1
|
Su J, Mazei YA, Tsyganov AN, Chernyshov VA, Komarov AA, Malysheva EA, Babeshko KV, Mazei NG, Saldaev DA, Levin B, Yakimov BN. Functional traits data for testate amoebae of Northern Holarctic realm. Sci Data 2024; 11:1028. [PMID: 39300149 PMCID: PMC11413188 DOI: 10.1038/s41597-024-03874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The functional traits of soil protists have been employed in ecological research to enhance comprehension of the underlying mechanisms of ecological processes. Among the numerous soil protists, testate amoebae emerge as a prominent and abundant group, playing a pivotal role in soil micro-food webs. Furthermore, they are regarded as valuable bioindicators for environmental monitoring and palaeoecological studies due to their sensitivity to environmental changes. We screened 372 testate amoebae species widely distributed across Northern Holarctic realm and collected trait data, representing the morphological and feeding characteristics of testate amoebae. The dataset would provide valuable basis for investigation of the functional diversity and ecological roles of testate amoebae, thus facilitating further research on soil protist communities and ecosystem dynamics.
Collapse
Affiliation(s)
- Jiahui Su
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Yuri A Mazei
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Andrey N Tsyganov
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | | | | | | | - Kirill V Babeshko
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Natalia G Mazei
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Damir A Saldaev
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Boris Levin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Borok, 152742, Russia
| | - Basil N Yakimov
- Shenzhen MSU-BIT University, Shenzhen, 518172, China.
- Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
2
|
Cid-Rodríguez M, Cantonati M, Spitale D, Galluzzi G, Zaccone C. Using diatoms and physical and chemical parameters to monitor cow-pasture impact in peat cores from mountain mires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171779. [PMID: 38508254 DOI: 10.1016/j.scitotenv.2024.171779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Peatlands play a crucial role in carbon (C) sequestration and biodiversity conservation. However, these environments are highly vulnerable, and Europe has lost >60 % of its peatland habitat in recent decades. Cattle grazing and trampling contribute to peatland degradation, which generally result in a shift from moss-dominated vegetation to vascular plants and in lower C sequestration rates. Overgrazing poses also a significant threat to habitat integrity and biodiversity, especially in the Alpine area, where close-to-pristine mires with high ecological integrity are becoming extremely rare. Thus, a more in depth understanding of how cattle grazing and trampling are threatening Alpine mires is strongly needed for a sustainable management and conservation of these habitats. The objective of this study was to examine the impact of grazing on the physical, chemical, and biological characteristics of peat, with a focus on diatoms. To answer such a question, seven 50-cm deep cores were collected from mires located in the Adamello-Brenta Nature Park (North of Italy) along a grazing-induced disturbance gradient. Results indicated that grazing primarily affected at least the upper 15 cm of the peat, resulting in increased density and reduced water content, due to compaction, and lower C-to‑nitrogen ratio, possibly caused by both cow manure inputs and increased peat mineralization. Moreover, almost 200 diatom taxa were recorded across the 7 cores, with several of them falling under threat categories in the Red List for central Europe. The higher percentage of eutraphentic species in highly-grazed areas was related to the increase in nutrients caused by cattle manure. Finally, intense grazing increased the share of taxa that are more likely to survive in environments with unstable water availability (= aerial species). We showed that diatom data, supported by physical and chemical parameters, can be a refined tool to inform mire protection and rehabilitation.
Collapse
Affiliation(s)
- María Cid-Rodríguez
- Department of Ecology and Animal Biology, University of Vigo, Spain; Research & Collections Dept. (Limnology & Phycology), MUSE - Museo delle Scienze, Trento, Italy.
| | - Marco Cantonati
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Italy.
| | | | - Giorgio Galluzzi
- Department of Biotechnology, University of Verona, Verona, Italy.
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Fracasso I, Zaccone C, Oskolkov N, Da Ros L, Dinella A, Belelli Marchesini L, Buzzini P, Sannino C, Turchetti B, Cesco S, Le Roux G, Tonon G, Vernesi C, Mimmo T, Ventura M, Borruso L. Exploring different methodological approaches to unlock paleobiodiversity in peat profiles using ancient DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168159. [PMID: 37923262 DOI: 10.1016/j.scitotenv.2023.168159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Natural and human-induced environmental changes deeply affected terrestrial ecosystems throughout the Holocene. Paleoenvironmental reconstructions provide information about the past and allow us to predict/model future scenarios. Among potential records, peat bogs are widely used because they present a precise stratigraphy and act as natural archives of highly diverse organic remains. Over the decades, several techniques have been developed to identify debris occurring in peat, including their morphological description. However, this is strongly constrained by the researcher's ability to distinguish residues at the species level, which typically requires many years of experience. In addition, potential contamination hampers using these techniques to obtain information from organisms such as fungi or bacteria. Environmental DNA metabarcoding and shotgun metagenome sequencing could represent a solution to detect specific groups of organisms without any a priori knowledge of their characteristics and/or to identify organisms that have rarely been considered in previous investigations. Moreover, shotgun metagenomics may allow the identification of bacteria and fungi (including both yeast and filamentous life forms), ensuring discrimination between ancient and modern organisms through the study of deamination/damage patterns. In the present review, we aim to i) present the state-of-the-art methodologies in paleoecological and paleoclimatic studies focusing on peat core analyses, proposing alternative approaches to the classical morphological identification of plant residues, and ii) suggest biomolecular approaches that will allow the use of proxies such as invertebrates, fungi, and bacteria, which are rarely employed in paleoenvironmental reconstructions.
Collapse
Affiliation(s)
- Ilaria Fracasso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Luca Da Ros
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Anna Dinella
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luca Belelli Marchesini
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Gael Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR5245 CNRS/UPS/INPT), Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Giustino Tonon
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| |
Collapse
|
4
|
Yang Q, Liu Z, Bai E. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. GLOBAL CHANGE BIOLOGY 2023; 29:6350-6366. [PMID: 37602716 DOI: 10.1111/gcb.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13 C, δ15 N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to -59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15 N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.
Collapse
Affiliation(s)
- Qiannan Yang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
Magnan G, Sanderson NK, Piilo S, Pratte S, Väliranta M, van Bellen S, Zhang H, Garneau M. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. GLOBAL CHANGE BIOLOGY 2022; 28:1919-1934. [PMID: 34882914 DOI: 10.1111/gcb.16032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Northern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high-latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs and Sphagnum expansion, coinciding with climate warming which has also influenced C accumulation during the last ~100 years. The rapid shifts towards drier bog communities and an expansion of Sphagnum sect. Acutifolia after 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration of Sphagnum-dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate-driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high-latitude non-permafrost peatlands where wet sedge fens may transition to drier Sphagnum bog communities due to warmer and longer growing seasons.
Collapse
Affiliation(s)
- Gabriel Magnan
- Geotop and GRIL Research Centres, Université du Québec à Montréal, Montréal, Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Canada
| | - Nicole K Sanderson
- Geotop and GRIL Research Centres, Université du Québec à Montréal, Montréal, Canada
| | - Sanna Piilo
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Steve Pratte
- Geotop and GRIL Research Centres, Université du Québec à Montréal, Montréal, Canada
- School of Earth Sciences, Zhejiang University, Hangzhou, PR China
| | - Minna Väliranta
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Simon van Bellen
- Geotop and GRIL Research Centres, Université du Québec à Montréal, Montréal, Canada
- Consortium Érudit, Université de Montréal, Montréal, Canada
| | - Hui Zhang
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Michelle Garneau
- Geotop and GRIL Research Centres, Université du Québec à Montréal, Montréal, Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Canada
| |
Collapse
|
6
|
Freitas YDGC, Ramos BRD, da Silva YG, Sampaio GS, Nascimento LDS, Branco CWC, Miranda VBDS. Testate amoebae: a review on their multiple uses as bioindicators. ACTA PROTOZOOL 2022. [DOI: 10.4467/16890027ap.22.001.15671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Testate amoebae (TA) are unicellular protozoans enclosed in a test capable of indicating a wide variety of environmental conditions. Among others, characteristics such as short life cycle, great sensitivity and worldwide distribution makes them adequate bioindicators. As a complement to physical and chemical measurements, biomonitoring can be a cheaper and fastest way of environmental monitoring. This research sought to evaluate the extent of TA use in biomonitoring and the responses given by them to environmental features. The research was conducted in Scielo, Science Direct, Online Library, Google Scholar and Capes Journal Portal and yielded 211 papers. TA bioindication is able to provide information on metal, trace element and atmospheric pollution, and to point out different trophic states, pH, and evidence on characteristics of hydrology. Further, TA can be used in paleoenvironmental reconstruction as they reflect climate, volcanic and even sea level change phenomena. Sometimes, together with other organisms in environmental analysis, they have shown to be an important complement to biomonitoring. Additionally, a functional traits approach has been recently included as a promising tool. Methodological adjustments that have been conducted throughout the years are allowing TA use to be more reliable and precise. This review provides insight on the many possible functions of TA in bioindication studies, highlighting their wide use as bioindicators.
Collapse
Affiliation(s)
| | | | - Yemna Gomes da Silva
- Neotropical Limnology Group, Department of Zoology, Federal University of the State of Rio de Janeiro
| | - Gabriela Silva Sampaio
- Neotropical Limnology Group, Department of Zoology, Federal University of the State of Rio de Janeiro
| | - Letícia da Silva Nascimento
- Neotropical Limnology Group, Department of Zoology, Federal University of the State of Rio de Janeiro; Intitute of Biological Sciences, Instituto Federal do Rio de Janeiro
| | | | | |
Collapse
|
7
|
Kolari THM, Sallinen A, Wolff F, Kumpula T, Tolonen K, Tahvanainen T. Ongoing Fen–Bog Transition in a Boreal Aapa Mire Inferred from Repeated Field Sampling, Aerial Images, and Landsat Data. Ecosystems 2021. [DOI: 10.1007/s10021-021-00708-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractNorthern aapa mire complexes are characterized by patterned fens with flarks (wet fen surfaces) and bog zone margins with Sphagnum moss cover. Evidence exists of a recent increase in Sphagnum over fens that can alter ecosystem functions. Contrast between flarks and Sphagnum moss cover may enable remote sensing of these changes with satellite proxies. We explored recent changes in hydro-morphological patterns and vegetation in a south-boreal aapa mire in Finland and tested the performance of Landsat bands and indices in detecting Sphagnum increase in aapa mires. We combined aerial image analysis and vegetation survey, repeated after 60 years, to support Landsat satellite image analysis. Aerial image analysis revealed a decrease in flark area by 46% between 1947 and 2019. Repeated survey showed increase in Sphagnum mosses (S. pulchrum, S. papillosum) and deep-rooted vascular plants (Menyanthes trifoliata, Carex rostrata). A supervised classification of high-resolution UAV image recognized the legacy of infilled flarks in the patterning of Sphagnum carpets. Among Landsat variables, all separate spectral bands, the Green Difference Vegetation Index (GDVI), and the Automated Water Extraction Index (AWEI) correlated with the flark area. Between 1985 and 2020, near-infrared (NIR) and GDVI increased in the central flark area, and AWEI decreased throughout the mire area. In aapa mire complexes, flark fen and Sphagnum bog zones have contrasting Landsat NIR reflectance, and NIR band is suggested for monitoring changes in flarks. The observed increase in Sphagnum mosses supports the interpretation of ongoing fen–bog transitions in Northern European aapa mires, indicating significant ecosystem-scale changes.
Collapse
|
8
|
Kolari THM, Korpelainen P, Kumpula T, Tahvanainen T. Accelerated vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change. Ecol Evol 2021; 11:7602-7621. [PMID: 34188838 PMCID: PMC8216969 DOI: 10.1002/ece3.7592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Northern mires (fens and bogs) have significant climate feedbacks and contribute to biodiversity, providing habitats to specialized biota. Many studies have found drying and degradation of bogs in response to climate change, while northern fens have received less attention. Rich fens are particularly important to biodiversity, but subject to global climate change, fen ecosystems may change via direct response of vegetation or indirectly by hydrological changes. With repeated sampling over the past 20 years, we aim to reveal trends in hydrology and vegetation in a pristine boreal fen with gradient from rich to poor fen and bog vegetation. We resampled 203 semi-permanent plots and compared water-table depth (WTD), pH, concentrations of mineral elements, and dissolved organic carbon (DOC), plant species occurrences, community structure, and vegetation types between 1998 and 2018. In the study area, the annual mean temperature rose by 1.0°C and precipitation by 46 mm, in 20-year periods prior to sampling occasions. We found that wet fen vegetation decreased, while bog and poor fen vegetation increased significantly. This reflected a trend of increasing abundance of common, generalist hummock species at the expense of fen specialist species. Changes were the most pronounced in high pH plots, where Sphagnum mosses had significantly increased in plot frequency, cover, and species richness. Changes of water chemistry were mainly insignificant in concentration levels and spatial patterns. Although indications toward drier conditions were found in vegetation, WTD had not consistently increased, instead, our results revealed complex dynamics of WTD as depending on vegetation changes. Overall, we found significant trend in vegetation, conforming to common succession pattern from rich to poor fen and bog vegetation. Our results suggest that responses intrinsic to vegetation, such as increased productivity or altered species interactions, may be more significant than indirect effects via local hydrology to the ecosystem response to climate warming.
Collapse
Affiliation(s)
- Tiina H. M. Kolari
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Pasi Korpelainen
- Department of Geographical and Historical StudiesUniversity of Eastern FinlandJoensuuFinland
| | - Timo Kumpula
- Department of Geographical and Historical StudiesUniversity of Eastern FinlandJoensuuFinland
| | - Teemu Tahvanainen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
9
|
Beaulne J, Boucher É, Garneau M, Magnan G. Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands. FOREST ECOSYSTEMS 2021; 8:28. [PMID: 34721933 PMCID: PMC8550502 DOI: 10.1186/s40663-021-00307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Black spruce (Picea mariana (Mill.) BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation, known as the paludification process, has been shown to induce forest growth decline. The continuously evolving environmental conditions (e.g., water table rise, increasing peat thickness) in paludified forests may require tree growth mechanism adjustments over time. In this study, we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses. Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates, stomatal conductance, and water use efficiency. In addition, paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations. RESULTS Increasing peat accumulation considerably impacts forest growth, but no significant differences in tree water use efficiency (iWUE) are found between the study sites. Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years, but rather an important increase at each site up to the 1980s, before iWUE stabilized. Surprisingly, inferred basal area increments do not reflect such trends. Therefore, iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions. Local water table variations induce no changes in ecophysiological mechanisms, but a synchronous shift in iWUE is observed at all sites in the mid-1980s. CONCLUSIONS Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands. These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites. Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change, and to make appropriate forest management decisions in the boreal biome. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40663-021-00307-x.
Collapse
Affiliation(s)
- Joannie Beaulne
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
| | - Étienne Boucher
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Centre d’études nordiques, Université Laval, Montréal, Québec G1V 0A6 Canada
| | - Michelle Garneau
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Centre d’études nordiques, Université Laval, Montréal, Québec G1V 0A6 Canada
| | - Gabriel Magnan
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
| |
Collapse
|
10
|
Marcisz K, Jassey VEJ, Kosakyan A, Krashevska V, Lahr DJG, Lara E, Lamentowicz Ł, Lamentowicz M, Macumber A, Mazei Y, Mitchell EAD, Nasser NA, Patterson RT, Roe HM, Singer D, Tsyganov AN, Fournier B. Testate Amoeba Functional Traits and Their Use in Paleoecology. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Zhang H, Amesbury MJ, Piilo SR, Garneau M, Gallego-Sala A, Väliranta MM. Recent Changes in Peatland Testate Amoeba Functional Traits and Hydrology Within a Replicated Site Network in Northwestern Québec, Canada. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
12
|
Zhang H, Väliranta M, Piilo S, Amesbury MJ, Aquino-López MA, Roland TP, Salminen-Paatero S, Paatero J, Lohila A, Tuittila ES. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. GLOBAL CHANGE BIOLOGY 2020; 26:2435-2448. [PMID: 31961026 DOI: 10.1111/gcb.15005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Northern boreal peatlands are important ecosystems in modulating global biogeochemical cycles, yet their biological communities and related carbon dynamics are highly sensitive to changes in climate. Despite this, the strength and recent direction of these feedbacks are still unclear. The response of boreal peatlands to climate warming has received relatively little attention compared with other northern peatland types, despite forming a large northern hemisphere-wide ecosystem. Here, we studied the response of two ombrotrophic boreal peatlands to climate variability over the last c. 200 years for which local meteorological data are available. We used remains from plants and testate amoebae to study historical changes in peatland biological communities. These data were supplemented by peat property (bulk density, carbon and nitrogen content), 14 C, 210 Pb and 137 Cs analyses and were used to infer changes in peatland hydrology and carbon dynamics. In total, six peat cores, three per study site, were studied that represent different microhabitats: low hummock (LH), high lawn and low lawn. The data show a consistent drying trend over recent centuries, represented mainly as a change from wet habitat Sphagnum spp. to dry habitat S. fuscum. Summer temperature and precipitation appeared to be important drivers shaping peatland community and surface moisture conditions. Data from the driest microhabitat studied, LH, revealed a clear and strong negative linear correlation (R2 = .5031; p < .001) between carbon accumulation rate and peat surface moisture conditions: under dry conditions, less carbon was accumulated. This suggests that at the dry end of the moisture gradient, availability of water regulates carbon accumulation. It can be further linked to the decreased abundance of mixotrophic testate amoebae under drier conditions (R2 = .4207; p < .001). Our study implies that if effective precipitation decreases in the future, the carbon uptake capacity of boreal bogs may be threatened.
Collapse
Affiliation(s)
- Hui Zhang
- Institute for Atmospheric and Earth System Research (INAR), Department of Physics, University of Helsinki, Helsinki, Finland
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Minna Väliranta
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Sanna Piilo
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Matthew J Amesbury
- Environmental Change Research Unit (ECRU), Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Thomas P Roland
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Annalea Lohila
- Institute for Atmospheric and Earth System Research (INAR), Department of Physics, University of Helsinki, Helsinki, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| | | |
Collapse
|
13
|
Donner MW, Bicalho B, Noernberg T, Shotyk W. Contemporary and Historical Atmospheric Deposition of Arsenic and Selenium in the Athabasca Bituminous Sands Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14020-14028. [PMID: 31743010 DOI: 10.1021/acs.est.9b02718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is one of the trace elements that is enriched in bitumen. To assess the importance of atmospheric Se deposition from mining and upgrading of bituminous sands in northern Alberta, Canada, Sphagnum moss was obtained from 25 bogs near industrial operations. The average Se concentration in moss near industries (58 ± 13 μg/kg; n = 75) was greater than in remote sites in Alberta (29-50 μg/kg), but comparable to bogs in central regions of the province and lower than bogs in southern Ontario (121-244 μg/kg) or the west and east coasts (230-285 μg/kg). In bog vegetation and peat, arsenic (As) concentrations and accumulation rates are 10 times greater at the industrial site (MIL) compared to the control site (UTK), but this is proportional to the differences in scandium (a surrogate for mineral matter concentrations), which points to dust as the predominant As source. An age-dated peat core collected near industries revealed that both Se and As deposition have declined in recent years. A peat core from UTK provided a record of atmospheric deposition dating back over 2700 years, indicating that As and Se deposition in northern Alberta increased considerably in the early 19th century and then went into decline during ∼1950-1970.
Collapse
Affiliation(s)
- Mark W Donner
- Department of Renewable Resources , University of Alberta , Edmonton , Alberta T6G 2G7 , Canada
| | - Beatriz Bicalho
- Department of Renewable Resources , University of Alberta , Edmonton , Alberta T6G 2G7 , Canada
| | - Tommy Noernberg
- Department of Renewable Resources , University of Alberta , Edmonton , Alberta T6G 2G7 , Canada
| | - William Shotyk
- Department of Renewable Resources , University of Alberta , Edmonton , Alberta T6G 2G7 , Canada
| |
Collapse
|