1
|
Wentao G, Tingting L, Zhitong F, Lingyi X, Chen J, Honglin C, Dongfeng L, Shuangshuang L, Zuolin X, Xiaofeng W. Aquatic plants dominate spatiotemporal dynamics of N 2O fluxes in small urban lake by regulating nutrient distribution and emission path. ENVIRONMENTAL RESEARCH 2025; 274:121290. [PMID: 40043933 DOI: 10.1016/j.envres.2025.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Small urban lakes are recognized as significant sources of nitrous oxide (N2O) to the atmosphere. Despite the crucial role of aquatic plants in landscape construction and pollutant removal within urban lakes, the modulation of N2O emission dynamics and associated mechanisms by these plants remains elusive. This study investigated the N2O concentrations and fluxes from aquatic habitats covered with seven species of aquatic plants in a small urban lake, and estimated the contribution of plant-mediated N2O emissions. Meanwhile, the physicochemical parameters of water and periradicular sediments were measured synchronously to clarify the main controls of aquatic plants in regulating aquatic N2O emissions. N2O concentrations in the surface waters covered by different aquatic plants (0.041-0.659 μmol L-1) exhibit substantial variation, being 1.2-5.4 (mean of 2.8) times higher than those in open water areas (0.015-0.096 μmol L-1). The range of total N2O fluxes was 11.3-1009.0 μmol m-2 d-1, exhibiting significant spatial and temporal variations, with considerable differences observed among various plant-covered areas. Total N2O fluxes from different plant-covered areas were 1.5-16.7 times (average 7.5 times) higher than those in open water areas. It suggests that diverse aquatic plants could observably intensify the spatial variability in N2O emissions within the small urban lake. The estimated plant-mediated fluxes may contribute approximately 21%-66% of total N2O fluxes. Specifically, N2O concentrations in the stem cavities of different plants were generally higher than atmospheric levels, evidencing the mediated effect of aquatic plants on N2O emissions. While aquatic plants reduce the abundance of nutrients in surface water to varying degrees, the accumulations of carbon and nitrogen in periradicular sediments, combined with plant transport, observably enhance N2O emissions in urban lake with low pollution loads. Furthermore, the phenological processes of aquatic plants and seasonal temperature changes were found to co-affect the seasonal dynamics of aquatic N2O fluxes. Varied aquatic plants can significantly dominate spatiotemporal dynamics of the N2O emissions in urban landscape lakes.
Collapse
Affiliation(s)
- Guo Wentao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| | - Liu Tingting
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Fan Zhitong
- Yunwuping Forest Farm in Jiangjin District, Chongqing, 404000, China
| | - Xiang Lingyi
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Jian Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Chen Honglin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Li Dongfeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Liu Shuangshuang
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Xiao Zuolin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Wang Xiaofeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| |
Collapse
|
2
|
Panique-Casso D, Pacheco-Bueno NF, Forio MAE, Goethals P, Ho L. How do varying nitrogen fertilization rates affect crop yields and riverine N 2O emissions? A hybrid modeling study. WATER RESEARCH 2025; 276:123242. [PMID: 39985944 DOI: 10.1016/j.watres.2025.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
Headwater streams in agricultural areas constitute significant sources of nitrous oxide (N2O) due to nutrient enrichment; however, their emissions are often overlooked in current environmental impact assessments. This scarcity highlights the importance of developing advanced decision tools to evaluate these contributions and create effective mitigation strategies. Our study establishes the first integrated modeling framework that combines a process-based model SWAT+ with a linear mixed model (LMM) to predict N2O emissions from a headwater agricultural river system in Belgium under diverse climate change and fertilization scenarios. In particular, the calibrated and validated SWAT+ model was used to simulate streamflow, nutrient transport, and crop yields under these scenarios, from which, together with biochemical data collected from sampling campaigns, riverine N2O emissions were predicted via LMM. Our results revealed hydrologically driven patterns in riverine N2O emissions, with peak emissions in winter and spring, driven by precipitations enhancing shallow subsurface flows, carrying leached nutrients from fields to the river, and fueling N2O emissions. These phenomena were intensified under climate change scenarios, especially during combined wetter and hotter winters and springs, which elevated headwater N2O emissions by 40 %. Moreover, when coupling these conditions with a 20 % increase in fertilizer rates, riverine N2O emissions would be boosted by 83 %. These findings underscore the importance of integrating land-surface and river processes, to effectively quantify the feedback loop between river nutrient enrichment and climate change under the influence of agricultural practices, and to support comprehensive mitigation strategies under the warming climate.
Collapse
Affiliation(s)
- Diego Panique-Casso
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
| | | | | | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|
3
|
Yang M, Yang H, Wang W, Fang H, Huang L, Li D, Fu L, Ding S, Li XD, Liu CQ, Wei G, Li D, Cui G, Fan Z, Zeng F. Impact of particle-attached microbial denitrification on N 2O production in an agricultural-urban watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125223. [PMID: 40185016 DOI: 10.1016/j.jenvman.2025.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Anthropogenically influenced rivers are key hotspots for nitrous oxide (N2O) emissions. However, the seasonal and spatial heterogeneity of N2O emissions in subtropical riverine systems, particularly the role of particle-attached microbes (PAM) in regulating N2O production, remains poorly understood, contributing to uncertainties in global N2O estimates. This study investigates the potential impacts of PAM-driven nitrogen transformations on N2O production in the Dongjiang River under agricultural and urban influences. Water samples collected during the wet and dry seasons were analyzed for N2O concentrations, dual nitrogen-oxygen isotopes (δ15N-NO3-, δ18O-NO3-), and metagenomic sequencing of PAM. All samples exhibited N2O supersaturation, with emissions significantly higher in the dry season than in the wet season. A linearly positive δ15N-δ18O correlation, accompanied by lower NO3- in the bottom layers than the surface layers in the dry season indicates active denitrification, leading to elevated N2O concentrations. PAM-driven denitrification was identified as the dominant nitrogen transformation process, supported by higher abundances of denitrification genes (nirKS, norBC, nosZ) relative to nitrification genes (amoABC). Despite aerobic water column conditions, low-oxygen microhabitats around suspended particles facilitated N2O production. A significantly positive correlation (p < 0.05, R2 = 0.42) between N2O concentrations and the nirK/nosZ gene ratio suggests that gene expression imbalances contributed to net N2O accumulation. Additionally, the downstream urban area exhibited lower DO and higher DOC levels, enhancing denitrification and increasing N2O production by 4.7 % compared to the upstream agricultural region. Seasonal differences further influenced N2O dynamics: higher DOC/NO3- ratios in the dry season promoted heterotrophic denitrification, while elevated temperatures in the wet season favored complete denitrification, reducing N2O emissions. These findings provide critical insights into PAM-driven nitrogen cycling, informing strategies for mitigating N2O emissions and managing nitrogen pollution in subtropical riverine systems.
Collapse
Affiliation(s)
- Mengdi Yang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Hanjie Yang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wencai Wang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Huaiyang Fang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Lingfang Fu
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Gangjian Wei
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dongli Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang, 550081, China
| | - Gaoyang Cui
- The College of Geography and Environmental Science, Henan University Kaifeng, 475004, Henan, China
| | - Zhongya Fan
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| | - Fantang Zeng
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| |
Collapse
|
4
|
Yan X, Xia Y, Zhao X, Ti C, Xia L, Chang SX, Yan X. Coupling nitrogen removal and watershed management to improve global lake water quality. Nat Commun 2025; 16:2182. [PMID: 40038252 DOI: 10.1038/s41467-025-57442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Lakes play a vital role in nitrogen (N) removal and water quality improvement, yet their efficiency varies due to differing watershed N input and lake characteristics, complicating management efforts. Here we established the N budget for 5768 global lakes using a remote sensing model. We found that watershed N input reduction and lake water quality improvement are nonlinearly related and depends on lake N removal efficiency. A 30% reduction in N loading in watersheds with high N removal efficiencies can improve cumulative water quality by over 70%. Stricter reduction could accelerate achieving water quality goal (≤1 mg N L-1), shortening the time by up to 30 years for most lakes. However, heavily polluted lakes with low N removal efficiencies (50 of 534 lakes with >1 mg N L-1) may not achieve the UN's clean water SDG by 2030, even with a 100% N input reduction. Our research highlights the need for targeted N management strategies to improve global lake water quality.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.
- University of Chinese Academy of Sciences, Nanjing, PR China.
| | - Xu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
- University of Chinese Academy of Sciences, Nanjing, PR China
| | - Chaopu Ti
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China.
- University of Chinese Academy of Sciences, Nanjing, PR China.
| |
Collapse
|
5
|
Kumar A, Rishabh, Singh N, Gautam YK, Priya, Malik N. Valorizing Banana Peel Waste into Mesoporous Biogenic Nanosilica and Novel Nano-biofertilizer Formulation Thereof via Nano-biopriming Inspired Tripartite Interaction Studies. ACS OMEGA 2025; 10:5537-5553. [PMID: 39989758 PMCID: PMC11840586 DOI: 10.1021/acsomega.4c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025]
Abstract
The present study attempts to valorize banana peel waste (BPW) into high-value precipitated nanosilica-based agri-input. XRD analysis revealed smaller-sized biogenic nanosilica (BNS) with an increase (without heating) or decrease (with heating) in the duration of acid pretreatment during the pre-calcination step. The highest BNS yield was recorded in post-calcinated BPW ash involving simultaneous acid and heat treatment (1 h) (SA-3). FTIR analysis displayed an intense peak at 1078.3 cm-1, indicating "Si-O-Si bond" asymmetric vibrations. FESEM-EDX micrographs revealed high-purity BNS of predominantly spheroid morphology. The BJH plot exhibited mesoporous nanosilica with a median pore diameter of ∼33.82 nm. The bipartite interaction of 0.001 g mL-1 BNS signifies growth-promoting effects on Bacillus subtilis (BS) and Raphanus sativus (RS). The nano-primed RS seeds showed higher germination indices over non-primed seeds at 0.001 g of BNS mL-1. Further, the nano-biopriming studies showed the synergistic response of BNS and BS interaction on RS seeds in terms of higher seedling growth, biomass content, and stress tolerance index. The findings open new avenues for developing nano-biofertilizer formulations that serve multifaceted functions such as waste management and biomass valorization into value-added products and fulfill sustainable development goals.
Collapse
Affiliation(s)
- Ajay Kumar
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
- Department
of Biotechnology, Mewar University, Chittorgarh, Rajasthan 312901, India
| | - Rishabh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Neetu Singh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Yogendra K. Gautam
- Smart
Materials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University, Meerut, Uttar Pradesh 250004, India
| | - Priya
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Namrata Malik
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| |
Collapse
|
6
|
Wang S, Zhi W, Li S, Lyu T, Ji G. Sustainable management of riverine N 2O emission baselines. Natl Sci Rev 2025; 12:nwae458. [PMID: 39834561 PMCID: PMC11745158 DOI: 10.1093/nsr/nwae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The riverine N2O fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF5r is poorly constrained, which impedes the N2O estimation and mitigation. Our meta-analysis discovered a universal N2O emission baseline (EF5r = k/[NO3 -], k = 0.02) for natural rivers. Anthropogenic impacts caused an overall increase in baselines and the emergence of hotspots, which constitute two typical patterns of anthropogenic sources. The k values of agricultural and urban rivers increased to 0.09 and 0.05, respectively, with 11% and 14% of points becoming N2O hotspots. Priority control of organic and NH4 + pollution could eliminate hotspots and reduce emissions by 51.6% and 63.7%, respectively. Further restoration of baseline emissions on nitrate removal is a long-term challenge considering population growth and declining unit benefits (ΔN-N2O/N-NO3 -). The discovery of EF lines emphasized the importance of targeting hotspots and managing baseline emissions sustainably to balance social and environmental benefits.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Mwanake RM, Wangari EG, Winkler K, Gettel GM, Butterbach-Bahl K, Kiese R. From data to insights: Upscaling riverine GHG fluxes in Germany with machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177984. [PMID: 39675286 DOI: 10.1016/j.scitotenv.2024.177984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Global fluvial ecosystems are important sources of greenhouse gases (CO2, CH4, and N2O) to the atmosphere, but their estimates are plagued by uncertainties due to unaccounted spatio-temporal variabilities in the fluxes. In this study, we tested the potential of modeling these variabilities using several machine learning models (ML) and three different input datasets (remotely sensed vegetation indices, in-situ water quality, and a combination of both) from 20 headwater catchments in Germany that differ in catchment land use and stream size. We also upscaled fluvial GHG fluxes for Germany using the best ML model and explored the role of catchment land use on the GHG spatial-temporal trends. Model performance depended on the choice of ML model, input data and GHG type. Complex decision-tree-based models better predicted GHG concentrations and fluxes than other ML model types (r2 = 0.33 to 0.72). Our upscaled fluxes from catchment scale remotely sensed vegetation indices showed that total annual riverine CO2 equivalent fluxes from 2934 catchments in Germany ranged from 1.7 to 96.4 kg m-2 yr-1 (mean ± SE: 23.2 ± 0.001). The highest fluxes came from urban and intensively cropped catchments, while lower fluxes came from extensively cropped, forestry, and pasture-dominated catchments. Our study demonstrates that spatially and temporally resolved catchment vegetation indices from remotely sensed data in conjunction with machine learning models can be applied to upscale all three GHG concentrations and fluxes from diverse catchments, revealing important spatio-temporal trends associated with catchment land use.
Collapse
Affiliation(s)
- R M Mwanake
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.
| | - E G Wangari
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany
| | - K Winkler
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany
| | - G M Gettel
- Aarhus University, Department of Ecoscience, Aquatic Ecology Section, Aarhus, Denmark; IHE Delft Institute for Water Education, Department of Water Resources and Ecosystems, Delft, The Netherlands
| | - K Butterbach-Bahl
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany; Pioneer Center Land-CRAFT, Department of Agroecology, University of Aarhus, Aarhus, Denmark
| | - R Kiese
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany
| |
Collapse
|
8
|
Xie S, Xia T, Li H, Chen Y, Zhang W. Variability in N 2O emission controls among different ponds within a hilly watershed. WATER RESEARCH 2024; 267:122467. [PMID: 39316960 DOI: 10.1016/j.watres.2024.122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
While it is well established that small water bodies like ponds play a disproportionately large role in contributing to N2O emissions, few studies have focused on lowland ponds in hilly watersheds. Here, we explored the characteristics of N2O concentrations and emissions from various typical ponds (village, tea, forested, and aquaculture ponds) in a hilly watershed and examined the specific controls influencing N2O production. Our findings revealed that tea ponds exhibited the highest N2O flux (8.42 ± 8.23 μmol m-2 d-1), which was 2.8 to 3.3 times greater than other types of ponds. Remarkable seasonal variations were observed in tea and forested ponds due to the seasonality of nutrient-enriched runoff, whereas such variations were less pronounced in village and aquaculture ponds. Key factors such as nitrogen levels, temperature, and dissolved oxygen (DO) emerged as the primary controls of N2O concentrations in ponds, heavily influenced by land use and human activities in their drainage areas. Specifically, N2O production in tea and aquaculture ponds was driven by N inputs from fertilization and feed, respectively, while DO levels governed the process in village and forested ponds, influenced by abundant algae and forest vegetation. This study emphasizes that environmental factors predominantly drive N2O production in ponds within hilly watersheds, but land use in the pond drainages acts as an indirect yet crucial influence. This highlights the need for future research to develop targeted emission reduction strategies based on land use to effectively mitigate N2O emissions, promising a path toward more sustainable and climate-friendly watershed management.
Collapse
Affiliation(s)
- Shuyi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Xia
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hengpeng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongjuan Chen
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China.
| | - Wangshou Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
Yang F, Zheng X, Wang D, Yao E, Li Y, Huang W, Zhang L, Wang J, Zhong J. Significant diurnal variations in nitrous oxide (N 2O) emissions from two contrasting habitats in a large eutrophic lake (Lake Taihu, China). ENVIRONMENTAL RESEARCH 2024; 261:119691. [PMID: 39074775 DOI: 10.1016/j.envres.2024.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Algae and macrophytes in lake ecosystems regulate nitrous oxide (N2O) emissions from eutrophic lakes. However, knowledge of diurnal N2O emission patterns from different habitats remains limited. To understand the diurnal patterns and driving mechanisms of N2O emissions from contrasting habitats, continuous in situ observations (72 h) of N2O fluxes from an algae-dominated zone (ADZ) and reed-dominated zone (RDZ) in Lake Taihu were conducted using the Floating Chamber method. The results showed average N2O emission fluxes of 0.15 ± 0.06 and 0.02 ± 0.04 μmol m-2 h-1 in the ADZ and RDZ in autumn, respectively. The significantly higher (p < 0.05) N2O fluxes in the ADZ were mainly attributed to differences in nitrogen (N) levels. The results also showed significant diurnal differences (p < 0.05) in the N2O emission fluxes within the ADZ and RDZ, and daytime fluxes were significantly higher (p < 0.05) than nighttime fluxes. The statistical results indicated that N2O emissions from the ADZ were mainly driven by diurnal variations in N loading and the dissolved oxygen (DO) concentration, and those from the RDZ were more influenced by DO, redox potential, and pH. Finally, we determined the proper time for routine monitoring of N2O flux in the two habitats. Our results highlight the importance of considering diverse habitats and diurnal variations when estimating N2O budgets at a whole-lake scale.
Collapse
Affiliation(s)
- Fanyan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Xiaolan Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dongqi Wang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Enqin Yao
- Huzhou Ecological and Environmental Monitoring Center, Zhejiang Province, Huzhou, 313000, PR China
| | - Yunchuang Li
- China Construction First Group Corporation Limited, Beijing, 100161, PR China
| | - Wei Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
10
|
Wu W, Comer-Warner SA, Peacock M, Han X, Li SL, Ju X, Liu CQ, Smith P, Yan Z. IPCC Emission Factor Overestimates N 2O Emissions from Agricultural Ditches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20019-20029. [PMID: 39529580 DOI: 10.1021/acs.est.4c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Agricultural ditches emit disproportionate amounts of nitrous oxide (N2O), but their contributions to regional or global N2O emissions remain unclear due to limited data. The Intergovernmental Panel on Climate Change (IPCC) recommends using emission factors (EFs) to estimate indirect N2O emission, but the EF for ditches (EF5g) is categorized as groundwater, which potentially introduces a significant bias. This study conducted a regional-scale campaign in the North China Plain, one of the world's most intensive agricultural regions, and calculated the EF5g values from agricultural ditches by the concentration method (N2O-N/NO3--N). The results found that the regional-scale mean EF5g value (0.0028) was less than half of the IPCC default value (0.006), illustrating that the current IPCC methodology significantly overestimates N2O emissions from agricultural ditches. Despite the relatively small EF5g values, agricultural ditches exhibited a high mean N2O concentration (3.36 μg L-1) and a large regional emission (1.14 ± 0.86 Gg N2O-N yr-1), which is equal to 3.8 ± 2.9% of direct N2O emission from the croplands in the North China Plain. Since ditches are ubiquitous in agricultural regions and are likely to expand under climate change, refining EF5g is crucial to accurately assess their contribution to global N2O budgets.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mike Peacock
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, U.K
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, U.K
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Dai M, Xu Y, Genjebay Y, Lu L, Wang C, Yang H, Huang C, Huang T. Urbanization significantly increases greenhouse gas emissions from a subtropical headwater stream in Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173508. [PMID: 38851353 DOI: 10.1016/j.scitotenv.2024.173508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Streams are disproportionately significant contributors to increases in greenhouse gas (GHG) effluxes in river networks. In the context of global urbanization, a growing number of streams are affected by urbanization, which has been suggested to stimulate the water-air GHG emissions from fluvial systems. This study investigated the seasonal and longitudinal profiles of GHG (N2O, CH4, and CO2) concentrations of Jiuxianghe Stream, a headwater stream undergoing urbanization, and estimated its GHG diffusive fluxes and global warming potentials (GWPs) using the boundary layer method. The results showed that N2O, CH4, and CO2 concentrations in Jiuxianghe Stream were 0.45-7.19 μg L-1, 0.31-586.85 μg L-1, and 0.16-11.60 mg L-1, respectively. N2O, CH4, and CO2 concentrations in the stream showed 4.55-, 23.70-, and 7.68-fold increases from headwaters to downstream, respectively, corresponding to the forest-urban transition within the watershed. Multiple linear regression indicated that NO3--N, NH4+-N, and DOC:NO3--N accurately predicted N2O and CO2 concentrations, indicating that N nutrients were the driving factors. The Jiuxianghe Stream was a source of atmospheric GHGs with a daily GWP of 7.31 g CO2-eq m-2 d-1 on average and was significantly positively correlated with the ratio of construction land and forest in the sub-watershed. This study highlights the critical role of urbanization in amplifying GHG emissions from streams, thereby augmenting our understanding of GHG emissions from river networks. With global urbanization on the rise, streams experiencing urbanization are expected to make an unprecedentedly significant contribution to riverine GHG budgets in the future.
Collapse
Affiliation(s)
- Mutan Dai
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Yuanhui Xu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | | | - Lingfeng Lu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China.
| |
Collapse
|
12
|
Cai S, Lao Q, Cai M, Silva DPTT, Lu X, Zhou X, Jin G, Chen C, Chen F. Water residence time controls seasonal nitrous oxide budget in a semi-enclosed bay: Insights from an improvement estimation method. MARINE POLLUTION BULLETIN 2024; 206:116701. [PMID: 38991612 DOI: 10.1016/j.marpolbul.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
This study developed an estimation method for the N2O budget using 15N stable isotope labeling techniques, a dual-layer model and a box model, which was used to elucidate the underlying dynamics of N2O accumulation in Zhanjiang Bay. The results showed that although the net input of N2O during the rainy season was 2.36 times higher than that during the dry season, the overall N2O concentration was only 66.6 % of that during the dry season due to the extended water residence time in the dry season. Our findings highlighted that water residence time was the key factor for the N2O emission, and a longer water residence time was unfavorable for the efflux of N2O through hydrodynamic processes and was more conducive to the production and accumulation of N2O within the bay. This research enhanced our comprehension of N2O dynamics and provided crucial insights for refining nitrogen management strategies and mitigation efforts.
Collapse
Affiliation(s)
- Shangjun Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dickwelle P T T Silva
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuan Lu
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Xin Zhou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangzhe Jin
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
13
|
Li L, Lu C, Winiwarter W, Tian H, Canadell JG, Ito A, Jain AK, Kou-Giesbrecht S, Pan S, Pan N, Shi H, Sun Q, Vuichard N, Ye S, Zaehle S, Zhu Q. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector. GLOBAL CHANGE BIOLOGY 2024; 30:e17472. [PMID: 39158113 DOI: 10.1111/gcb.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process-based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low-ambition nitrogen regulation policies, EF would increase from 1.18%-1.22% in 2010 to 1.27%-1.34% by 2050, representing a relative increase of 4.4%-11.4% and exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%-0.35% (relative increase of 11.9%-17%). In contrast, high-ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying-wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio-economic assessments and policy-making efforts.
Collapse
Affiliation(s)
- Linchao Li
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Chaoqun Lu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| | - Josep G Canadell
- CSIRO Environment, Canberra, Australian Capital Territory, Australia
| | - Akihiko Ito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Atul K Jain
- Department of Climate, Meteorology, and Atmospheric Sciences, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Sian Kou-Giesbrecht
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shufen Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Engineering and Environmental Studies Program, Boston College, Chestnut Hill, Massachusetts, USA
| | - Naiqing Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
| | - Hao Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing Sun
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CEA CNRS, UVSQ UPSACLAY, Gif sur Yvette, France
| | - Shuchao Ye
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
14
|
Pan Y, She D, Ding J, Shi Z, Abulaiti A, Hu L, Huang X, Liu R, Wang F, Shan J, Xia Y. Exploring dissolved N 2O characteristics and unearthing indirect N 2O emission factors in the shallow groundwater of paddy and upland fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173228. [PMID: 38768735 DOI: 10.1016/j.scitotenv.2024.173228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Indirect emissions of nitrous oxide (N2O) stemming from nitrogen (N) leaching in agricultural fields constitute a significant contributor to atmospheric N2O. Groundwater nitrate (NO3--N) pollution is severe in the Ningxia Yellow River Irrigation Area (NYRIA), coupled with high NO3--N leaching, exacerbates the risk of indirect N2O emissions from groundwater. Over two years of field observations, this study investigated the characteristics and interannual variations of dissolved N2O (dN2O) concentrations and indirect N2O emission factors (EF5g) in shallow groundwater. The research focused on three typical farmlands in the NYRIA, each subjected to six levels of N fertilizer application. The mean dN2O concentrations in the groundwater of paddy, corn and vegetable fields were 5.17, 8.40 and 16.35 μg N·L-1, respectively. Notably, the dN2O concentrations in the shallow groundwater of upland fields exceeded those in paddy fields, with maximum levels in vegetable fields nearly an order of magnitude higher. Elevated N application significantly increased dN2O concentrations across various farmlands, showing statistically significant variation. However, differences in EF5g-A and EF5g-B within the same farmland were negligible. Denitrification was the primary process contributing to N2O production in groundwater, with nitrification also played a crucial role in upland fields. Factors such as NO3--N, NH4+-N, dissolved oxygen (DO), and pH critically influenced N2O production. EF5g-B, which considers the NO3--N consumption during denitrification processes in groundwater, was deemed more appropriate than EF5g-A for assessing the indirect N2O emission in the NYRIA. The EF5g of agricultural fields exhibited minimal sensitivity to N input but was significantly affected by other factors, such as the planting pattern. The study revealed the rationality of adopting EF5g-B in assessing indirect N2O emissions, providing valuable insights for N management strategies in regions with high NO3--N leaching. Minimizing N fertilizer application while ensuring crop yield, especially in upland fields, is beneficial for reducing N2O emissions.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China.
| | - Jihui Ding
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Lei Hu
- Jiangsu Surveying and Design Institute of Water Resources Co., LTD, Yangzhou 225002, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Ruliang Liu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, China
| | - Fang Wang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Yan X, Han H, Li X, Rong X, Xia L, Yan X, Xia Y. Small water body significantly contributes to nitrous oxide emissions in China's aquaculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121472. [PMID: 38879968 DOI: 10.1016/j.jenvman.2024.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aquaculture systems are expected to act as potential hotspots for nitrous oxide (N2O) emissions, largely attributed to substantial nutrient loading from aquafeed applications. However, the specific patterns and contributions of N2O fluxes from these systems to the global emissions inventory are not well characterized due to limited data. This study investigates the patterns of N2O flux across 127 freshwater systems in China to elucidate the role of aquaculture ponds and lakes/reservoirs in landscape N2O emission. Our findings show that the average N2O flux from aquaculture ponds was 3.63 times higher (28.73 μg N2O m-2 h-1) than that from non-aquaculture ponds. Additionally, the average N2O flux from aquaculture lakes/reservoirs (15.65 μg N2O m-2 h-1) increased 3.05 times compared to non-aquaculture lakes/reservoirs. The transition from non-aquaculture to aquaculture practices has resulted in a net annual increase of 7589 ± 2409 Mg N2O emissions in China's freshwater systems from 2003 to 2022, equivalent to 20% of total N2O emissions from China's inland water. Particularly, the robust negative regression relationship between N2O emission intensity and water area suggests that small ponds are hotspots of N2O emissions, a result of both elevated nutrient concentrations and more vigorous biogeochemical cycles. This indicates that N2O emissions from smaller aquaculture ponds are larger per unit area compared to equivalent larger water bodies. Our findings highlight that N2O emissions from aquaculture systems can not be proxied by those from natural water bodies, especially small water bodies exhibiting significant but largely unquantified N2O emissions. In the context of the rapid global expansion of aquaculture, this underscores the critical need to integrate aquaculture into global assessments of inland water N2O emissions to advance towards a low-carbon future.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Haojie Han
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xiaohan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
16
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Li Q, Yu H, Yuan P, Liu R, Jing Z, Wei Y, Tu S, Gao H, Song Y. Mitigated N 2O emissions from submerged-plant-covered aquatic ecosystems on the Changjiang River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172592. [PMID: 38642768 DOI: 10.1016/j.scitotenv.2024.172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.
Collapse
Affiliation(s)
- Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
18
|
Hu M, Yu Z, Griffis TJ, Yang WH, Mohn J, Millet DB, Baker JM, Wang D. Hydrologic Connectivity Regulates Riverine N 2O Sources and Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9701-9713. [PMID: 38780660 DOI: 10.1021/acs.est.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.
Collapse
Affiliation(s)
- Minpeng Hu
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhongjie Yu
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy J Griffis
- Department of Soil, Water, and Climate, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joachim Mohn
- Laboratory for Air Pollution & Environmental Technology, Empa, Dübendorf CH-8600, Switzerland
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - John M Baker
- Department of Soil, Water, and Climate, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
- Agricultural Research Service, United States Department of Agriculture, St. Paul, Minnesota 55108, United States
| | - Dongqi Wang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
19
|
Sun C, Liu N, Song J, Chen L, Zhang Y, Wang X. High-Resolution Estimates of N 2O Emissions from Inland Waters and Wetlands in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8736-8747. [PMID: 38723264 DOI: 10.1021/acs.est.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.
Collapse
Affiliation(s)
- Cheng Sun
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Nuo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Junnian Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Zhang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xian'en Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
20
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
21
|
Mwanake RM, Imhof HK, Kiese R. Divergent drivers of the spatial variation in greenhouse gas concentrations and fluxes along the Rhine River and the Mittelland Canal in Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32183-32199. [PMID: 38649602 PMCID: PMC11512915 DOI: 10.1007/s11356-024-33394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Lotic ecosystems are sources of greenhouse gases (GHGs) to the atmosphere, but their emissions are uncertain due to longitudinal GHG heterogeneities associated with point source pollution from anthropogenic activities. In this study, we quantified summer concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and dinitrogen (N2), as well as several water quality parameters along the Rhine River and the Mittelland Canal, two critical inland waterways in Germany. Our main objectives were to compare GHG concentrations and fluxes along the two ecosystems and to determine the main driving factors responsible for their longitudinal GHG heterogeneities. The results indicated that the two ecosystems were sources of GHG fluxes to the atmosphere, with the Mittelland Canal being a hotspot for CH4 and N2O fluxes. We also found significant longitudinal GHG flux discontinuities along the mainstems of both ecosystems, which were mainly driven by divergent drivers. Along the Mittelland Canal, peak CO2 and CH4 fluxes coincided with point pollution sources such as a joining river tributary or the presence of harbors, while harbors and in-situ biogeochemical processes such as methanogenesis and respiration mainly explained CH4 and CO2 hotspots along the Rhine River. In contrast to CO2 and CH4 fluxes, N2O longitudinal trends along the two lotic ecosystems were better predicted by in-situ parameters such as chlorophyll-a concentrations and N2 fluxes. Based on a positive relationship with N2 fluxes, we hypothesized that in-situ denitrification was driving N2O hotspots in the Canal, while a negative relationship with N2 in the Rhine River suggested that coupled biological N2 fixation and nitrification accounted for N2O hotspots. These findings stress the need to include N2 flux estimates in GHG studies, as it can potentially improve our understanding of whether nitrogen is fixed through N2 fixation or lost through denitrification.
Collapse
Affiliation(s)
- Ricky Mwangada Mwanake
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany.
| | - Hannes Klaus Imhof
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Ralf Kiese
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
22
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
Affiliation(s)
- Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, PR China
| | - Qiang Xu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 15030, PR China
| | - Jiaju Liu
- Research Center for Integrated Control of Watershed Water Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ting Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
23
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
24
|
Abulaiti A, She D, Pan Y, Shi Z, Hu L, Huang X, Shan J, Xia Y. Drainage ditches are significant sources of indirect N 2O emissions regulated by available carbon to nitrogen substrates in salt-affected farmlands. WATER RESEARCH 2024; 251:121164. [PMID: 38246078 DOI: 10.1016/j.watres.2024.121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Agriculture is a main source of nitrous oxide (N2O) emissions. In agricultural systems, direct N2O emissions from nitrogen (N) addition to soils have been widely investigated, whereas indirect emissions from aquatic ecosystems such as ditches are poorly known, with insufficient data available to refine the IPCC emission factor. In this contribution, in situ N2O emissions from two ditch water‒air interfaces based on a diffusion model were investigated (almost once per month) from June 2021 to December 2022 in an intensive arable catchment with high N inputs and salt-affected conditions in the Qingtongxia Irrigation District, northwestern China. Our results implied that agricultural ditches (mean 148 μg N m-2 h-1) were significant sources for N2O emissions, and were approximately 2.1 times greater than those of the Yellow River directly connected to ditches. Agronomic management strategies increased N2O fluxes in summer, while precipitation events decreased N2O fluxes. Agronomic management strategies, including fertilization (294--540 kg N hm-2) and irrigation on farmland, resulted in enhanced diffuse N loads in drain water, whereas precipitation diluted the dissolved N2O concentration in ditches and accelerated the ditch flow rate, leading to changes in the residence time of N-containing substances in water. The spatial analysis showed that N2O fluxes (202-233 μg N m-2 h-1) in the headstream and upstream regions of ditches due to livestock and aquaculture pollution sources were relatively high compared to those in the midstream and downstream regions (100-114 μg N m-2 h-1). Furthermore, high available carbon (C) relative to N reduced N2O fluxes at low DOC:DIN ratio levels by inhibiting nitrification. Spatiotemporal variations in the N2O emission factor (EF5) across ditches with higher N resulted in lower EF5 and a large coefficient of variation (CV) range. EF5 was 0.0011 for the ditches in this region, while the EF5 (0.0025) currently adopted by the IPCC is relatively high. The EF5 variation was strongly controlled by the DOC:DIN ratio, TN, and NO3--N, while salinity was also a nonnegligible factor regulating the EF5 variation. The regression model incorporating NO3--N and the DOC:DIN ratio could greatly enhance the predictions of EF5 for agricultural ditches. Our study filled a key knowledge gap regarding EF5 from agricultural ditches in salt-affected farmland and offered a field investigation for refining the EF5 currently used by the IPCC.
Collapse
Affiliation(s)
- Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; College of Soil and Water Conservation, Hohai University, Changzhou 213200, China.
| | - Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Lei Hu
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225002, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
25
|
Wang C, Xv Y, Wu Z, Li X, Li S. Denitrification regulates spatiotemporal pattern of N 2O emission in an interconnected urban river-lake network. WATER RESEARCH 2024; 251:121144. [PMID: 38277822 DOI: 10.1016/j.watres.2024.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Urban rivers are hotspots of N2O production and emission. Interconnected river-lake networks are constructed to improve the water quality and hydrodynamic conditions of urban rivers in many cities of China. However, the impact of the river-lake connectivity project on N2O production and emission remains unclear. This study investigated dissolved N2O and emission of the river-lake network in Wuhan City, China from March 2021 to December 2021. The results showed that river-lake connection greatly decreased riverine Nitrogen (N) concentration and increased dissolved oxygen (DO) concentration compare to traditional urban rivers. N2O emissions from the urban river interconnected with lakes (LUR: 67.3 ± 92.6 μmol/m2/d) were much lower than those from the traditional urban rivers (UR: 467.3 ± 1075.7 μmol/m2/d) and agricultural rivers (AR: 20.4 ± 15.3μmol/m2/d). Regression tree analysis suggested that the N2O concentrations were extremely high when hypoxia exists (DO < 1.6 mg/L), and TDN was the primary factor regulating N2O concentrations when hypoxia does not occur. Thus, we ascribe the low N2O emission in the LUR and AR to the lower N contents and higher DO concentrations. The microbial process of N2O production and consumption were quantitatively estimated by isotopic models. The mean proportion of denitrification derived N2O (fbD) was 63.5 %, 55.6 %, 42.3 % and 42.7 % in the UR, LUR, lakes and AR, suggested denitrification dominated N2O production in the urban rivers, but nitrification dominated N2O production in the lakes and AR. The positive correlation between logN2O and fbD suggested that denitrification is the key process to regulate the N2O production and emission. The abundance of denitrification genes (nirS and nirK) was much higher than that of nitrification genes (amoA and amoB), also evidenced that denitrification was the main N2O source. Therefore, river-lake interconnected projects changed the nutrients level and hypoxic condition, leading to the inhibition of denitrification and nitrification, and ultimately resulting in a decrease of N2O production and emission. These results advance the knowledge on the microbial processes that regulate N2O emissions in inland waters and illustrate the integrated management of water quality and N2O emission.
Collapse
Affiliation(s)
- Chunlin Wang
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yuhan Xv
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Zefeng Wu
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xing Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| |
Collapse
|
26
|
Christensen S, Rousk K. Global N 2O emissions from our planet: Which fluxes are affected by man, and can we reduce these? iScience 2024; 27:109042. [PMID: 38333714 PMCID: PMC10850745 DOI: 10.1016/j.isci.2024.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
In some places, N2O emissions have doubled during the last 2-3 decades. Therefore, it is crucial to identify N2O emission hotspots from terrestrial and aquatic systems. Large variation in N2O emissions occur in managed as well as in natural areas. Natural unmanaged tropical and subtropical wet forests are important N2O sources globally. Emission hotspots, often coupled to human activities, vary across climate zones, whereas N2O emissions are most often a few kg N ha-1 year-1 from arable soils, drained organic soils in the boreal and temperate zones often release 20-30 kg N ha-1 year-1. Similar high N2O emissions occur from some tropical crops like tea, palm oil and bamboo. This strong link between increased N2O emissions and human activities highlight the potential to mitigate large emissions. In contrast, water where oxic and anoxic conditions meet are N2O emission hotspots as well, but not possible to reduce.
Collapse
Affiliation(s)
- Søren Christensen
- Copenhagen University, Department of Biology, VOLT, Center for Volatile Interactions, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kathrin Rousk
- Copenhagen University, Department of Biology, VOLT, Center for Volatile Interactions, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Panique-Casso DG, Goethals P, Ho L. Modeling greenhouse gas emissions from riverine systems: A review. WATER RESEARCH 2024; 250:121012. [PMID: 38128303 DOI: 10.1016/j.watres.2023.121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Despite the recognized importance of flowing waters in global greenhouse gas (GHG) budgets, riverine GHG models remain oversimplified, consequently restraining the development of effective prediction for riverine GHG emissions feedbacks. Here we elucidate the state of the art of riverine GHG models by investigating 148 models from 122 papers published from 2010 to 2021. Our findings indicate that riverine GHG models have been mostly data-driven models (83%), while mechanistic and hybrid models were uncommonly applied (12% and 5%, respectively). Overall, riverine GHG models were mainly used to explain relationships between GHG emissions and biochemical factors, while the role of hydrological, geomorphic, land use and cover factors remains missing. The development of complex and advanced models has been limited by data scarcity issues; hence, efforts should focus on developing affordable automatic monitoring methods to improve data quality and quantity. For future research, we request for basin-scale studies explaining river and land-surface interactions for which hybrid models are recommended given their flexibility. Such a holistic understanding of GHG dynamics would facilitate scaling-up efforts, thereby reducing uncertainties in global GHG estimates. Lastly, we propose an application framework for model selection based on three main criteria, including model purpose, model scale and the spatiotemporal characteristics of GHG data, by which optimal models can be applied in various study conditions.
Collapse
Affiliation(s)
- Diego G Panique-Casso
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Gao J, Xie D, Cao L, Zhao Z, Zhou J, Liao W, Xu X, Wang Q, He F. The ratio but not individual of fragile to refractory DOM affects greenhouse gases release in different trophic level lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119914. [PMID: 38157569 DOI: 10.1016/j.jenvman.2023.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Inland shallow lakes are recognized as an important source of greenhouse gases (GHGs), and their contribution is expected to increase due to global eutrophication. The generation and release of GHGs involved multiple variables, leading to many uncertain potential factors. This study examined the emission characteristics of GHGs at the water-air interface in 12 shallow lakes categorized into four eutrophic levels in the Yangtze River basin. The average emission rates of CH4, CO2 and N2O were 1.55, 3.43, 18.13 and 30.47 mg m-2 h-1, 4.12, 14.64, 25.11 and 69.84 mg m-2 h-1, and 0.2, 0.25, 0.43 and 0.79 mg m-2 day-1 in the oligotrophic, mesotrophic, eutrophic and hypereutrophic lakes, respectively. There were significant correlations between eutrophic levels and the emission rates of CH4 and CO2 (p < 0.05). Redundancy analysis and Mantel test were conducted to further examine the key factors influencing carbon emissions from eutrophic water. It was found that the presence of algae and nutrients in the overlying water played a crucial role in the release of GHGs, indicating the importance of ecosystem productivity in the carbon budget of the lake. In order to assess the bioavailability of organic matter, a new indicator called R(P/H) was proposed. This indicator represents the ratio of protein and humus-like components, which were obtained through EEMs-PARAFAC modeling. The relationship between R(P/H) and CH4 was found to be exponential (R2 = 0.90). Additionally, R(P/H) showed a linear relationship with CO2 and N2O (R2 = 0.68, R2 = 0.75). Therefore, it is crucial to consider R(P/H) as an important factor in accurately estimating global GHG emission fluxes in the future, especially with advancements in the database.
Collapse
Affiliation(s)
- Jin Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Dongyu Xie
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China
| | - Liu Cao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiwang Zhao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayu Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Weicheng Liao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Qingwei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
29
|
Li Y, Tian H, Yao Y, Shi H, Bian Z, Shi Y, Wang S, Maavara T, Lauerwald R, Pan S. Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era. Nat Commun 2024; 15:942. [PMID: 38296943 PMCID: PMC10830459 DOI: 10.1038/s41467-024-45061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr-1 in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr-1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA.
| | - Yuanzhi Yao
- School of Geographic Sciences, East China Normal University, Shanghai, 610000, China
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zihao Bian
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Shi
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Siyuan Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taylor Maavara
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Ronny Lauerwald
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Palaiseau, 91120, France
| | - Shufen Pan
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
- Department of Engineering, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
30
|
Li P, Wallace CD, McGarr JT, Moeini F, Dai Z, Soltanian MR. Investigating key drivers of N 2O emissions in heterogeneous riparian sediments: Reactive transport modeling and statistical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166930. [PMID: 37704143 DOI: 10.1016/j.scitotenv.2023.166930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors.
Collapse
Affiliation(s)
- Pei Li
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States.
| | | | - Jeffrey T McGarr
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Farzad Moeini
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
| | - Mohamad Reza Soltanian
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States; Department of Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States.
| |
Collapse
|
31
|
Strenge E, Zoboli O, Mehdi-Schulz B, Parajka J, Schönhart M, Krampe J, Zessner M. Regional nitrogen budgets of agricultural production systems in Austria constrained by natural boundary conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119023. [PMID: 37816279 DOI: 10.1016/j.jenvman.2023.119023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/30/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
Nitrogen (N) budgets are valuable tools to increase the understanding of causalities between agricultural production and N emissions to support agri-environmental policy instruments. However, regional agricultural N budgets for an entire country covering all major N flows across sectors and environmental compartments, which also distinguish between different N forms, are largely lacking. This study comprehensively analyses regional differences in N budgets pertainting to agricultural production and consumption in the largely alpine and spatially heterogeneous country of Austria. A special focus is on the interconnections between regional agricultural production systems, N emissions, nitrogen use efficiencies (NUE), and natural boundary conditions. Seven regional and one national balance are undertaken via material flow analysis and are analysed with regards to losses into soils, water bodies and atmosphere. Further, NUE is calculated for two conceptual systems of plant and plant-livestock production. The results reveal major differences among regions, with significant implications for agri-environmental management. The high-alpine region, characterized by alpine pastures with a low livestock density, shows consequent low N inputs, the lowest area-specific N outputs and the most inefficient NUE. In contrast, the highest NUE is achieved in a lowland region specialized in arable farming with a low livestock density and a predominance of mineral fertilizer over manure application. In this region, the N surplus is almost as low as in the high-alpine region due to both significantly higher N inputs and outputs compared to the high-alpine region. Nevertheless, due to low precipitation levels, widespread exceedances of the nitrate target level concentration take place in the groundwater. The same issue arises in another non-alpine region characterized by arable farming and high livestock densities. Here, the highest N inputs, primarily via manure, result in the highest N surplus and related nitrate groundwater exceedances despite an acceptable NUE. These examples show that NUE alone is an insufficient target and that adapted criteria are needed for different regions to consider natural constraints and specific framework conditions. In a geographically heterogeneous country like Austria, the regional circumstances strongly define and limit the scope and the potential effectiveness of agricultural N management strategies. These aspects should be integrated into the design, assessment and implementation of agri-environmental programmes.
Collapse
Affiliation(s)
- Eva Strenge
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040, Vienna, Austria.
| | - Ottavia Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040, Vienna, Austria
| | - Bano Mehdi-Schulz
- Institute of Hydrology and Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Juraj Parajka
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Karlsplatz 13/222, 1040, Vienna, Austria
| | - Martin Schönhart
- Institute of Sustainable Economic Development, University of Natural Resources and Life Sciences, Feistmantelstraße 4, 1180, Vienna, Austria
| | - Jörg Krampe
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040, Vienna, Austria
| | - Matthias Zessner
- Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040, Vienna, Austria
| |
Collapse
|
32
|
Sun H, Tian Y, Zhan W, Zhang H, Meng Y, Li L, Zhou X, Zuo W, Ngo HH. Estimating Yangtze River basin's riverine N 2O emissions through hybrid modeling of land-river-atmosphere nitrogen flows. WATER RESEARCH 2023; 247:120779. [PMID: 37897993 DOI: 10.1016/j.watres.2023.120779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Riverine ecosystems are a significant source of nitrous oxide (N2O) worldwide, but how they respond to human and natural changes remains unknown. In this study, we developed a compound model chain that integrates mechanism-based modeling and machine learning to understand N2O transfer patterns within land, rivers, and the atmosphere. The findings reveal a decrease in N2O emissions in the Yangtze River basin from 4.7 Gg yr-1 in 2000 to 2.8 Gg yr-1 in 2019, with riverine emissions accounting for 0.28% of anthropogenic nitrogen discharges from land. This unexpected reduction is primarily attributed to improved water quality from human-driven nitrogen control, while natural factors contributed to a 0.23 Gg yr-1 increase. Notably, urban rivers exhibited a more rapid N2O efflux ( [Formula: see text] ), with upstream levels nearly 3.1 times higher than rural areas. We also observed nonlinear increases in [Formula: see text] with nitrogen discharge intensity, with urban areas showing a gradual and broader range of increase compared to rural areas, which exhibited a sharper but narrower increase. These nonlinearities imply that nitrogen control measures in urban areas lead to stable reductions in N2O emissions, while rural areas require innovative nitrogen source management solutions for greater benefits. Our assessment offers fresh insights into interpreting riverine N2O emissions and the potential for driving regionally differentiated emission reductions.
Collapse
Affiliation(s)
- Huihang Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Zhan
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haoran Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiming Meng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zuo
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
33
|
Kumar A, Upadhyay P, Prajapati SK. Impact of microplastics on riverine greenhouse gas emissions: a view point. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107300-107303. [PMID: 36336740 DOI: 10.1007/s11356-022-23929-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, microplastics (MPs < 5 mm) are ubiquitous and considered a serious emerging environmental problem. However, due to the limited recovery and long-lasting durability MPs, debris is frequently accumulating in riverine ecosystems, thereby impacting microbial activity and its communities. The presence of MPs may alter the microbial richness, variety, and population, thereby impacting the transformation of biogeochemical cycles. The occurrence, fate, and transport of MPs in marine and terrestrial ecosystems and their impact on biogeochemical or nutrient cycling are reported in the scientific fraternity. Yet, the global scientific community is conspicuously devoid of research on impact of MPs on riverine greenhouse gas (GHG) emissions. The presented view point provides a novel idea about the fate of MPs in the riverine system and its impact on GHG emissions potential. Literature reveals that DO and nutrients (organic carbon, NH4+, NO3-) concentrations play an important role in potential of GHG emission in riverine ecosystems. The proposed mechanism and research gaps provided will be highly helpful to the hydrologist, environmentalist, biotechnologist, and policymakers to think about the strategic mitigation measure to resolve the future climatic risk.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources, Nanjing, China.
| | - Pooja Upadhyay
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
34
|
Wang J, Vilmin L, Mogollón JM, Beusen AHW, van Hoek WJ, Liu X, Pika PA, Middelburg JJ, Bouwman AF. Inland Waters Increasingly Produce and Emit Nitrous Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13506-13519. [PMID: 37647507 PMCID: PMC10501125 DOI: 10.1021/acs.est.3c04230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Nitrous oxide (N2O) is a long-lived greenhouse gas and currently contributes ∼10% to global greenhouse warming. Studies have suggested that inland waters are a large and growing global N2O source, but whether, how, where, when, and why inland-water N2O emissions changed in the Anthropocene remains unclear. Here, we quantify global N2O formation, transport, and emission along the aquatic continuum and their changes using a spatially explicit, mechanistic, coupled biogeochemistry-hydrology model. The global inland-water N2O emission increased from 0.4 to 1.3 Tg N yr-1 during 1900-2010 due to (1) growing N2O inputs mainly from groundwater and (2) increased inland-water N2O production, largely in reservoirs. Inland waters currently contribute 7 (5-10)% to global total N2O emissions. The highest inland-water N2O emissions are typically in and downstream of reservoirs and areas with high population density and intensive agricultural activities in eastern and southern Asia, southeastern North America, and Europe. The expected continuing excessive use of nutrients, dam construction, and development of suboxic conditions in aging reservoirs imply persisting high inland-water N2O emissions.
Collapse
Affiliation(s)
- Junjie Wang
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Lauriane Vilmin
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
- Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
| | - José M. Mogollón
- Department
of Industrial Ecology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Arthur H. W. Beusen
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
- PBL
Netherlands Environmental Assessment Agency, P.O. Box 30314, 2500 GH The Hague, The Netherlands
| | - Wim J. van Hoek
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Xiaochen Liu
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Philip A. Pika
- Faculty
of Science, Earth and Climate, Free University
of Amsterdam, de Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Jack J. Middelburg
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Alexander F. Bouwman
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
35
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hanqin Tian
- Department of Earth and Environmental Sciences, Boston College, Schiller Institute for Integrated Science and Society, Chestnut Hill, MA 02467, United States
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guirui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
36
|
Yan R, Wang F, Wang Y, Chen N. Pollution abatement reducing the river N 2O emissions although it is partially offset by a warming climate: Insights from an urbanized watershed study. WATER RESEARCH 2023; 236:119934. [PMID: 37043873 DOI: 10.1016/j.watres.2023.119934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Global nitrogen (N) pollution has resulted in increased river nitrous oxide (N2O) emissions, which contribute to climate change. However, little is known about how pollution abatement conversely reduces river N2O production in a warming climate. Here, field observations and microcosmic experiments were conducted in a coastal urbanized watershed (S.E. China) to explore the interactive effect of changing nitrate and temperature on river sediment denitrification (DNF) and N2O production. The results showed that urban river reaches (UR) with higher organic carbon content and denitrifying gene abundance in sediments have a greater DNF rate, nitrate removal efficiency (NRE), and N2O concentration than agricultural river reaches (AR). Microcosmic incubation suggested that the DNF rate and associated N2O production decreased under low nitrate addition, wherein the NRE increased. The scenario simulation illustrated a nonlinear response of N2O production to nitrate removal (i.e., ΔN2O/ΔNO3-N) from both UR and AR sediments at a given temperature, and the DNF rate and N2O production increased with increasing temperature. An increase in temperature by 1 degree Celsius would offset 18.75% of the N2O reduction by nitrate removal via DNF. These findings implied that watershed pollution abatement undoubtedly contributes to the reduction in global river N2O emissions although it is partially offset by extra N2O production caused by global warming.
Collapse
Affiliation(s)
- Ruifeng Yan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Fenfang Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China
| | - Yao Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
37
|
Rodríguez-Ramos J, Oliverio A, Borton MA, Danczak R, Mueller BM, Schulz H, Ellenbogen J, Flynn RM, Daly RA, Schopflin L, Shaffer M, Goldman A, Lewandowski J, Stegen JC, Wrighton KC. Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535500. [PMID: 37066413 PMCID: PMC10104031 DOI: 10.1101/2023.04.04.535500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.
Collapse
|
38
|
Shabir R, Li Y, Zhang L, Chen C. Biochar surface properties and chemical composition determine the rhizobial survival rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116594. [PMID: 36347218 DOI: 10.1016/j.jenvman.2022.116594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
39
|
Yuan D, Zheng L, Liu YX, Cheng H, Ding A, Wang X, Tan Q, Wang X, Xing Y, Xie E, Wu H, Wang S, Zhu G. Nitrifiers Cooperate to Produce Nitrous Oxide in Plateau Wetland Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:810-821. [PMID: 36459424 DOI: 10.1021/acs.est.2c06234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing100083, China
| | - Haoming Wu
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
40
|
Wang J, Wang G, Zhang S, Xin Y, Jiang C, Liu S, He X, McDowell WH, Xia X. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales. GLOBAL CHANGE BIOLOGY 2022; 28:7270-7285. [PMID: 36176238 DOI: 10.1111/gcb.16458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.
Collapse
Affiliation(s)
- Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, Hebei, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chenrun Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
41
|
Wang X, Yu L, Liu T, He Y, Wu S, Chen H, Yuan X, Wang J, Li X, Li H, Que Z, Qing Z, Zhou T. Methane and nitrous oxide concentrations and fluxes from heavily polluted urban streams: Comprehensive influence of pollution and restoration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120098. [PMID: 36075337 DOI: 10.1016/j.envpol.2022.120098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Streams draining urban areas are usually regarded as hotspots of methane (CH4) and nitrous oxide (N2O) emissions. However, little is known about the coupling effects of watershed pollution and restoration on CH4 and N2O emission dynamics in heavily polluted urban streams. This study investigated the CH4 and N2O concentrations and fluxes in six streams that used to be heavily polluted but have undergone different watershed restorations in Southwest China, to explore the comprehensive influences of pollution and restoration. CH4 and N2O concentrations in the six urban streams ranged from 0.12 to 21.32 μmol L-1 and from 0.03 to 2.27 μmol L-1, respectively. The calculated diffusive fluxes of CH4 and N2O were averaged of 7.65 ± 9.20 mmol m-2 d-1 and 0.73 ± 0.83 mmol m-2 d-1, much higher than those in most previous reports. The heavily polluted streams with non-restoration had 7.2 and 7.8 times CH4 and N2O concentrations higher than those in the fully restored streams, respectively. Particularly, CH4 and N2O fluxes in the fully restored streams were 90% less likely than those found in the unrestored ones. This result highlighted that heavily polluted urban streams with high pollution loadings were indeed hotspots of CH4 and N2O emissions throughout the year, while comprehensive restoration can effectively weaken their emission intensity. Sewage interception and nutrient removal, especially N loadings reduction, were effective measures for regulating the dynamics of CH4 and N2O emissions from the heavily polluted streams. Based on global and regional integration, it further elucidated that increasing environment investments could significantly improve water quality and mitigate CH4 and N2O emissions in polluted urban streams. Overall, our study emphasized that although urbanization could inevitably strengthen riverine CH4 and N2O emissions, effective eco-restoration can mitigate the crisis of riverine greenhouse gas emissions.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China.
| | - Lele Yu
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Tingting Liu
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yixin He
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
| | - Shengnan Wu
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
| | - Xingzhong Yuan
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
| | - Jilong Wang
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Xianxiang Li
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Hang Li
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Ziyi Que
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Zhaoyin Qing
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| | - Ting Zhou
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing, 401331, China; Three Gorges Reservoir Area Earth Surface Ecological Processes of Chongqing Observation and Research Station, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
42
|
Li L, Li F, Deng M, Wu C, Zhao X, Song K, Wu F. Microplastics distribution characteristics in typical inflow rivers of Taihu lake: Linking to nitrous oxide emission and microbial analysis. WATER RESEARCH 2022; 225:119117. [PMID: 36126427 DOI: 10.1016/j.watres.2022.119117] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The microplastics in nature water are important for the environmental fate of nitrous oxide (N2O). This study investigated the influence and microbial mechanism of microplastic abundance to the N2O flux in typical inflow rivers of Taihu lake. The microplastic abundance were in a range of 160-700 particles/m3 surface water, and 514-3018 particles/kg dry sediment. The highest percentage of microplastic color was transparent, significantly higher than other color (p<0.0001) in both surface water and sediment. The dominant microplastic size was 500-5000 μm in surface water, while size lower than 1000 μm was dominant in sediment. The microplastic abundance in sediment was negatively correlated with the concentration of suspended sediments (SPS) (p<0.05), Chl-a (p<0.05), NH4+-N (p<0.05) and TP (p<0.01) in inflow river surface water. The dissolved N2O concentration were 45.71-132.42 nmol/L, and the N2O fluxes were 29.85-276.60 μmol/m2/d. The dissolved N2O concentration was significantly correlated with the nirK abundance and nirK/nosZI ratio negatively (p<0.05), revealed that sediment nirK-type denitrification was the main driver of dissolved N2O. Meanwhile, the N2O flux (water-air interface) was significantly correlated with nosZI, napA, narG and nirS negatively, implied that nitrification and denitrification interaction in sediment is the main influence factor. The denitrification process in sediment was the main driven factor of N2O releasing. Mantel-test shows that microplastic abundance in surface water was significantly correlated with nitrification (p = 0.001∼0.01) and denitrification (p = 0.01∼0.05) genera in water. The dominant denitrification microorganism was Dechloromonas in sediment and Flavobacterium in surface water. These results provided new insight into the fact that plastisphere which comprises microbial community on microplastic could affect the N2O emission in aquatic system.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
43
|
Marzadri A, Bellin A, Tank JL, Tonina D. Predicting nitrous oxide emissions through riverine networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156844. [PMID: 35750169 DOI: 10.1016/j.scitotenv.2022.156844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is currently the leading ozone-depleting gas and is also a potent greenhouse gas. Predictions of N2O emissions from riverine systems are difficult and mostly accomplished via regression equations based on dissolved inorganic nitrogen (DIN) concentrations or fluxes, although recent studies have shown that hydromorphological characteristics can influence N2O emissions in riverine reaches. Here, we propose a predictive model for N2O riverine concentrations and emissions at the reach scale. The model is based on Damköhler numbers and captures the primary effects of reach-scale biogeochemical and hydromorphological characteristics in flowing waters. It explains the change in N2O emissions from small streams to large rivers under varying conditions including biome, land use, climate, and nutrient availability. The model and observed data show that dimensionless N2O concentrations and emission rates have higher variability and mean values for small streams (reach width <10 m) than for larger streams due to high spatial variability of stream hydraulics and morphology.
Collapse
Affiliation(s)
- A Marzadri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - A Bellin
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - J L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - D Tonina
- Center for Ecohydraulics Research, University of Idaho, Boise, ID, USA.
| |
Collapse
|
44
|
Genome-Resolved Metaproteomics Decodes the Microbial and Viral Contributions to Coupled Carbon and Nitrogen Cycling in River Sediments. mSystems 2022; 7:e0051622. [PMID: 35861508 PMCID: PMC9426555 DOI: 10.1128/msystems.00516-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.
Collapse
|
45
|
Zheng Y, Wu S, Xiao S, Yu K, Fang X, Xia L, Wang J, Liu S, Freeman C, Zou J. Global methane and nitrous oxide emissions from inland waters and estuaries. GLOBAL CHANGE BIOLOGY 2022; 28:4713-4725. [PMID: 35560967 DOI: 10.1111/gcb.16233] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Inland waters (rivers, reservoirs, lakes, ponds, streams) and estuaries are significant emitters of methane (CH4 ) and nitrous oxide (N2 O) to the atmosphere, while global estimates of these emissions have been hampered due to the lack of a worldwide comprehensive data set of CH4 and N2 O flux components. Here, we synthesize 2997 in-situ flux or concentration measurements of CH4 and N2 O from 277 peer-reviewed publications to estimate global CH4 and N2 O emissions from inland waters and estuaries. Inland waters including rivers, reservoirs, lakes, and streams together release 95.18 Tg CH4 year-1 (ebullition plus diffusion) and 1.48 Tg N2 O year-1 (diffusion) to the atmosphere, yielding an overall CO2 -equivalent emission total of 3.06 Pg CO2 year-1 . The estimate of CH4 and N2 O emissions represents roughly 60% of CO2 emissions (5.13 Pg CO2 year-1 ) from these four inland aquatic systems, among which lakes act as the largest emitter for both CH4 and N2 O. Ebullition showed as a dominant flux component of CH4 , contributing up to 62%-84% of total CH4 fluxes across all inland waters. Chamber-derived CH4 emission rates are significantly greater than those determined by diffusion model-based methods for commonly capturing of both diffusive and ebullitive fluxes. Water dissolved oxygen (DO) showed as a dominant factor among all variables to influence both CH4 (diffusive and ebullitive) and N2 O fluxes from inland waters. Our study reveals a major oversight in regional and global CH4 budgets from inland waters, caused by neglecting the dominant role of ebullition pathways in those emissions. The estimated indirect N2 O EF5 values suggest that a downward refinement is required in current IPCC default EF5 values for inland waters and estuaries. Our findings further indicate that a comprehensive understanding of the magnitude and patterns of CH4 and N2 O emissions from inland waters and estuaries is essential in defining the way of how these aquatic systems will shape our climate.
Collapse
Affiliation(s)
- Yajing Zheng
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Xiao
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiantao Fang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Longlong Xia
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jinyang Wang
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuwei Liu
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| |
Collapse
|
46
|
Wang N, Awasthi MK, Pan J, Jiang S, Wan F, Lin X, Yan B, Zhang J, Zhang L, Huang H, Li H. Effects of biochar and biogas residue amendments on N 2O emission, enzyme activities and functional genes related with nitrification and denitrification during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 357:127359. [PMID: 35618192 DOI: 10.1016/j.biortech.2022.127359] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to determine the response characteristics of N2O emission, enzyme activities, and functional gene abundances involved in nitrification/denitirification process with biochar and biogas residue amendments during rice straw composting. The results revealed that N2O release mainly occurred during the second fermentation phase. Biogas residue amendment promoted N2O emission, while biochar addition decreased its emission by 33.6%. The nirK gene was abundant through composting process. Biogas residues increased the abundance of denitrification genes, resulting in further release of N2O. Biochar enhanced nosZ gene abundance and accelerated the reduction of N2O. Nitrate reductase (NR), nitrite reductase (NiR), N2O reductase (N2OR), and ammonia monooxygenase (AMO) activities were greatly stimulated by biochar or biogas residue rather than their combined addition. Pearson regression analysis indicated that N2O emission negatively correlated with ammonium and positively correlated with nosZ, nirK, 18S rDNA, total nitrogen, and nitrate (P < 0.05).
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xu Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| |
Collapse
|
47
|
Yan X, Han H, Qiu J, Zhang L, Xia Y, Yan X. Suburban agriculture increased N levels but decreased indirect N 2O emissions in an agricultural-urban gradient river. WATER RESEARCH 2022; 220:118639. [PMID: 35640505 DOI: 10.1016/j.watres.2022.118639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The effects of land use on riverine N2O emissions are not well understood, especially in suburban zones between urban and rural with distinct anthropogenic perturbations. Here, we investigated in situ riverine N2O emissions among suburban, urban, and rural sections of a typical agricultural-urban gradient river, the Qinhuai River of Southeastern China from June 2010 to September 2012. Our results showed that suburban agriculture greatly increased riverine N concentration compared to traditional agricultural rivers (TAR). The mean total dissolved nitrogen (TDN) concentration was 8.18 mg N L-1 in the suburban agricultural rivers (SUAR), which was almost the same as that in the urban rivers (UR, of 8.50 mg N L-1), compared to that in TAR (0.92 mg N L-1). However, the annual average indirect N2O flux from the SUAR was only 27.15 μg N2O-N m-2 h-1, which was slightly higher than that from the TAR (13.14 μg N2O-N m-2 h-1) but much lower than that from the UR (131.10 μg N2O-N m-2 h-1). Moreover, the average N2O emission factor (EF5r, N2O-N/DIN-N) in the SUAR (0.0002) was significantly lower than those in the TAR (0.0028) and UR (0.0004). The limited indirect N2O fluxes from the SUAR are best explained by the high riverine dissolved organic carbon (DOC) and low dissolved oxygen, which probably reduced the denitrification source N2O by favoring complete denitrification to produce N2 and inhibited the nitrification source N2O, respectively. An exponential decrease model incorporating dissolved inorganic nitrogen and DOC could greatly improve our EF5r predictions in the agricultural-urban gradient river. Given the unprecedented suburban agriculture in the world, more studies in suburban agricultural rivers are needed to further refine the EF5r and better reveal the mechanisms behind indirect N2O emissions as influenced by suburban agriculture.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Han
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
48
|
Zhou Y, Toyoda R, Suenaga T, Aoyagi T, Hori T, Terada A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. WATER RESEARCH 2022; 216:118276. [PMID: 35339050 DOI: 10.1016/j.watres.2022.118276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Risako Toyoda
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
49
|
Ho L, Jerves-Cobo R, Barthel M, Six J, Bode S, Boeckx P, Goethals P. Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37277-37290. [PMID: 35048344 DOI: 10.1007/s11356-021-18081-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Rivers act as a natural source of greenhouse gases (GHGs). However, anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG production. To investigate these impacts, we assessed the accumulation of CO2, CH4, and N2O in an urban river system (Cuenca, Ecuador). High variation of dissolved GHG concentrations was found among river tributaries that mainly depended on water quality and land use. By using Prati and Oregon water quality indices, we observed a clear pattern between water quality and the dissolved GHG concentration: the more polluted the sites were, the higher were their dissolved GHG concentrations. When river water quality deteriorated from acceptable to very heavily polluted, the mean value of pCO2 and dissolved CH4 increased by up to ten times while N2O concentrations boosted by 15 times. Furthermore, surrounding land-use types, i.e., urban, roads, and agriculture, could considerably affect the GHG production in the rivers. Particularly, the average pCO2 and dissolved N2O of the sites close to urban areas were almost four times higher than those of the natural sites while this ratio was 25 times in case of CH4, reflecting the finding that urban areas had the worst water quality with almost 70% of their sites being polluted while this proportion of nature areas was only 12.5%. Lastly, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the GHG production by applying statistical analysis and random forests. These results highlighted the impacts of land-use types on the production of GHGs in rivers contaminated by sewage discharges and surface runoff.
Collapse
Affiliation(s)
- Long Ho
- Department of Animal Sciences, Ghent University, Ghent, Belgium.
| | - Ruben Jerves-Cobo
- Department of Animal Sciences, Ghent University, Ghent, Belgium
- PROMAS, Universidad de Cuenca, Cuenca, Ecuador
- Department of Data Analysis and Mathematical Modelling, BIOMATH, Ghent University, Ghent, Belgium
| | - Matti Barthel
- Department of Environmental System`S Science, ETH Zurich, Zurich, Switzerland
| | - Johan Six
- Department of Environmental System`S Science, ETH Zurich, Zurich, Switzerland
| | - Samuel Bode
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Peter Goethals
- Department of Animal Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Wang L, Zhang K, Guo K, Liu L, Zhang T, Xu M, Yan X, Gao X. Multifactor effects on the N 2O emissions and yield of potato fields based on the DNDC model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25448-25460. [PMID: 34845632 DOI: 10.1007/s11356-021-17700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Maintaining or increasing grain yields while also reducing the emissions of field agricultural greenhouse gases is an important objective. To explore the multifactor effects of nitrogen fertilizer on nitrous oxide (N2O) emissions and the yield of potato fields and to verify the applicability of the denitrification-decomposition (DNDC) model when used to project the N2O emission load and yield, this research chooses a potato field in Shenyang northeast China from 2017 to 2019 as the experiment site. The experiment includes four nitrogen levels observing the emission of N2O by static chamber/gas chromatograph techniques. The results of this study are as follows: (1) DNDC has a good performance regarding the projection of N2O emissions and yields. The model efficiency index EFs were 0.45 ~ 0.88 for N2O emissions and 0.91, 0.85, and 0.85 for yields from 2017 to 2019. (2) The annual precipitation, soil organic carbon, and soil bulk density had the most significant influence on the accumulated N2O emissions during the growth period of potatoes. The annual precipitation, annual average temperature, and CO2 mass concentration had the most significant influences on yield. (3) Under the premise of a normal water supply, sowing potatoes within 5 days after the 5-day sliding average temperature in this area exceeds 10℃ can ensure the temperature required for the normal growth of potatoes and achieve the purpose of maintaining and increasing yield. (4) The application of 94.5 kg·hm-2 nitrogen and 15 mm irrigation represented the best results for reducing N2O emissions while also maintaining the yield in potato fields.
Collapse
Affiliation(s)
- Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kai Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kangjun Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Limin Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tao Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingjie Xu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xuefei Yan
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|