1
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Almaamari A, Sultan M, Zhang T, Qaed E, Wu S, Qiao R, Duan Y, Ding S, Liu G, Su S. Sigma-1 Receptor Specific Biological Functions, Protective Role, and Therapeutic Potential in Cardiovascular Diseases. Cardiovasc Toxicol 2025; 25:614-630. [PMID: 39937319 DOI: 10.1007/s12012-025-09975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for efficient and cost-effective treatments to decrease the risk of CVD. The sigma-1 receptor (S1R) plays a role in the development of cardiac hypertrophy, heart failure, ventricular remodeling, and various other cardiac diseases. Preclinical studies have shown that S1R activation has considerable beneficial effects on the cardiovascular system, and this knowledge might contribute to informing clinical trials associated with the prevention and treatment of CVDs. Therefore, the objective of this review was to investigate the mechanisms of S1R in CVD and how modulation of pathways contributes to cardiovascular protection to facilitate the development of new therapeutic agents targeting the cardiovascular system.
Collapse
Affiliation(s)
- Ahmed Almaamari
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Marwa Sultan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tao Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Eskandar Qaed
- Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shang Wu
- Breast Cancer Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Ruoqi Qiao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yuxin Duan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Shanshan Ding
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Suwen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Ramírez OA, Hellwig A, Zhang Z, Bading H. Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage. Cells 2025; 14:195. [PMID: 39936986 PMCID: PMC11816953 DOI: 10.3390/cells14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Focal swellings of dendrites ("dendritic blebbing") together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called "overactivation" of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein-protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER-mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity ("two-hit hypothesis"). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases.
Collapse
Affiliation(s)
- Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Zihong Zhang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| |
Collapse
|
4
|
Bonzerato CG, Keller KR, Wojcikiewicz RJH. Phosphorylation of Bok at Ser-8 blocks its ability to suppress IP 3R-mediated calcium mobilization. Cell Commun Signal 2025; 23:27. [PMID: 39810210 PMCID: PMC11730779 DOI: 10.1186/s12964-024-02008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which govern the mobilization of Ca2+ from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8). Whether Bok, or phosphorylated Bok, has any direct impact on the Ca2+ mobilizing function of IP3Rs remains to be established. METHODS Bok Ser-8 phosphorylation was characterized using purified proteins, G-protein coupled receptor agonists that increase cAMP levels in intact cells, mass spectrometry, and immunoreactivity changes. Also, using mammalian cells that exclusively or predominately express IP3R1, to which Bok binds strongly, and a fluorescent Ca2+-sensitive dye or a genetically-encoded Ca2+ sensor, we explored how endogenous and exogenous Bok controls the Ca2+ mobilizing function of IP3R1, and whether Bok phosphorylation at Ser-8, or replacement of Ser-8 with a phosphomimetic amino acid, is regulatory. RESULTS Our results confirm that Ser-8 of Bok is phosphorylated by cAMP-dependent protein kinase, and remarkably that phosphorylation can be detected with Bok specific antibodies. Also, we find that Bok has suppressive effects on IP3R-mediated Ca2+ mobilization in a variety of cell types. Specifically, Bok accelerated the post-maximal decline in G-protein coupled receptor-induced cytosolic Ca2+ concentration, via a mechanism that involves suppression of IP3R-dependent Ca2+ release from the endoplasmic reticulum. These effects were dependent on the Bok-IP3R interaction, as they are only seen with IP3Rs that can bind Bok (e.g., IP3R1). Surprisingly, Bok phosphorylation at Ser-8 weakened the interaction between Bok and IP3R1 and reversed the ability of Bok to suppress IP3R1-mediated Ca2+ mobilization. CONCLUSIONS For the first time, Bok was shown to directly suppress IP3R1 activity, which was reversed by Ser-8 phosphorylation. We hypothesize that this suppression of IP3R1 activity is due to Bok regulation of the conformational changes in IP3R1 that mediate channel opening. This study provides new insights on the role of Bok, its interaction with IP3Rs, and the impact it has on IP3R-mediated Ca2+ mobilization.
Collapse
Affiliation(s)
- Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
5
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
6
|
Luo Y, Liu R, Zhang H, Wang H, Yin H, Tian G, Wang B, Yan Y, Ding Z, Dai J, Niu L, Yuan G, Pan Y. Amantadine against glioma via ROS-mediated apoptosis and autophagy arrest. Cell Death Dis 2024; 15:834. [PMID: 39548081 PMCID: PMC11568115 DOI: 10.1038/s41419-024-07228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Glioma is a common primary nervous system malignant tumor with poor overall cure rate and low survival rate, yet successful treatment still remains a challenge. Here, we demonstrated that amantadine (AMT) exhibits the powerful anti-glioma effect by promoting apoptosis and autophagy in vivo and in vitro. Mechanistically, amantadine induces a large amount of reactive oxygen species (ROS) accumulation in glioma cells, and then triggers apoptosis by destroying mitochondria. In addition, amantadine induces the initiation of autophagy and inhibits the fusion of autophagosome and lysosome, consequently performing an anti-glioma role. Taken together, our findings suggest that amantadine could be a promising anti-glioma drug that inhibits glioma cells by inducing apoptosis and autophagy, which may provide a novel potential treatment option for patients.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - He Zhang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hongyu Wang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hang Yin
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guopeng Tian
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Wang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunji Yan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zilin Ding
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Junqiang Dai
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Liang Niu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Sun Z, Wang Y, Jin X, Li S, Qiu HJ. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int J Mol Sci 2024; 25:9206. [PMID: 39273156 PMCID: PMC11395300 DOI: 10.3390/ijms25179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria play pivotal roles in sustaining various biological functions including energy metabolism, cellular signaling transduction, and innate immune responses. Viruses exploit cellular metabolic synthesis to facilitate viral replication, potentially disrupting mitochondrial functions and subsequently eliciting a cascade of proinflammatory responses in host cells. Additionally, the disruption of mitochondrial membranes is involved in immune regulation. During viral infections, mitochondria orchestrate innate immune responses through the generation of reactive oxygen species (ROS) and the release of mitochondrial DNA, which serves as an effective defense mechanism against virus invasion. The targeting of mitochondrial damage may represent a novel approach to antiviral intervention. This review summarizes the regulatory mechanism underlying proinflammatory response induced by mitochondrial damage during viral infections, providing new insights for antiviral strategies.
Collapse
Affiliation(s)
- Zitao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Jin
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
8
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong B, Wang K, Li S, Gao Y, Feng X, Liao Z, Mei R, Yang C. SYNJ2BP ameliorates intervertebral disc degeneration by facilitating mitochondria-associated endoplasmic reticulum membrane formation and mitochondrial Zn 2+ homeostasis. Free Radic Biol Med 2024; 212:220-233. [PMID: 38158052 DOI: 10.1016/j.freeradbiomed.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
An Y, Wang X, Guan X, Yuan P, Liu Y, Wei L, Wang F, Qi X. Endoplasmic reticulum stress-mediated cell death in cardiovascular disease. Cell Stress Chaperones 2024; 29:158-174. [PMID: 38295944 PMCID: PMC10939083 DOI: 10.1016/j.cstres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Yuan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Wang
- Department of Vascular Surgery, Hebei General Hospital, Hebei, China
| | - Xin Qi
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
10
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Lamloum NS, Soliman HA, Rashad Ahmed R, Ahmed OM, Abdel-Maksoud MA, Kotob MH, Zaky MY. Improvement effects of green tea and pumpkin oils on myelin oligodendrocyte glycoprotein-induced Multiple sclerosis in rats. J Funct Foods 2023; 111:105876. [DOI: 10.1016/j.jff.2023.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
|
12
|
King LE, Hohorst L, García-Sáez AJ. Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 2023; 136:jcs260790. [PMID: 37994778 DOI: 10.1242/jcs.260790] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
The proteins of the BCL-2 family are known as key regulators of apoptosis, with interactions between family members determining permeabilisation of the mitochondrial outer membrane (MOM) and subsequent cell death. However, the exact mechanism through which they form the apoptotic pore responsible for MOM permeabilisation (MOMP), the structure and specific components of this pore, and what roles BCL-2 proteins play outside of directly regulating MOMP are incompletely understood. Owing to the link between apoptosis dysregulation and disease, the BCL-2 proteins are important targets for drug development. With the development and clinical use of drugs targeting BCL-2 proteins showing success in multiple haematological malignancies, enhancing the efficacy of these drugs, or indeed developing novel drugs targeting BCL-2 proteins is of great interest to treat cancer patients who have developed resistance or who suffer other disease types. Here, we review our current understanding of the molecular mechanism of MOMP, with a particular focus on recently discovered roles of BCL-2 proteins in apoptosis and beyond, and discuss what implications these functions might have in both healthy tissues and disease.
Collapse
Affiliation(s)
- Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Lisa Hohorst
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
13
|
Zhang P, Yan X, Zhang X, Liu Y, Feng X, Yang Z, Zhang J, Xu X, Zheng Q, Liang L, Han H. TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx. Circ Res 2023; 133:739-757. [PMID: 37750320 DOI: 10.1161/circresaha.123.322686] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- The Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, China (Y.L.)
| | - Xingxing Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, China (Q.Z.)
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Gastroenterology (H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Abdel-Magid AF. Targeting the Inhibition of B-Cell Lymphoma 2 Protein for the Treatment of Cancer. ACS Med Chem Lett 2023; 14:1320-1322. [PMID: 37849546 PMCID: PMC10577691 DOI: 10.1021/acsmedchemlett.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 10/19/2023] Open
Abstract
The invention in this patent application relates to 1,3,4,7-tetrahydro-2H-pyrrolo[3',2':5,6]pyrido[2,3-b][1,4]oxazepine derivatives represented generally by Formula 1. These compounds are Bcl-2 inhibitors and may be useful for the treatment of chronic lymphocytic leukemia, small lymphocytic lymphoma, and/or acute lymphocytic lymphoma.
Collapse
Affiliation(s)
- Ahmed F. Abdel-Magid
- Therachem Research Medilab, LLC, 100 Jade Park, Chelsea, Alabama 35043, United States
| |
Collapse
|
15
|
Ma J, Pan Z, Du H, Chen X, Zhu X, Hao W, Zheng Q, Tang X. Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells. Oncol Lett 2023; 26:327. [PMID: 37415631 PMCID: PMC10320424 DOI: 10.3892/ol.2023.13913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/29/2023] [Indexed: 07/08/2023] Open
Abstract
Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.
Collapse
Affiliation(s)
- Jun Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hongchao Du
- Department of General Surgery, Binzhou Medical University Affiliated Yantai Yeda Hospital, Yantai, Shandong 265599, P.R. China
| | - Xiaojie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, Xinjiang 832099, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
16
|
Nehlin JO. Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:217-247. [PMID: 37437979 DOI: 10.1016/bs.apcsb.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The accumulation of senescent cells in the aging individual is associated with an increase in the occurrence of age-associated pathologies that contribute to poor health, frailty, and mortality. The number and type of senescent cells is viewed as a contributor to the body's senescence burden. Cellular models of senescence are based on induction of senescence in cultured cells in the laboratory. One type of senescence is triggered by mitochondrial dysfunction. There are several indications that mitochondria defects contribute to body aging. Senotherapeutics, targeting senescent cells, have been shown to induce their lysis by means of senolytics, or repress expression of their secretome, by means of senomorphics, senostatics or gerosuppressors. An outline of the mechanism of action of various senotherapeutics targeting mitochondria and senescence-associated mitochondria dysfunction will be here addressed. The combination of geroprotective interventions together with senotherapeutics will help to strengthen mitochondrial energy metabolism, biogenesis and turnover, and lengthen the mitochondria healthspan, minimizing one of several molecular pathways contributing to the aging phenotype.
Collapse
Affiliation(s)
- Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
17
|
Li Y, Yu Q, Huang R, Chen H, Ren H, Ma L, He Y, Li W. SARS-CoV-2 SUD2 and Nsp5 Conspire to Boost Apoptosis of Respiratory Epithelial Cells via an Augmented Interaction with the G-Quadruplex of BclII. mBio 2023; 14:e0335922. [PMID: 36853058 PMCID: PMC10127692 DOI: 10.1128/mbio.03359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The molecular mechanisms underlying how SUD2 recruits other proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to exert its G-quadruplex (G4)-dependent pathogenic function is unknown. Herein, Nsp5 was singled out as a binding partner of the SUD2-N+M domains (SUD2core) with high affinity, through the surface located crossing these two domains. Biochemical and fluorescent assays demonstrated that this complex also formed in the nucleus of living host cells. Moreover, the SUD2core-Nsp5 complex displayed significantly enhanced selective binding affinity for the G4 structure in the BclII promoter than did SUD2core alone. This increased stability exhibited by the tertiary complex was rationalized by AlphaFold2 and molecular dynamics analysis. In line with these molecular interactions, downregulation of BclII and subsequent augmented apoptosis of respiratory cells were both observed. These results provide novel information and a new avenue to explore therapeutic strategies targeting SARS-CoV-2. IMPORTANCE SUD2, a unique protein domain closely related to the pathogenesis of SARS-CoV-2, has been reported to bind with the G-quadruplex (G4), a special noncanonical DNA structure endowed with important functions in regulating gene expression. However, the interacting partner of SUD2, among other SARS-CoV-2 Nsps, and the resulting functional consequences remain unknown. Here, a stable complex formed between SUD2 and Nsp5 was fully characterized both in vitro and in host cells. Moreover, this complex had a significantly enhanced binding affinity specifically targeting the Bcl2G4 in the promoter region of the antiapoptotic gene BclII, compared with SUD2 alone. In respiratory epithelial cells, the SUD2-Nsp5 complex promoted BclII-mediated apoptosis in a G4-dependent manner. These results reveal fresh information about matched multicomponent interactions, which can be parlayed to develop new therapeutics for future relevant viral disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hequan Ren
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Shalaby R, Diwan A, Flores-Romero H, Hertlein V, Garcia-Saez AJ. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ 2023; 30:731-741. [PMID: 36289446 PMCID: PMC9607731 DOI: 10.1038/s41418-022-01078-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
BOK is a poorly understood member of the BCL-2 family of proteins that has been proposed to function as a pro-apoptotic, BAX-like effector. However, the molecular mechanism and structural properties of BOK pores remain enigmatic. Here, we show that the thermal stability and pore activity of BOK depends on the presence of its C-terminus as well as on the mitochondrial lipid cardiolipin. We directly visualized BOK pores in liposomes by electron microscopy, which appeared similar to those induced by BAX, in line with comparable oligomerization properties quantified by single molecule imaging. In addition, super-resolution STED imaging revealed that BOK organized into dots and ring-shaped assemblies in apoptotic mitochondria, also reminiscent of those found for BAX and BAK. Yet, unlike BAX and BAK, the apoptotic activity of BOK was limited by partial mitochondrial localization and was independent of and unaffected by other BCL-2 proteins. These results suggest that, while BOK activity is kept in check by subcellular localization instead of interaction with BCL-2 family members, the resulting pores are structurally similar to those of BAX and BAK.
Collapse
Affiliation(s)
- Raed Shalaby
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Arzoo Diwan
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hector Flores-Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Vanessa Hertlein
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| |
Collapse
|
19
|
Bonzerato CG, Wojcikiewicz RJH. Bok: real killer or bystander with non-apoptotic roles? Front Cell Dev Biol 2023; 11:1161910. [PMID: 37123400 PMCID: PMC10130511 DOI: 10.3389/fcell.2023.1161910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bcl-2-related ovarian killer, Bok, was first labeled "pro-apoptotic" due to its ability to cause cell death when over-expressed. However, it has become apparent that this is not a good name, since Bok is widely expressed in tissues other than ovaries. Further, there is serious doubt as to whether Bok is a real "killer," due to disparities in the ability of over-expressed versus endogenous Bok to trigger apoptosis. In this brief review, we rationalize these disparities and argue that endogenous Bok is very different from the pro-apoptotic, mitochondrial outer membrane permeabilization mediators, Bak and Bax. Instead, Bok is a stable, endoplasmic reticulum-located protein bound to inositol 1,4,5 trisphosphate receptors. From this location, Bok plays a variety of roles, including regulation of endoplasmic reticulum/mitochondria contact sites and mitochondrial dynamics. Therefore, categorizing Bok as a "killer" may well be misleading and instead, endogenous Bok would better be considered an endoplasmic reticulum-located "bystander", with non-apoptotic roles.
Collapse
|
20
|
Bonzerato CG, Keller KR, Schulman JJ, Gao X, Szczesniak LM, Wojcikiewicz RJH. Endogenous Bok is stable at the endoplasmic reticulum membrane and does not mediate proteasome inhibitor-induced apoptosis. Front Cell Dev Biol 2022; 10:1094302. [PMID: 36601536 PMCID: PMC9806350 DOI: 10.3389/fcell.2022.1094302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Controversy surrounds the cellular role of the Bcl-2 family protein Bok. On one hand, it has been shown that all endogenous Bok is bound to inositol 1,4,5-trisphosphate receptors (IP3Rs), while other data suggest that Bok can act as a pro-apoptotic mitochondrial outer membrane permeabilization mediator, apparently kept at very low and non-apoptotic levels by efficient proteasome-mediated degradation. Here we show that 1) endogenous Bok is expressed at readily-detectable levels in key cultured cells (e.g., mouse embryonic fibroblasts and HCT116 cells) and is not constitutively degraded by the proteasome, 2) proteasome inhibitor-induced apoptosis is not mediated by Bok, 3) endogenous Bok expression level is critically dependent on the presence of IP3Rs, 4) endogenous Bok is rapidly degraded by the ubiquitin-proteasome pathway in the absence of IP3Rs at the endoplasmic reticulum membrane, and 5) charged residues in the transmembrane region of Bok affect its stability, ability to interact with Mcl-1, and pro-apoptotic activity when over-expressed. Overall, these data indicate that endogenous Bok levels are not governed by proteasomal activity (except when IP3Rs are deleted) and that while endogenous Bok plays little or no role in apoptotic signaling, exogenous Bok can mediate apoptosis in a manner dependent on its transmembrane domain.
Collapse
|
21
|
Burbridge E, Adrain C. Organelle homeostasis: from cellular mechanisms to disease. FEBS J 2022; 289:6822-6831. [PMID: 36377590 DOI: 10.1111/febs.16667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
The major criterion that distinguishes eukaryotes from prokaryotes is the presence of organelles in the former. Organelles provide a compartment in which biochemical processes are corralled within bespoke biophysical conditions and act as storage depots, powerhouses, waste storage/recycling units and innate immune signalling hubs. A key challenge faced by organelles is to define, and then retain, their identity; this is mediated by complex proteostasis mechanisms including the import of an organelle-specific proteome, the exclusion of non-organellar proteins and the removal of misfolded proteins via dedicated quality control mechanisms. This Special Issue on Organelle Homeostasis provides an engaging, eclectic, yet integrative, perspective on organelle homeostasis in a range of organelles including those from the secretory and endocytic pathways, mitochondria, the autophagy-lysosomal pathway and the nucleus and its sub-compartments. Some lesser-known organelles including migrasomes (organelles that are released by migrating cells) and GOMED (a Golgi-specific form of autophagy) are also introduced. In the spirit of the principles of organelle biology, we hope you find the reviews in this Issue both encapsulating and captivating, and we thank the authors for their excellent contributions.
Collapse
Affiliation(s)
- Emma Burbridge
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| |
Collapse
|
22
|
Athanasopoulou K, Adamopoulos PG, Daneva GN, Scorilas A. Decoding the concealed transcriptional signature of the apoptosis-related BCL2 antagonist/killer 1 (BAK1) gene in human malignancies. Apoptosis 2022; 27:869-882. [DOI: 10.1007/s10495-022-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
23
|
Zhang Y, Li M, Guo Y, Liu S, Tao Y. The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Front Pharmacol 2022; 13:905501. [PMID: 35784729 PMCID: PMC9247141 DOI: 10.3389/fphar.2022.905501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is fairly different from other types of cell-death in biochemical processes, morphological changes and genetics as a special programmed cell-death. Here we summarize the current literatures on ferroptosis, including the cascade reaction of key material metabolism in the process, dysfunction of organelles, the relationship between different organelles and the way positive and negative key regulatory factors to affect ferroptosis in the epigenetic level. Based on material metabolism or epigenetic regulation, it is obvious that the regulatory network of ferroptosis is interrelated and complex.
Collapse
Affiliation(s)
- Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingrui Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiming Guo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao,
| |
Collapse
|
24
|
Li YE, Sowers JR, Hetz C, Ren J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis 2022; 13:504. [PMID: 35624099 PMCID: PMC9142581 DOI: 10.1038/s41419-022-04942-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.
Collapse
Affiliation(s)
- Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
25
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|