vaccine development, but the influence of the size and shape of nanoparticles modulating the T-cell-dependent carbohydrate antigen processing and immunomodulation is poorly investigated. Here, we described how different shapes and sizes of gold nanostructures carrying adjuvant modulate carbohydrate-based antigen processing in murine dendritic cells (mDCs) and subsequent T-cell activation produce a robust antibody response. As a prototype, CpG-adjuvant-coated spherical and rod- and star-shaped AuNPs were conjugated to the tripodal Tn-glycopeptide antigen to study their DC uptake and activation of T-cells in a DCs/T-cell co-culture assay. Our results showed that the spherical and star-shaped AuNPs displayed relatively weak receptor-mediated uptake and endosomal sequestration; however, they induced a high level of T helper-1 (Th1) biasing immune responses compared with rod-shaped AuNPs. Furthermore, the in vivo administration of AuNPs showed that the small spherical and star-shaped AuNPs induced an effective anti-Tn-glycopeptide immunoglobulin (IgG) antibody response compared with rod-shaped AuNPs. These results indicated that one could obtain superior carbohydrate vaccines by varying the shape and size parameters of nanostructures.
Collapse
Affiliation(s)
- Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Preeti Madhukar Chaudhary
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
22
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
23
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
24
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022; 342:321-336. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is an emerging therapeutic strategy for cancer treatment. Most of the immunotherapeutics approved by the FDA regulate the innate immune system and associated immune cell activity, with immune check inhibitors in particular having transformed the field of cancer immunotherapy due to their significant clinical potential. However, previously reported immunotherapeutics have exhibited undesirable side effects, including autoimmune toxicity and inflammation. Controlling these deleterious responses and designing therapeutics that can precisely target specific regions are thus crucial to improving the efficacy of cancer immunotherapies. Recent studies have reported that cancer cells employ glycan-immune checkpoint interactions to modulate immune cell activity. Thus, the recognition of cancer glycan moieties such as sialoglycans may improve the anticancer activity of immune cells. In this review, we discuss recent advances in cancer immunotherapies involving glycans and glycan-targeting technologies based on nanomaterial-assisted local delivery systems.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hayoung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
27
|
Cid E, Yamamoto M, Yamamoto F. Mixed-Up Sugars: Glycosyltransferase Cross-Reactivity in Cancerous Tissues and Their Therapeutic Targeting. Chembiochem 2021; 23:e202100460. [PMID: 34726327 DOI: 10.1002/cbic.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Indexed: 11/11/2022]
Abstract
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.
Collapse
Affiliation(s)
- Emili Cid
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Miyako Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Fumiichiro Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| |
Collapse
|