1
|
Wang H, Sui Q, Zhao J, Sun X, Zhu L, Chen B, Qu K, Xia B. Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131361. [PMID: 37043857 DOI: 10.1016/j.jhazmat.2023.131361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.70 and 7.40) and CuO NPs on the embryotoxicity of marine medaka Oryzias melastigma and the bioavailability of CuO NPs in embryos. The results showed that OA alleviated the aggregation of CuO NPs and promoted the dissolution of CuO NPs in seawater (increased by 0.010 and 0.029 mg/L under pHs 7.70 and 7.40, respectively). Synergistic effects of OA with CuO NPs on medaka embryos were observed as indicated by much higher mortality and oxidative damage. Importantly, the enhanced toxicity of CuO NPs to medaka embryos under OA conditions mainly originated from the higher bioavailability of particulate CuO (e.g., 30.28 mg/kg at pH 7.40) rather than their released Cu2+ ions (e.g. 3.04 mg/kg at pH 7.40). The weaker aggregation of NPs under OA conditions resulted in higher penetration of individual particles (or small aggregates) into embryos through the micropyle and chorionic pores, causing enhanced bioavailability of NPs. The obtained results provided underlying insights into understanding the risk of NPs to marine ecosystem under OA conditions.
Collapse
Affiliation(s)
- Hao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Institute of Costal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jian Zhao
- Institute of Costal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Chen Y, Wang X, Sui Q, Chang G, Sun X, Zhu L, Chen B, Qu K, Xia B. Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161248. [PMID: 36587669 DOI: 10.1016/j.scitotenv.2022.161248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood. We therefore investigated the effects of OA on the embryotoxicity of both positively and negatively charged polystyrene (PS) NPs to marine medaka (Oryzias melastigma). Positively charged PS-NH2 exhibited slighter aggregation under normal conditions and more aggregation under OA conditions than negatively charged PS-COOH. According to the integrated biomarker approach, OA reversed the toxicity of positively and negatively charged NPs towards embryos. Importantly, at environmental relevant concentrations, both types of PS-NPs could enter the embryos through chorionic pores and then transfer to the larvae. OA reversed the internalization of PS-NH2 and PS-COOH in O. melastigma. Overall, the reversed toxicity of PS-NH2 and PS-COOH associated with OA could be caused by the reversed bioavailability of NPs to O. melastigma, which was attributed to altered aggregation of the NPs in acidified seawater. This finding demonstrates the charge-dependent toxicity of NPs to marine fish and provides new insights into the potential hazard of NPs to marine environments under OA conditions that could be encountered in the near future.
Collapse
Affiliation(s)
- Yufei Chen
- Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Wang
- Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guozhu Chang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Servili A, Lévêque E, Mouchel O, Devergne J, Lebigre C, Roussel S, Mazurais D, Zambonino-Infante JL. Ocean acidification alters the acute stress response of a marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159804. [PMID: 36349621 DOI: 10.1016/j.scitotenv.2022.159804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France.
| | - Etienne Lévêque
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Olivier Mouchel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Jimmy Devergne
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, F-29280 Plouzané, France
| | - Sabine Roussel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - David Mazurais
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | |
Collapse
|
4
|
Spatiotemporal Characteristics of Fish Larvae and Juveniles in the Waters around Taiwan from 2007 to 2019. Animals (Basel) 2022; 12:ani12151890. [PMID: 35892540 PMCID: PMC9331196 DOI: 10.3390/ani12151890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fish larvae and juveniles are necessary fishery recruitment resources. As climate change and natural climate events continue to impact marine ecology, it may become difficult to determine the characteristics of changes in fish larvae and juveniles. Using samples and data from long-term marine experimental monitoring, we found a high diversity of fish larvae and juveniles in the waters around Taiwan, and the abundance of different fish species varied spatially and seasonally. We also found that distance from the coastline and topography were the key factors affecting the community of fish larvae and juveniles. By presenting these data as times series, we confirmed that 2009 was a critical year for regime change between fish larvae and juveniles in different depth zones. The year also happened to include Taiwan’s worst typhoon on record. These results emphasize the need to conduct more detailed research to prevent predictable and unpredictable shocks. Abstract Taiwan is located at the intersection of tropical and subtropical islands in the western Pacific Ocean. This area is an important spawning and breeding ground for many economic and noneconomic species; however, little is known about the long-term dynamics of fish larvae and juveniles in these waters. In this study, we conducted an in-depth exploration of their spatial characteristics using 2007–2019 field survey samples. Our results demonstrated the seasonality and spatiality of the larvae and juveniles of different fish species. We also found that the continental shelf and offshore distance were key factors affecting fish larvae and juveniles. Changes in community structure were temporally correlated with the extreme rainfall of Typhoon Morakot (the worst typhoon ever recorded in Taiwan). These data can be used as a management reference for fisheries’ policymaking and provide key insights into nearby marine ecosystems and the early life history of fish.
Collapse
|
5
|
Wang M, Chen J, Lee YH, Lee JS, Wang D. Projected near-future ocean acidification decreases mercury toxicity in marine copepods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117140. [PMID: 33930777 DOI: 10.1016/j.envpol.2021.117140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0-F2), followed by single-generation recovery (F3) under clean condition. Several phenotypic traits and Hg accumulation were analyzed for F0-F3. Furthermore, shotgun-based quantitative proteomics was performed for F0 and F2. Our results showed that OA insignificantly influenced the traits. During F0-F2, combined exposure reduced Hg accumulation as compared with the counterpart Hg treatment, supporting the mitigating effect of OA on Hg toxicity in copepods. Proteomics analysis indicated that the copepods probably increased energy production/storage and stress response to ensure physiological resilience against OA. However, Hg induced many toxic events (e.g., energy depletion and degenerated organomorphogenesis/embryogenesis for F0; cell cycle arrest and detrimental stress-defense for F2), which were translated to the population-level adverse outcome, i.e., compromised growth/reproduction. Particularly, compensatory proteome response was identified (e.g., increased immune defense for F0; energetic compensation and enhanced embryogenesis for F2), accounting for a negative interaction between OA and Hg. Together, this study provides the molecular mechanisms behind the effects of OA and Hg pollution in marine copepods.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
6
|
Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming. JOURNAL OF FISH BIOLOGY 2021; 98:1496-1508. [PMID: 33111333 DOI: 10.1111/jfb.14599] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 05/07/2023]
Abstract
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
Collapse
Affiliation(s)
- Sébastien Alfonso
- COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy
| | - Manuel Gesto
- Section for Aquaculture, DTU Aqua, Technical University of Denmark, Hirtshals, Denmark
| | - Bastien Sadoul
- MARBEC, Ifremer, IRD, UM2, CNRS, Sète, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes Cedex, France
| |
Collapse
|
7
|
Cong Y, Yang H, Zhang P, Xie Y, Cao X, Zhang L. Transcriptome Analysis of the Nematode Caenorhabditis elegans in Acidic Stress Environments. Front Physiol 2020; 11:1107. [PMID: 33013473 PMCID: PMC7511720 DOI: 10.3389/fphys.2020.01107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and acid rain, caused by modern industries' fossil fuel burning, lead to a decrease in the living environmental pH, which results in a series of negative effects on many organisms. However, the underlying mechanisms of animals' response to acidic pH stress are largely unknown. In this study, we used the nematode Caenorhabditis elegans as an animal model to explore the regulatory mechanisms of organisms' response to pH decline. Two major stress-responsive pathways were found through transcriptome analysis in acidic stress environments. First, when the pH dropped from 6.33 to 4.33, the worms responded to the pH stress by upregulation of the col, nas, and dpy genes, which are required for cuticle synthesis and structure integrity. Second, when the pH continued to decrease from 4.33, the metabolism of xenobiotics by cytochrome P450 pathway genes (cyp, gst, ugt, and ABC transporters) played a major role in protecting the nematodes from the toxic substances probably produced by the more acidic environment. At the same time, the slowing down of cuticle synthesis might be due to its insufficient protective ability. Moreover, the systematic regulation pattern we found in nematodes might also be applied to other invertebrate and vertebrate animals to survive in the changing pH environments. Thus, our data might lay the foundation to identify the master gene(s) responding and adapting to acidic pH stress in further studies, and might also provide new solutions to improve assessment and monitoring of ecological restoration outcomes, or generate novel genotypes via genome editing for restoring in challenging environments especially in the context of acidic stress through global climate change.
Collapse
Affiliation(s)
- Yanyi Cong
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanwen Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yusu Xie
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuwen Cao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Frommel A, Hermann B, Michael K, Lucassen M, Clemmesen C, Hanel R, Reusch T. Differential gene expression patterns related to lipid metabolism in response to ocean acidification in larvae and juveniles of Atlantic cod. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110740. [PMID: 32461151 DOI: 10.1016/j.cbpa.2020.110740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/10/2023]
|
9
|
Cominassi L, Moyano M, Claireaux G, Howald S, Mark FC, Zambonino-Infante JL, Peck MA. Food availability modulates the combined effects of ocean acidification and warming on fish growth. Sci Rep 2020; 10:2338. [PMID: 32047178 PMCID: PMC7012865 DOI: 10.1038/s41598-020-58846-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
When organisms are unable to feed ad libitum they may be more susceptible to negative effects of environmental stressors such as ocean acidification and warming (OAW). We reared sea bass (Dicentrarchus labrax) at 15 or 20 °C and at ambient or high PCO2 (650 versus 1750 µatm PCO2; pH = 8.1 or 7.6) at ad libitum feeding and observed no discernible effect of PCO2 on the size-at-age of juveniles after 277 (20 °C) and 367 (15 °C) days. Feeding trials were then conducted including a restricted ration (25% ad libitum). At 15 °C, growth rate increased with ration but was unaffected by PCO2. At 20 °C, acidification and warming acted antagonistically and low feeding level enhanced PCO2 effects. Differences in growth were not merely a consequence of lower food intake but also linked to changes in digestive efficiency. The specific activity of digestive enzymes (amylase, trypsin, phosphatase alkaline and aminopeptidase N) at 20 °C was lower at the higher PCO2 level. Our study highlights the importance of incorporating restricted feeding into experimental designs examining OAW and suggests that ad libitum feeding used in the majority of the studies to date may not have been suitable to detect impacts of ecological significance.
Collapse
Affiliation(s)
- Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany.
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Sarah Howald
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - José-Luis Zambonino-Infante
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, Reproduction and Nutrition of Fish, Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| |
Collapse
|
10
|
Transcriptome profiling reveals exposure to predicted end-of-century ocean acidification as a stealth stressor for Atlantic cod larvae. Sci Rep 2019; 9:16908. [PMID: 31729401 PMCID: PMC6858462 DOI: 10.1038/s41598-019-52628-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
Ocean acidification (OA), a direct consequence of increasing atmospheric CO2 concentration dissolving in ocean waters, is impacting many fish species. Little is known about the molecular mechanisms underlying the observed physiological impacts in fish. We used RNAseq to characterize the transcriptome of 3 different larval stages of Atlantic cod (Gadus morhua) exposed to simulated OA at levels (1179 µatm CO2) representing end-of-century predictions compared to controls (503 µatm CO2), which were shown to induce tissue damage and elevated mortality in G. morhua. Only few genes were differentially expressed in 6 and 13 days-post-hatching (dph) (3 and 16 genes, respectively), during a period when maximal mortality as a response to elevated pCO2 occurred. At 36 dph, 1413 genes were differentially expressed, most likely caused by developmental asynchrony between the treatment groups, with individuals under OA growing faster. A target gene analysis revealed only few genes of the universal and well-defined cellular stress response to be differentially expressed. We thus suggest that predicted ocean acidification levels constitute a "stealth stress" for early Atlantic cod larvae, with a rapid breakdown of cellular homeostasis leading to organismal death that was missed even with an 8-fold replication implemented in this study.
Collapse
|
11
|
George HCPH, Miles G, Bemrose J, White A, Bond MN, Cameron TC. Intergenerational effects of CO 2-induced stream acidification in the Trinidadian guppy ( Poecilia reticulata). Ecol Evol 2019; 9:12836-12845. [PMID: 31788218 PMCID: PMC6875657 DOI: 10.1002/ece3.5761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results. Food availability and single-generation exposure have been proposed as some of the reasons for these variable results, where unrealistically high food treatments lead to fish overcoming the energetic costs associated with acclimating to decreased pH. Likewise, exposure of fish to lower pH for only one generation may not capture the likely ecological response to acidification that wild populations might experience over two or more generations. Here we compare somatic growth rates of laboratory populations of the Trinidadian guppy (Poecilia reticulata) exposed to pH levels that represent the average and lowest levels observed in streams in its native range. Specifically, we test the role of maternal acclimation and resource availability on the response of freshwater fishes to acidification. Acidification had a negative impact on growth at more natural, low food treatments. With high food availability, fish whose mothers were acclimated to the acidified treatment showed no reduction in growth, compared to controls. Compensatory growth was observed in both control-acidified (maternal-natal environment) and acidified-control groups, where fish that did not experience intergenerational effects achieved the same size in response to acidification as those that did, after an initial period of stunted growth. These results suggest that future studies on the effects of shifting mean of aquatic pH on fishes should take account of intergenerational effects and compensatory growth, as otherwise effects of acidification may be overestimated.
Collapse
Affiliation(s)
| | - George Miles
- School of Life SciencesUniversity of EssexColchesterUK
| | - James Bemrose
- School of Life SciencesUniversity of EssexColchesterUK
| | - Amelia White
- School of Life SciencesUniversity of EssexColchesterUK
| | | | | |
Collapse
|
12
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|