1
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
2
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Lee SH, Cilz NI, Avram SKW, Cymerblit-Sabba A, Song J, Courey K, Howley A, Cooke ME, Young WS. Stimulation of median raphe terminals in dorsal CA2 reduces social investigation in male mice specifically investigating social stimulus of ovariectomized female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555504. [PMID: 37693526 PMCID: PMC10491145 DOI: 10.1101/2023.08.30.555504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The cornu ammonis area 2 (CA2) region is essential for social behaviors, especially in social aggression and social memory. Recently, we showed that targeted CA2 stimulation of vasopressin presynaptic fibers from the paraventricular nuclei of hypothalamus strongly enhances social memory in mice. In addition, the CA2 area of the mouse hippocampus receives neuronal inputs from other regions including the septal nuclei, the diagonal bands of Broca, supramammillary nuclei, and median raphe nucleus. However, the functions of these projections have been scarcely investigated. A functional role of median raphe (MR) - CA2 projection is supported by the MR to CA2 projections and 82% reduction of hippocampal serotonin (5-HT) levels following MR lesions. Thus, we investigated the behavioral role of presynaptic fibers from the median raphe nucleus projecting to the dorsal CA2 (dCA2). Here, we demonstrate the optogenetic stimulation of 5-HT projections to dCA2 from the MR do not alter social memory, but instead reduce social interaction. We show that optical stimulation of MR fibers excites interneurons in the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of CA2 region. Consistent with these observations, we show that bath application of 5-HT increases spontaneous GABA release onto CA2 pyramidal neurons and excites presumed interneurons located in the SR/SLM. This is the first study, to our knowledge, which investigates the direct effect of 5-HT release from terminals onto dCA2 neurons on social behaviors. This highlights the different roles for these inputs (i.e., vasopressin inputs regulating social memory versus serotonin inputs regulating social interaction).
Collapse
Affiliation(s)
- Su Hyun Lee
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Nicholas I. Cilz
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Sarah K. Williams Avram
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Karis Courey
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Austin Howley
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Michaela E. Cooke
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Oubraim S, Shen RY, Haj-Dahmane S. Oxytocin excites dorsal raphe serotonin neurons and bidirectionally gates their glutamate synapses. iScience 2023; 26:106707. [PMID: 37250336 PMCID: PMC10214716 DOI: 10.1016/j.isci.2023.106707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Oxytocin (OXT) modulates wide spectrum of social and emotional behaviors via modulation of numerous neurotransmitter systems, including serotonin (5-HT). However, how OXT controls the function of dorsal raphe nucleus (DRN) 5-HT neurons remains unknown. Here, we reveal that OXT excites and alters the firing pattern of 5-HT neurons via activation of postsynaptic OXT receptors (OXTRs). In addition, OXT induces cell-type-specific depression and potentiation of DRN glutamate synapses by two retrograde lipid messengers, 2-arachidonoylglycerol (2-AG) and arachidonic acid (AA), respectively. Neuronal mapping demonstrates that OXT preferentially potentiates glutamate synapses of 5-HT neurons projecting to medial prefrontal cortex (mPFC) and depresses glutamatergic inputs to 5-HT neurons projecting to lateral habenula (LHb) and central amygdala (CeA). Thus, by engaging distinct retrograde lipid messengers, OXT exerts a target-specific gating of glutamate synapses on the DRN. As such, our data uncovers the neuronal mechanisms by which OXT modulates the function of DRN 5-HT neurons.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Tancredi D, Cardinali I. Being a Dog: A Review of the Domestication Process. Genes (Basel) 2023; 14:genes14050992. [PMID: 37239352 DOI: 10.3390/genes14050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The process of canine domestication represents certainly one of the most interesting questions that evolutionary biology aims to address. A "multiphase" view of this process is now accepted, with a first phase during which different groups of wolves were attracted by the anthropogenic niche and a second phase characterized by the gradual establishment of mutual relationships between wolves and humans. Here, we provide a review of dog (Canis familiaris) domestication, highlighting the ecological differences between dogs and wolves, analyzing the molecular mechanisms which seem to have influenced the affiliative behaviors first observed in Belyaev's foxes, and describing the genetics of ancient European dogs. Then, we focus on three Mediterranean peninsulas (Balkan, Iberian and Italian), which together represent the main geographic area for studying canine domestication dynamics, as it has shaped the current genetic variability of dog populations, and where a well-defined European genetic structure was pinpointed through the analysis of uniparental genetic markers and their phylogeny.
Collapse
Affiliation(s)
- Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
6
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
7
|
Meng X, Grandjean J, Sbrini G, Schipper P, Hofwijks N, Stoop J, Calabrese F, Homberg J. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem Neurosci 2022; 13:2974-2981. [PMID: 36197033 PMCID: PMC9585586 DOI: 10.1021/acschemneuro.2c00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
The central serotoninergic system is critical for stress responsivity and social behavior, and its dysregulations have been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to develop new treatment approaches. Previously, mice lacking tryptophan hydroxylase 2 (Tph2) have been developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying mechanisms. In this study, we used a Tph2 knockout (Tph2-/-) male rat model to study how the lack of serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated in these behaviors, we furthermore explored whether the effects of Tph2 knockout on behavior would relate to changes in the oxytocin system. We show that Tph2-/- rats display reduced anxiety-like behavior and a high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in the infralimbic and prelimbic cortices, paraventricular nucleus, dorsal raphe nucleus, and some subregions of the hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex and paraventricular nucleus but not the dorsal raphe nucleus, central amygdala, and hippocampus. In conclusion, our study demonstrated reduced anxiety but exaggerated aggression in Tph2-/- male rats and reveals for the first time a potential involvement of altered oxytocin system function. Meanwhile, the research of oxytocin could be distinguished in almost any psychiatric disorder including anxiety and mental disorders. This research potentially proposes a new target for the treatment of such disorders, from a genetic serotonin deficiency aspect.
Collapse
Affiliation(s)
- Xianzong Meng
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
- Department
of Medical Imaging, Radboud University Medical
Centre, 6525 GA Nijmegen, The Netherlands
| | - Giulia Sbrini
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Pieter Schipper
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Nita Hofwijks
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Jesse Stoop
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Francesca Calabrese
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Judith Homberg
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
8
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Grieb ZA, Lonstein JS. Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210062. [PMID: 35858105 PMCID: PMC9272149 DOI: 10.1098/rstb.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/09/2022] [Indexed: 08/31/2023] Open
Abstract
The role of oxytocin in maternal caregiving and other postpartum behaviours has been studied for more than five decades. How oxytocin interacts with other neurochemical systems to enact these behavioural changes, however, is only slowly being elucidated. The best-studied oxytocin-neurotransmitter interaction is with the mesolimbic dopamine system, and this interaction is essential for maternal motivation and active caregiving behaviours such as retrieval of pups. Considerably less attention has been dedicated to investigating how oxytocin interacts with central serotonin to influence postpartum behaviour. Recently, it has become clear that while oxytocin-dopamine interactions regulate the motivational and pup-approach aspects of maternal caregiving behaviours, oxytocin-serotonin interactions appear to regulate nearly all other aspects including postpartum nursing, aggression, anxiety-like behaviour and stress coping strategy. Collectively, oxytocin's interactions with central dopamine and serotonin systems are thus critical for the entire suite of behavioural adaptations exhibited in the postpartum period, and these sites of interaction are potential pharmacological targets for where oxytocin could help to ameliorate deficits in maternal caregiving and poor postpartum mental health. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Zachary A. Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Joseph S. Lonstein
- Psychology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Watanasriyakul WT, Scotti MAL, Carter CS, McNeal N, Colburn W, Wardwell J, Grippo AJ. Social isolation and oxytocin antagonism increase emotion-related behaviors and heart rate in female prairie voles. Auton Neurosci 2022; 239:102967. [PMID: 35240436 PMCID: PMC8974671 DOI: 10.1016/j.autneu.2022.102967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/06/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Social isolation influences depression- and anxiety-related disorders and cardiac function. Oxytocin may mediate these conditions through interactions with social behavior, emotion, and cardiovascular function, via central and/or peripheral mechanisms. The present study investigated the influence of oxytocin antagonism using L-368,899, a selective oxytocin receptor antagonist that crosses the blood-brain barrier, on depression- and anxiety-related behaviors and heart rate in prairie voles. This rodent species has translational value for investigating interactions of social stress, behavior, cardiac responses, and oxytocin function. Adult female prairie voles were socially isolated or co-housed with a sibling for 4 weeks. A subset of animals in each housing condition was subjected to 4 sessions of acute L-368,899 (20 mg/kg, ip) or saline administration followed by a depression- or anxiety-related behavioral assessment. A subset of co-housed animals was evaluated for cardiac function following acute administration of L-368,899 (20 mg/kg, ip) and during behavioral assessments. Social isolation (vs. co-housing) increased depression- and anxiety-related behaviors. In isolated animals, L-368,899 (vs. vehicle) did not influence anxiety-related behaviors but exacerbated depression-related behaviors. In co-housed animals, L-368,899 exacerbated depression-related behaviors and increased heart rate at baseline and during behavioral tests. Social isolation produces emotion-related behaviors in prairie voles; central and/or peripheral oxytocin antagonism exacerbates these behavioral signs. Oxytocin antagonism induces depression-relevant behaviors and increases basal and stressor-reactive heart rate in co-housed prairie voles, similar to the consequences of social isolation demonstrated in this model. These results provide translational value for humans who experience behavioral and cardiac consequences of loneliness or social stress.
Collapse
Affiliation(s)
- W Tang Watanasriyakul
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Melissa-Ann L Scotti
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - C Sue Carter
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, United States of America
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - William Colburn
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America.
| |
Collapse
|
11
|
Fear, love, and the origins of canid domestication: An oxytocin hypothesis. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100100. [PMID: 35755921 PMCID: PMC9216449 DOI: 10.1016/j.cpnec.2021.100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
The process of dog domestication likely involved at least two functional stages. The initial stage occurred when subpopulations of wolves became synanthropes, benefiting from life nearby or in human environments. The second phase was characterized by the evolution of novel forms of interspecific cooperation and social relationships between humans and dogs. Here, we discuss possible roles of the oxytocin system across these functional stages of domestication. We hypothesize that in early domestication, oxytocin played important roles in attenuating fear and stress associated with human contact. In later domestication, we hypothesize that oxytocin's most critical functions were those associated with affiliative social behavior, social engagement, and cooperation with humans. We outline possible neurobiological changes associated with these processes and present a Siberian fox model of canid domestication in which these predictions can be tested. Lastly, we identify limitations of current studies on the neuroendocrinology of domestication and discuss challenges and opportunities for future research. We propose various roles for oxytocin across canid domestication. In early domestication, oxytocin primarily regulated fear and anxiety toward humans. In late domestication, oxytocin facilitated interspecific social bonds and cooperation. Comparative neurobiology is critical for understanding oxytocin's roles in domestication. Experimentally domesticated Siberian foxes provide a powerful model for these studies.
Collapse
|
12
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
13
|
Grieb ZA, Ford EG, Yagan M, Lau BYB, Manfredsson FP, Krishnan K, Lonstein JS. Oxytocin receptors in the midbrain dorsal raphe are essential for postpartum maternal social and affective behaviors. Psychoneuroendocrinology 2021; 131:105332. [PMID: 34182251 PMCID: PMC8405581 DOI: 10.1016/j.psyneuen.2021.105332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/23/2023]
Abstract
Oxytocin receptors (OTRs) in the midbrain dorsal raphe (DR; the source of most forebrain serotonin) have recently been identified as a potential pharmacological target for treating numerous psychiatric disorders. However, almost all research on this topic has been conducted on males and the role of DR OTRs in female social and affective behaviors is mostly unknown. This may be particularly relevant during early motherhood, which is a time of high endogenous oxytocin signaling, but also a time of elevated risk for psychiatric dysfunction. To investigate whether OTRs in the DR are necessary for postpartum female social and affective behaviors, we constructed and then injected into the DR an adeno-associated virus permanently expressing an shRNA targeting OTR mRNA. We then observed a suite of social and affective behaviors postpartum. OTR knockdown in the maternal DR led to pup loss after parturition, decreased nursing, increased aggression, and increased behavioral despair. These effects of OTR knockdown in the DR may be due to disrupted neuroplasticity in the primary somatosensory cortex (S1), which mediates maternal sensitivity to the tactile cues from young, as we found significantly more plasticity-restricting perineuronal nets (PNNs) in the S1 rostral barrel field and fewer PNNs in the caudal barrel field of OTR-knockdown mothers. These results demonstrate that OTRs in the midbrain DR are essential for postpartum maternal social and affective behaviors, are involved in postpartum cortical plasticity, and suggest that pharmacotherapies targeting OTRs in the DR could be effective treatments for some peripartum affective disorders.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Emma G Ford
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Mahircan Yagan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Billy Y B Lau
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Keerthi Krishnan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Grieb ZA, Lonstein JS. Oxytocin receptor expression in the midbrain dorsal raphe is dynamic across female reproduction in rats. J Neuroendocrinol 2021; 33:e12926. [PMID: 33427399 DOI: 10.1111/jne.12926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Central oxytocin receptor (OTR) expression is extremely sensitive to circulating steroid hormones and OTRs influence many of the neurobehavioural adaptations associated with female reproduction (e.g., postpartum caregiving, aggression, cognition, affective responses). Changes in central OTR expression across female reproduction have often been studied, but almost all of such research has focused on the forebrain, ignoring hormone-sensitive midbrain sites such as the serotonergic dorsal raphe (DR) that are also critical for postpartum behaviours. To investigate the effects of female reproductive state on OTRs in the DR, we first used autoradiography to examine OTR binding across four female reproductive states in laboratory rats: dioestrous virgin, pregnancy day 10, the day of parturition and postpartum day 7. OTR binding in the rostral DR (but not other DR subregions) was approximately 250% higher in parturient rats compared to dioestrous virgins and dropped back down to virgin levels by postpartum day 7. Given the chemical heterogeneity of the DR, we then examined OTR expression in the three most abundant neuronal phenotypes of the DR (i.e., serotonin, GABA and dopamine) in dioestrous virgins and recently parturient females. Using dual-label immunohistochemistry and in situ hybridisation, we found that twice as many dopaminergic cells in the parturient rostral DR contained OTR immunoreactivity compared to that found in virgins. On the other hand, mothers had fewer rostral DR GABAergic cells expressing OTRs than did virgins. OTR expression in serotonin cells did not differ between the two groups. Overall, these results suggest that the rostral subregion of the midbrain DR is uniquely sensitive to oxytocin around the time of parturition, with subpopulations of cells that become more sensitive (i.e., dopamine), less sensitive (i.e., GABA) and show no change (i.e., serotonin) to this neuropeptide. This dynamic OTR signalling in the female DR may help drive the numerous behavioural changes across female reproduction that are necessary for successful motherhood.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
16
|
Fujisaki M, Nakamura A, Muroi Y, Ishii T. Oxytocin in the dorsal raphe nucleus antagonizes the inhibition of maternal care induced by food deprivation. Horm Behav 2020; 124:104773. [PMID: 32437716 DOI: 10.1016/j.yhbeh.2020.104773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Lactation is indispensable for the pup's survival, but is considered a survival burden in dams under negative energy conditions. In the present study, we tested our hypothesis that oxytocin may facilitate energy investment to pups through behavioral control as well as milk ejection. Maternal care was observed in dams at 3 h but not 8 h after food deprivation. We investigated whether oxytocin in the dorsal raphe nucleus (DRN), which is involved in energy state-dependent regulation of maternal care, regulates maternal care. For this purpose, 2-pmol L368899, an oxytocin receptor antagonist, was injected into the DRN; after treatment, maternal care was inhibited in the dams with 3-h fasting, but not in the fed dams. In contrast, recovery of maternal care was observed in the dams with 8-h fasting who underwent 100-pmol oxytocin injection at the DRN. These results indicate that oxytocin in the DRN is required for displaying maternal behavior under fasting conditions, but not under fed conditions. Next, we investigated the site of oxytocin release. Presentation of pups decreased the oxytocin immunoreactivity at the paraventricular nucleus (PVN) of the hypothalamus in the 3-h-fasted dams, but not in the fed or 8-h-fasted dams. No change of the serum oxytocin level was observed. Few oxytocin-positive neurons projecting from the PVN to the DRN were detected through labeling with the retrograde tracer fluorogold. Oxytocin secreted at the PVN, which reaches the DRN, but not released as a hormone or neurotransmitter may mediate maternal care under food-restricted conditions.
Collapse
Affiliation(s)
- Motoyuki Fujisaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ayane Nakamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
17
|
Anpilov S, Shemesh Y, Eren N, Harony-Nicolas H, Benjamin A, Dine J, Oliveira VEM, Forkosh O, Karamihalev S, Hüttl RE, Feldman N, Berger R, Dagan A, Chen G, Neumann ID, Wagner S, Yizhar O, Chen A. Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors. Neuron 2020; 107:644-655.e7. [PMID: 32544386 PMCID: PMC7447984 DOI: 10.1016/j.neuron.2020.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment. A small, wireless device is used for optogenetic activation in a complex environment PVN oxytocin neurons were activated repeatedly over 2 days in a group setting Repeated activation in a group setting elicited both pro-social and agonistic behavior Findings support the social salience hypothesis of oxytocin neuro-modulation
Collapse
Affiliation(s)
- Sergey Anpilov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Eren
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Hala Harony-Nicolas
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Asaf Benjamin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Julien Dine
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vinícius E M Oliveira
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Oren Forkosh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stoyo Karamihalev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Rosa-Eva Hüttl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Feldman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ryan Berger
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avi Dagan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
18
|
Tolomeo S, Chiao B, Lei Z, Chew SH, Ebstein RP. A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior. Neurosci Biobehav Rev 2020; 115:251-272. [PMID: 32360414 DOI: 10.1016/j.neubiorev.2020.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Oxytocin is an important modulator of human affiliative behaviors, including social skills, human pair bonding, and friendship. CD38 will be discussed as an immune marker and then in more detail the mechanisms of CD38 on releasing brain oxytocin. Mention is made of the paralogue of oxytocin, vasopressin, that has often overlapping and complementary functions with oxytocin on social behavior. Curiously, vasopressin does not require CD38 to be released from the brain. This review discusses the social salience hypothesis of oxytocin action, a novel view of how this molecule influences much of human social behaviors often in contradictory ways. The oxytocinergic-vasopressinergic systems are crucial modulators of broad aspects of human personality. Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games. This review also covers the role of oxytocin in parenting and parental attachment. In conclusion, the effects of oxytocin on human behavior depend on the individual's social context and importantly as well, the individual's cultural milieu, viz. East and West. ACRONYMS: ACC = Anterior Cingulate ADP = Adenosine diphosphate AQ = Autism Quotient cADPR = Cyclic ADP-ribose CNS = Central nervous system DA = Dopamine eQTLC = Expression Quantitative Trait Loci LC-NE = Locus Coeruleus-Norepinephrine MRI = Magnetic Resonance Imaging OFC = Orbitofrontal cortices OXT = Oxytocin RAGE = Receptor for advanced glycation end-products SARM1 = Sterile Alpha and toll/interleukin-1 receptor motif-containing 1 TRPM2= Transient Receptor Potential Cation Channel Subfamily M Member 2 AVP = Vasopressin.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore.
| | - Benjamin Chiao
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China; PSB Paris School of Business, Paris, France
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| |
Collapse
|
19
|
Repeatability analysis improves the reliability of behavioral data. PLoS One 2020; 15:e0230900. [PMID: 32240211 PMCID: PMC7117744 DOI: 10.1371/journal.pone.0230900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Reliability of data has become a major concern in the course of the reproducibility crisis. Especially when studying animal behavior, confounding factors such as novelty of the test apparatus can lead to a wide variability of data which may mask treatment effects and consequently lead to misinterpretation. Habituation to the test situation is a common practice to circumvent novelty induced increases in variance and to improve the reliability of the respective measurements. However, there is a lack of published empirical knowledge regarding reasonable habituation procedures and a method validation seems to be overdue. This study aimed at setting up a simple strategy to increase reliability of behavioral data measured in a familiar test apparatus. Therefore, exemplary data from mice tested in an Open Field (OF) arena were used to elucidate the potential of habituation and how reliability of measures can be confirmed by means of a repeatability analysis using the software R. On seven consecutive days, male C57BL/6J, BALB/cJ and 129S1/SvImJ mice were tested in an OF arena once daily and individual mouse behavior was recorded. A repeatability analysis was conducted with regard to repeated trials of habituation. Our data analysis revealed that monitoring animal behavior during habituation is important to determine when individual differences of the measurements are stable. Repeatability values from distance travelled and average activity increased over the habituation period, revealing that around 60% of the variance of the data can be explained by individual differences between mice. The first day of habituation was significantly different from the following 6 days. A three-day habituation period appeared to be sufficient in this study. Overall, these results emphasize the importance of habituation and in depth analysis of habituation data to define the correct starting point of the experiment for improving the reliability and reproducibility of experimental data.
Collapse
|
20
|
The Role of the Oxytocin System in Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:103-120. [PMID: 32002925 DOI: 10.1007/978-981-32-9705-0_7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxytocin, a neuropeptide synthesized by the hypothalamus, plays a central role in human social behavior, social cognition, anxiety, mood, stress modulation, and fear learning and extinction. The relationships between oxytocin and psychiatric disorders including depression, anxiety, schizophrenia, and autism spectrum disorder have been extensively studied. In this chapter, we focus on the current knowledge about oxytocin and anxiety disorder. We discuss the anxiolytic effects of oxytocin in preclinical and clinical findings, possible related neurobehavioral mechanisms (social cognition, fear learning, and extinction), related neurotransmitter and neuroendocrine systems (hypothalamus-pituitary-adrenal axis, serotoninergic, and GABAergic systems), and studies regarding plasma levels of oxytocin, genetic and epigenetic findings, and effects of intranasal oxytocin in DSM-5 anxiety disorder (primarily social anxiety disorder and separation anxiety disorder) patients.
Collapse
|
21
|
Menna LF, Santaniello A, Amato A, Ceparano G, Di Maggio A, Sansone M, Formisano P, Cimmino I, Perruolo G, Fioretti A. Changes of Oxytocin and Serotonin Values in Dialysis Patients after Animal Assisted Activities (AAAs) with a Dog—A Preliminary Study. Animals (Basel) 2019; 9:E526. [PMID: 31382576 PMCID: PMC6721151 DOI: 10.3390/ani9080526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Our study aimed to measure the levels of serotonin and oxytocin in patients affected by end-stage renal disease (ESRD), undergoing dialysis and participating in a program of animal-assisted activities (AAAs) with a dog. Ten patients with comparable levels of ESRD were enrolled. A blood sample was taken before the start of the study in order to establish basal levels. Eleven meetings were held once a week for 3 months during the last hour of dialysis, and blood samples were collected before and after AAAs. Two more meetings, one month apart from each other, were held two months later without the dog but with the same veterinarian zootherapist. Blood was drawn at the beginning and at the end of each meeting. The samples were then processed for the measurement of serotonin and oxytocin, and data obtained were analysed using analysis of variance with mixed effect models. The results show an increasing level of both serotonin and oxytocin between subsequent meetings with the dog and an increasing trend of inter-intervention levels. Overall, the results suggest that AAAs lead to modifications of serotonin and oxytocin levels, which are also accompanied by behavioural changes of patients.
Collapse
Affiliation(s)
- Lucia Francesca Menna
- Departments of Veterinary Medicine and Animal Productions, Federico II University of Naples, 80134 Naples, Italy
| | - Antonio Santaniello
- Departments of Veterinary Medicine and Animal Productions, Federico II University of Naples, 80134 Naples, Italy
| | - Alessia Amato
- Departments of Veterinary Medicine and Animal Productions, Federico II University of Naples, 80134 Naples, Italy
| | | | | | - Mario Sansone
- Electrical Engineering and Information Technology Federico II University of Naples, 80125 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Departments of Veterinary Medicine and Animal Productions, Federico II University of Naples, 80134 Naples, Italy
| |
Collapse
|
22
|
Lee W, Hiura LC, Yang E, Broekman KA, Ophir AG, Curley JP. Social status in mouse social hierarchies is associated with variation in oxytocin and vasopressin 1a receptor densities. Horm Behav 2019; 114:104551. [PMID: 31279703 DOI: 10.1016/j.yhbeh.2019.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
The neuropeptides oxytocin and vasopressin and their receptors have established roles in the regulation of mammalian social behavior including parental care, sex, affiliation and pair-bonding, but less is known regarding their relationship to social dominance and subordination within social hierarchies. We have previously demonstrated that male mice can form stable linear dominance hierarchies with individuals occupying one of three classes of social status: alpha, subdominant, subordinate. Alpha males exhibit high levels of aggression and rarely receive aggression. Subdominant males exhibit aggression towards subordinate males but also receive aggression from more dominant individuals. Subordinate males rarely exhibit aggression and receive aggression from more dominant males. Here, we examined whether variation in social status was associated with levels of oxytocin (OTR) and vasopressin 1a (V1aR) receptor binding in socially relevant brain regions. We found that socially dominant males had significantly higher OTR binding in the nucleus accumbens core than subordinate animals. Alpha males also had higher OTR binding in the anterior olfactory nucleus, posterior part of the cortical amygdala and rostral lateral septum compared to more subordinate individuals. Conversely, alpha males had lower V1aR binding in the rostral lateral septum and lateral preoptic area compared to subordinates. These observed relationships have two potential explanations. Preexisting individual differences in the patterns of OTR and V1aR binding may underlie behavioral differences that promote or inhibit the acquisition of social status. More likely, the differential social environments experienced by dominant and subordinate animals may shift receptor expression, potentially facilitating the expression of adaptive social behaviors.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Eilene Yang
- Department of Psychology, Columbia University, New York, NY, USA
| | - Katherine A Broekman
- Department of Psychology, Columbia University, New York, NY, USA; SUNY Stony Brook University, Stony Brook, NY, USA
| | | | - James P Curley
- Department of Psychology, Columbia University, New York, NY, USA; Center for Integrative Animal Behavior, Columbia University, New York, NY, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Weinberg-Wolf H, Chang SWC. Differences in how macaques monitor others: Does serotonin play a central role? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1494. [PMID: 30775852 PMCID: PMC6570566 DOI: 10.1002/wcs.1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Primates must balance the need to monitor other conspecifics to gain social information while not losing other resource opportunities. We consolidate evidence across the fields of primatology, psychology, and neuroscience to examine individual, population, and species differences in how primates, particularly macaques, monitor conspecifics. We particularly consider the role of serotonin in mediating social competency via social attention, aggression, and dominance behaviors. Finally, we consider how the evolution of variation in social tolerance, aggression, and social monitoring might be explained by differences in serotonergic function in macaques. This article is categorized under: Economics > Interactive Decision-Making Psychology > Comparative Psychology Neuroscience > Behavior Cognitive Biology > Evolutionary Roots of Cognition.
Collapse
Affiliation(s)
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: From molecules to mood. Front Neuroendocrinol 2019; 53:100742. [PMID: 30878665 PMCID: PMC6541513 DOI: 10.1016/j.yfrne.2019.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Emerging research points to a valuable role of the monoamine neurotransmitter, serotonin, in the display of maternal behaviors and reproduction-associated plasticity in the maternal brain. Serotonin is also implicated in the pathophysiology of numerous affective disorders and likely plays an important role in the pathophysiology of maternal mental illness. Therefore, the main goals of this review are to detail: (1) how the serotonin system of the female brain changes across pregnancy and postpartum; (2) the role of the central serotonergic system in maternal caregiving and maternal aggression; and (3) how the serotonin system and selective serotonin reuptake inhibitor medications (SSRIs) are involved in the treatment of maternal mental illness. Although there is much work to be done, studying the central serotonin system's multifaceted role in the maternal brain is vital to our understanding of the processes governing matrescence and the maintenance of motherhood.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019; 31:e12700. [PMID: 30786104 PMCID: PMC7217012 DOI: 10.1111/jne.12700] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin neurones in the hypothalamus are activated by stressful stimuli and food intake. The oxytocin receptor is located in various brain regions, including the sensory information-processing cerebral cortex; the cognitive information-processing prefrontal cortex; reward-related regions such as the ventral tegmental areas, nucleus accumbens and raphe nucleus; stress-related areas such as the amygdala, hippocampus, ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray; homeostasis-controlling hypothalamus; and the dorsal motor complex controlling intestinal functions. Oxytocin affects behavioural and neuroendocrine stress responses and terminates food intake by acting on the metabolic or nutritional homeostasis system, modulating emotional processing, reducing reward values of food intake, and facilitating sensory and cognitive processing via multiple brain regions. Oxytocin also plays a role in interactive actions between stress and food intake and contributes to adaptive active coping behaviours.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| |
Collapse
|
26
|
Osada K, Ohta T, Takai R, Miyazono S, Kashiwayanagi M, Hidema S, Nishimori K. Oxytocin receptor signaling contributes to olfactory avoidance behavior induced by an unpleasant odorant. Biol Open 2018; 7:bio.029140. [PMID: 29945877 PMCID: PMC6176940 DOI: 10.1242/bio.029140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (OXT) and its receptor (OXTR) regulate reproductive physiology (i.e. parturition and lactation), sociosexual behavior, learned patterns of behavior and olfactory behavior in social contexts. To characterize the function of OXTR in basic olfactory behavior, the present study compared the behavioral responses of homozygous, heterozygous and wild-type mice when these mice were confronted with an unpleasant odorant (butyric acid) in a custom-made Y-maze in the absence of a social context. Wild-type mice avoided the first encounter with the butyric acid odorant, whereas homozygous and heterozygous mice did not. However, both heterozygous and wild-type mice habituated when confronted with the butyric odorant again on the following 2 days. By contrast, homozygous mice failed to habituate and instead avoided the location of the odorant for at least 3 days. These data suggest that homozygous and heterozygous mice display abnormal olfactory responses to the presentation of an unpleasant odorant. Our studies demonstrate that OXTR plays a critical role in regulating olfactory behavior in the absence of a social context. Summary: Homozygous mice exhibited abnormal olfactory behaviors, namely failure in the acute avoidance of butyric acid and in habituation behavior, in the absence of a social context.
Collapse
Affiliation(s)
- Kazumi Osada
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- The Research Institute of Health Science, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- The Research Institute of Health Science, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shizu Hidema
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
27
|
Nagano M, Takumi T, Suzuki H. Critical roles of serotonin-oxytocin interaction during the neonatal period in social behavior in 15q dup mice with autistic traits. Sci Rep 2018; 8:13675. [PMID: 30209293 PMCID: PMC6135829 DOI: 10.1038/s41598-018-32042-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/29/2018] [Indexed: 12/01/2022] Open
Abstract
Disturbance of neurotransmitters and neuromodulators is thought to underlie the pathophysiology of autism spectrum disorder (ASD). Studies of 15q dup mouse models of ASD with human 15q11–13 duplication have revealed that restoring serotonin (5-HT) levels can partially reverse ASD-related symptoms in adults. However, it remains unclear how serotonin contributes to the behavioral symptoms of ASD. In contrast, oxytocin (OXT) has been found to involve social and affiliative behaviors. In this study, we examined whether serotonin-OXT interaction during the early postnatal period plays a critical role in the restoration of social abnormality in 15q dup mice. OXT or the 5-HT1A receptor agonist 8OH-DPAT treatment from postnatal day 7 (PD7) to PD21 ameliorated social abnormality in the three-chamber social interaction test in adult 15q dup mice. The effect of 8OH-DPAT was inhibited by blockade of OXT receptors in 15q dup mice. Thus, serotonin-OXT interaction via 5-HT1A receptors plays a critical role in the normal development of social behavior in 15q dup mice. Therefore, targeting serotonin-OXT interaction may provide a novel therapeutic strategy for treatment of ASD.
Collapse
Affiliation(s)
- Masatoshi Nagano
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
28
|
Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC. Aggressive behavior in transgenic animal models: A systematic review. Neurosci Biobehav Rev 2018; 91:198-217. [DOI: 10.1016/j.neubiorev.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
|
29
|
Janeček M, Dabrowska J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res 2018; 375:143-172. [PMID: 30054732 DOI: 10.1007/s00441-018-2889-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023]
Abstract
Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT's role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.
Collapse
Affiliation(s)
- Michael Janeček
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
30
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Putnam PT, Young LJ, Gothard KM. Bridging the gap between rodents and humans: The role of non-human primates in oxytocin research. Am J Primatol 2018; 80:e22756. [PMID: 29923206 DOI: 10.1002/ajp.22756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), a neuropeptide that acts in the brain as a neuromodulator, has been long known to shape maternal physiology and behavior in mammals, however its role in regulating social cognition and behavior in primates has come to the forefront only in the recent decade. Many of the current perspectives on the role of OT in modulating social behavior emerged first from studies in rodents, where invasive techniques with a high degree of precision have permitted the mechanistic dissection of OT-related behaviors, as well as their underlying neural circuits in exquisite detail. In parallel, behavioral and imaging studies in humans have suggested that brain OT may similarly influence human social behavior and neural activity. These studies in rodents and humans have spurred interest in the therapeutic potential of targeting the OT system to remedy deficits in social cognition and behavior that are present across numerous psychiatric disorders. Yet there remains a tremendous gap in our mechanistic understanding of the influence of brain OT on social neural circuitry between rodents and man. In fact, very little is known regarding the neural mechanisms by which exogenous or endogenous OT influences human social cognition, limiting its therapeutic potential. Here we discuss how non-human primates (NHPs) are uniquely positioned to now bridge the gaps in knowledge provided by the precise circuit-level approaches widely used in rodent models and the behavioral, imaging, and clinical studies in humans. This review provides a perspective on what has been achieved, and what can be expected from exploring the role of OT in shaping social behaviors in NHPs in the coming years.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Physiology, University of Arizona, Tucson, Arizona.,Silvio O. Conte Center for Oxytocin and Social Cognition, Atlanta, Georgia
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Atlanta, Georgia.,Department of Psychiatry, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, Arizona.,Silvio O. Conte Center for Oxytocin and Social Cognition, Atlanta, Georgia
| |
Collapse
|
32
|
Young WS, Song J, Mezey É. Hybridization Histochemistry of Neural Transcripts. CURRENT PROTOCOLS IN NEUROSCIENCE 2018; 82:1.3.1-1.3.27. [PMID: 29357110 PMCID: PMC6217960 DOI: 10.1002/cpns.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This unit presents protocols to locate RNA transcripts in tissues. Numerous approaches are detailed, including those that use radiolabeled or colorimetric probes. Also, the probes may be modified oligodeoxynucleotides, singly or in pairs, as well as ribonucleic acids. High sensitivity and specificity are obtained, especially with sets of oligodeoxynucleotide pairs. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Éva Mezey
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Abstract
The neuropeptide oxytocin (OT) has a solid reputation as a facilitator of social interactions such as parental and pair bonding, trust, and empathy. The many results supporting a pro-social role of OT have generated the hypothesis that impairments in the endogenous OT system may lead to antisocial behavior, most notably social withdrawal or pathological aggression. If this is indeed the case, administration of exogenous OT could be the "serenic" treatment that psychiatrists have for decades been searching for.In the present review, we list and discuss the evidence for an endogenous "hypo-oxytocinergic state" underlying aggressive and antisocial behavior, derived from both animal and human studies. We furthermore examine the reported effects of synthetic OT administration on aggression in rodents and humans.Although the scientific findings listed in this review support, in broad lines, the link between a down-regulated or impaired OT system activity and increased aggression, the anti-aggressive effects of synthetic OT are less straightforward and require further research. The rather complex picture that emerges adds to the ongoing debate questioning the unidirectional pro-social role of OT, as well as the strength of the effects of intranasal OT administration in humans.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
34
|
Meidahl AC, Eisenried A, Klukinov M, Cao L, Tzabazis AZ, Yeomans DC. Intranasal Oxytocin Attenuates Reactive and Ongoing, Chronic Pain in a Model of Mild Traumatic Brain Injury. Headache 2017; 58:545-558. [PMID: 29266199 DOI: 10.1111/head.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Approximately 1.7 million Americans sustain a traumatic brain injury (TBI) each year and chronic pain is a common complication. OBJECTIVE We studied the effects of intranasally administered oxytocin as a potential treatment for chronic pain in an animal model of mild TBI. METHODS The lateral fluid percussion model of mild TBI was chosen for this purpose and after exposure to mild TBI the rats (n = 12) developed hind paw and facial allodynia compared to sham animals (n = 6). Oxytocin or a vehicle was afterwards administered intranasally and reactive pain was assessed by hind paw and facial von Frey testing. Some animals received the oxytocin receptor antagonist, atosiban, in addition to oxytocin/vehicle treatment (n = 12). The effect of oxytocin on ongoing and spontaneous pain was examined through conditioned place preference testing. To determine whether the effects of intranasal oxytocin could be attributed to delivery via the peripheral blood stream, some TBI animals received an intravenous injection of the same oxytocin dose that was given intranasally. ELISA immunoassays were carried out (n = 6) to measure concentrations of oxytocin in the trigeminal ganglia, pons, spinal cord, and olfactory bulb after intranasal administration and evaluate the most likely route of entry. RESULTS These studies confirmed that the fluid percussion model can be used to study post-TBI facial allodynia. Oxytocin attenuated both reactive and spontaneous, ongoing non-reactive pain following mild TBI for at least 3-4 hours after intranasal administration by binding to OT or VA1-receptors most likely by a peri-trigeminal nerve mediated uptake. CONCLUSIONS Intranasal oxytocin attenuates measures of reactive and non-reactive pain in a model of mild TBI and may represent a novel treatment for chronic pain in TBI patients.
Collapse
Affiliation(s)
- Anders C Meidahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Andreas Eisenried
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Longhui Cao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Alexander Z Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Mitra S, Mucha M, Owen S, Bult-Ito A. Postpartum Lactation-Mediated Behavioral Outcomes and Drug Responses in a Spontaneous Mouse Model of Obsessive-Compulsive Disorder. ACS Chem Neurosci 2017; 8:2683-2697. [PMID: 28945961 DOI: 10.1021/acschemneuro.7b00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using a spontaneous mouse model of obsessive-compulsive disorder (OCD), the current study evaluated the influence of postpartum lactation on the expression of compulsive-like behaviors, SSRI effectiveness, and the putative role of oxytocin and dopamine in mediating these lactation specific behavioral outcomes. Compulsive-like lactating mice were less compulsive-like in nest building and marble burying and showed enhanced responsiveness to fluoxetine (50 mg/kg) in comparison to compulsive-like nonlactating and nulliparous females. Lactating mice exhibited more anxiety-like behavior in the open field test compared to the nulliparous females, while chronic fluoxetine reduced anxiety-like behaviors. Blocking the oxytocin receptor with L368-899 (5 mg/kg) in the lactating mice exacerbated the compulsive-like and depression-like behaviors. The dopamine D2 receptor (D2R) agonist bromocriptine (10 mg/kg) suppressed marble burying, nest building, and central entries in the open field, but because it also suppressed overall locomotion in the open field, activation of the D2R receptor may have inhibited overall activity nonspecifically. Lactation- and fluoxetine-mediated behavioral outcomes in compulsive-like mice, therefore, appear to be partly regulated by oxytocinergic mechanisms. Serotonin immunoreactivity and serum levels were higher in lactating compulsive-like mice compared to nonlactating and nulliparous compulsive-like females. Together, these results suggest behavioral modulation, serotonergic alterations, and changes in SSRI effectiveness during lactation in compulsive-like mice. This warrants further investigation of postpartum events in OCD patients.
Collapse
Affiliation(s)
- Swarup Mitra
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
- IDeA
Network of Biomedical Research Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - McKenzie Mucha
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Savanah Owen
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| |
Collapse
|
36
|
Honing in on hormone-sensitive neural targets for therapeutic intervention: mission impossible? Future Sci OA 2017. [DOI: 10.4155/fsoa-2017-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate. J Neurosci 2017; 37:6741-6750. [PMID: 28607170 DOI: 10.1523/jneurosci.0659-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023] Open
Abstract
Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT1AR) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [11C]DASB and [18F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT1AR, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [11C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [18F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [11C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT1AR. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT1AR receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders.SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical strategy is to study the interaction between these systems. Here we depict the interplay between oxytocin and serotonin in the nonhuman primate brain. We found that oxytocin provokes the release of serotonin, which in turn impacts on the serotonin 1A receptor system, by modulating its availability. This happens in several key brain regions for social behavior, such as the amygdala and insula. This novel finding can open ways to advance treatments where drugs are combined to influence several neurotransmission networks.
Collapse
|
38
|
Hartline JT, Smith AN, Kabelik D. Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei. PeerJ 2017; 5:e3331. [PMID: 28533977 PMCID: PMC5436558 DOI: 10.7717/peerj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine, 5-HT) in social behavior regulation is not fully understood. While 5-HT release in nuclei of the social behavior network has generally been associated with inhibition of aggressive behavior across multiple classes of vertebrates, less is known about its effects on sexual, especially non-copulatory courtship display behaviors. Furthermore, most research has examined effects at 5-HT release sites, while studies examining the behavioral relevance of source cell populations have generated contradictory findings. This study utilized immunohistochemistry to examine the colocalization of 5-HT with Fos, an immediate early gene product and marker of neural activity, in the raphe and superior reticular nuclei of male brown anoles (Anolis sagrei) exposed to either aggression, courtship, or control social interactions. Supporting previous research, copulation was associated with a decrease in 5-HT activity, while a novel link between 5-HT activity and latency to non-copulatory courtship was also found. Within the aggression group, intensity and frequency of behavior were both associated with decreased 5-HT activity. An effect of social context was also seen, with anoles exposed to either courtship or aggression encounters showing decreased 5-HT activity in certain raphe and superior reticular nuclei populations compared to controls. Interestingly, context effects and behavioral effects were seen at separate brain nuclei, suggesting the presence of separate systems with distinct functional roles.
Collapse
Affiliation(s)
- Jacob T Hartline
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - Alexandra N Smith
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| |
Collapse
|
39
|
Abstract
The oxytocin/vasopressin ancestor molecule has been regulating reproductive and social behaviors for more than 500 million years. In all mammals, oxytocin is the hormone indispensable for milk-ejection during nursing (maternal milk provision to offspring), a process that is crucial for successful mammalian parental care. In laboratory mice, a remarkable transcriptional activation occurs during parental behavior within the anterior commissural nucleus (AC), the largest magnocellular oxytocin cell population within the medial preoptic area (although the transcriptional activation was limited to non-oxytocinergic neurons in the AC). Furthermore, there are numerous recent reports on oxytocin's involvement in positive social behaviors in animals and humans. Given all those, the essential involvement of oxytocin in maternal/parental behaviors may seem obvious, but basic researchers are still struggling to pin down the exact role oxytocin plays in the regulation of parental behaviors. A major aim of this review is to more clearly define this role. The best conclusion at this moment is that OT can facilitate the onset of parental behavior, or parental behavior under stressful conditions.In this chapter, we will first review the basics of rodent parental behavior. Next, the neuroanatomy of oxytocin systems with respect to parental behavior in laboratory mice will be introduced. Then, the research history on the functional relationship between oxytocin and parental behavior, along with advancements in various techniques, will be reviewed. Finally, some technical considerations in conducting behavioral experiments on parental behavior in rodents will be addressed, with the aim of shedding light on certain pitfalls that should be avoided, so that the progress of research in this field will be facilitated. In this age of populism, researchers should strive to do even more scholarly works with further attention to methodological details.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Michael Numan
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
40
|
Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples. Mol Psychiatry 2016; 21:983-8. [PMID: 26390829 DOI: 10.1038/mp.2015.144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
The quantitative genetic contribution to antisocial behavior is well established, but few, if any, genetic variants are established as risk factors. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may modulate interpersonal aggression. We here investigated whether single-nucleotide polymorphisms (SNPs) in the OXT receptor gene (OXTR) are associated with the expression of antisocial behavior. A discovery sample, including both sexes, was drawn from the Child and Adolescent Twin Study in Sweden (CATSS; n=2372), and a sample from the Twin Study of Child and Adolescent Development (TCHAD; n=1232) was used for replication. Eight SNPs in OXTR, selected on previous associations with social and antisocial behavior, were genotyped in the participants of CATSS. Significant polymorphisms were subsequently genotyped in TCHAD for replication. Participants completed self-assessment questionnaires-Life History of Aggression (LHA; available only in CATSS), and Self-Reported Delinquency (SRD; available in both samples)-designed to capture antisocial behavior as continuous traits. In the discovery sample, the rs7632287 AA genotype was associated with higher frequency of antisocial behavior in boys, and this was then replicated in the second sample. In particular, overt aggression (directly targeting another individual) was strongly associated with this genotype in boys (P=6.2 × 10(-7) in the discovery sample). Meta-analysis of the results for antisocial behavior from both samples yielded P=2.5 × 10(-5). Furthermore, an association between rs4564970 and LHA (P=0.00013) survived correction in the discovery sample, but there was no association with the SRD in the replication sample. We conclude that the rs7632287 and rs4564970 polymorphisms in OXTR may independently influence antisocial behavior in adolescent boys. Further replication of our results will be crucial to understanding how aberrant social behavior arises, and would support the OXT receptor as one potential target in the treatment of aggressive antisocial behavior.
Collapse
|
41
|
Yang T, Shah NM. Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol 2016; 38:89-95. [PMID: 27162162 DOI: 10.1016/j.conb.2016.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023]
Abstract
Sexually reproducing animals exhibit sex differences in behavior. Sexual dimorphisms in mating, aggression, and parental care directly contribute to reproductive success of the individual and survival of progeny. In this review, we discuss recent advances in our understanding of the molecular and neural network mechanisms underlying these behaviors in mice. Notable advances include novel insights into the sensory control of social interactions and the identification of molecularly-specified neuronal populations in the brain that control mating, aggression, and parental behaviors. In the case of the latter, these advances mark a watershed because scientists can now focus on discrete neural pathways in an effort to understand how the brain encodes these fundamental social behaviors.
Collapse
Affiliation(s)
- Taehong Yang
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, United States
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, United States; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
42
|
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321:24-41. [PMID: 26577932 PMCID: PMC4824539 DOI: 10.1016/j.neuroscience.2015.11.010] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
Collapse
Affiliation(s)
- C L Muller
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA.
| | - A M J Anacker
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| | - J Veenstra-VanderWeele
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Columbia University; Center for Autism and the Developing Brain, New York Presbyterian Hospital; New York State Psychiatric Institute, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| |
Collapse
|
43
|
Young WS, Song J, Mezey É. Hybridization Histochemistry of Neural Transcripts. CURRENT PROTOCOLS IN NEUROSCIENCE 2016; 75:1.3.1-1.3.27. [PMID: 27063785 PMCID: PMC4858714 DOI: 10.1002/cpns.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expression of genes is manifested by the production of RNA transcripts within cells. Hybridization histochemistry (or in situ hybridization) permits localization of these transcripts with cellular resolution or better. Furthermore, the relative amounts of transcripts detected in different tissues or in the same tissues in different states (e.g., physiological or developmental) may be quantified. This unit describes hybridization histochemical techniques using either oligodeoxynucleotide probes (see Basic Protocols 1 and 2, Alternate Protocol 1) or RNA probes (riboprobes; see Basic Protocols 3 and 5). These methods include a more recent approach using commercially available sets of oligodeoxynucleotide pairs for colorimetric and fluorescent detection (see Basic Protocol 2), as well as a method for detection of the Y chromosome using either mouse or human riboprobes (see Basic Protocol 5). Additional methods include colorimetric detection (see Basic Protocol 4) and tyramide signal amplification (TSA) of digoxigenin-labeled probes (see Alternate Protocol 2), and autoradiographic detection of radiolabeled probes (see Basic Protocol 6). Finally, methods are provided for labeling oligodeoxynucleotide (see Support Protocol 1) and RNA (see Support Protocol 2) probes, and verifying the probes by northern analysis (see Support Protocol 3).
Collapse
Affiliation(s)
- W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Éva Mezey
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, Nationals Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
The two fold role of oxytocin in social developmental disorders: A cause and a remedy? Neurosci Biobehav Rev 2016; 63:168-76. [DOI: 10.1016/j.neubiorev.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022]
|
45
|
Yokota S, Oshio S, Moriya N, Takeda K. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy. PLoS One 2016; 11:e0149737. [PMID: 26919122 PMCID: PMC4769130 DOI: 10.1371/journal.pone.0149737] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/19/2016] [Indexed: 01/26/2023] Open
Abstract
Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident-intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women living in regions with high levels of traffic-related air pollution.
Collapse
Affiliation(s)
- Satoshi Yokota
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
- * E-mail:
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
| | - Nozomu Moriya
- Department of Biopharmaceutics, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
46
|
|
47
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
48
|
Baribeau DA, Anagnostou E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci 2015; 9:335. [PMID: 26441508 PMCID: PMC4585313 DOI: 10.3389/fnins.2015.00335] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital Toronto, ON, Canada
| |
Collapse
|
49
|
Otero-García M, Agustín-Pavón C, Lanuza E, Martínez-García F. Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct 2015; 221:3445-73. [PMID: 26388166 DOI: 10.1007/s00429-015-1111-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.
Collapse
Affiliation(s)
- Marcos Otero-García
- Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Carmen Agustín-Pavón
- Lab. of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, 12071, Castelló de la Plana, Spain
| | - Enrique Lanuza
- Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Fernando Martínez-García
- Lab. of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, 12071, Castelló de la Plana, Spain.
| |
Collapse
|
50
|
Condés-Lara M, Martínez-Lorenzana G, Rubio-Beltrán E, Rodríguez-Jiménez J, Rojas-Piloni G, González-Hernández A. Hypothalamic paraventricular nucleus stimulation enhances c-Fos expression in spinal and supraspinal structures related to pain modulation. Neurosci Res 2015; 98:59-63. [DOI: 10.1016/j.neures.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
|