1
|
Loo EPI, Szurek B, Arra Y, Stiebner M, Buchholzer M, Devanna BN, Vera Cruz CM, Frommer WB. Closing the Information Gap Between the Field and Scientific Literature for Improved Disease Management, with a Focus on Rice and Bacterial Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:134-141. [PMID: 39186001 DOI: 10.1094/mpmi-07-24-0075-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A path to sustainably reduce world hunger, food insecurity, and malnutrition is to close the crop yield gap and, particularly, lower losses due to pathogens. Breeding resistant crops is key to achieving this goal, which is an effort requiring collaboration among stakeholders, scientists, breeders, farmers, and policymakers. During a disease outbreak, epidemiologists survey the occurrence of a disease after which pathologists investigate mechanisms to stop an infection. Policymakers then implement strategies with farmers and breeders to overcome the outbreak. Information flow from the field to the lab and back to the field involves several processing hubs that require different information inputs. Failure to communicate the necessary information results in the transfer of meaningless data. Here, we discuss gaps in information acquisition and transfer between the field and laboratory. Using rice bacterial blight disease as an example, we discuss pathogen biology and disease resistance to point out the importance of reporting pathogen strains that caused an outbreak to optimize the deployment of resistant crop varieties. We examine differences between infection in the field and assays performed in the laboratory to draw awareness of possible misinformation concerning plant resistance or susceptibility. We discuss key data considered useful for reporting disease outbreaks, sampling bias, and suggestions for improving data quality. We also touch on the knowledge gap in the state-of-the-art literature regarding disease dispersal and transmission. We use a recent case study to exemplify the gaps mentioned. We conclude by highlighting potential actions that may contribute to food security and to closing the yield gap. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Eliza P I Loo
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Boris Szurek
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yugander Arra
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Melissa Stiebner
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marcel Buchholzer
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - B N Devanna
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Wolf B Frommer
- Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
- Institute for Transformative Biomolecules, ITbM, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Yin Y, Hou Z, Sun Q, Zhu B, Liu J, Zou Y, Hao M. Predicting the habitat suitability of Ilex verticillata (Aquifoliaceae) in China with field-test validations. PLoS One 2025; 20:e0315908. [PMID: 39903721 PMCID: PMC11793819 DOI: 10.1371/journal.pone.0315908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
The cut branches of Ilex verticillata are highly ornamental and have high economic value. Since its introduction to China, it has received widespread attention. In the context of climate change today, ensuring its promotion and sustainable production in China is of great significance. In this study we evaluated the habitat suitability of the species using MaxEnt, combined with climate and soil variables, to assess the impact of climate change on its potential suitable habitat. We used 121 I. verticillata occurrence data and validated the model prediction using extensive field testing (12 test sites located in areas from 23.19° N to 42.91° N and 76.17° E to 125.14° E). The habitat suitability model (AUC = 0.854) performed well. Among them, three precipitation variables and one temperature variable were the main factors determining the distribution of I. verticillata in China. Field trial tests and model predictions of the suitability of I. verticillata were consistent, indicating that our model predictions are biologically meaningful and economically valuable. Under the Shared Socioeconomic Pathways (SSPs) climate change scenario, the high and medium suitable habitats for this species will be reduced in the future climate. This study helps to better understand the impact of climate change on I. verticillata and provides suggestions for the introduction and cultivation areas and protection of this species in China.
Collapse
Affiliation(s)
- Yawen Yin
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing, Jiangsu, China
| | - Zhaobin Hou
- Nanjing Police University, Nanjing, Jiangsu, China
| | - Qiuyue Sun
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Bailing Zhu
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jiaqi Liu
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yiping Zou
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing, Jiangsu, China
| | - Mingzhuo Hao
- College of Forestry and Grassland Science, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Saffer A, Worm T, Takeuchi Y, Meentemeyer R. GIATAR: a Spatio-temporal Dataset of Global Invasive and Alien Species and their Traits. Sci Data 2024; 11:991. [PMID: 39261508 PMCID: PMC11390876 DOI: 10.1038/s41597-024-03824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Monitoring and managing the global spread of invasive and alien species requires accurate spatiotemporal records of species presence and information about the biological characteristics of species of interest including life cycle information, biotic and abiotic constraints and pathways of spread. The Global Invasive and Alien Traits And Records (GIATAR) dataset provides consolidated dated records of invasive and alien presence at the country-scale combined with a suite of biological information about pests of interest in a standardized, machine-readable format. We provide dated presence records for 46,666 alien taxa in 249 countries constituting 827,300 country-taxon pairs in locations where the taxon's invasive status is either alien, invasive, or unknown, joined with additional biological information for thousands of taxa. GIATAR is designed to be quickly updateable with future data and easy to integrate into ongoing research on global patterns of alien species movement using scripts provided to query and analyze data. GIATAR provides crucial data needed for researchers and policymakers to compare global invasion trends across a wide range of taxa.
Collapse
Affiliation(s)
- Ariel Saffer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Thom Worm
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Yu Takeuchi
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Ross Meentemeyer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Serrão CP, Ortega JCG, Rodrigues PC, de Souza CRB. Bacillus species as tools for biocontrol of plant diseases: A meta-analysis of twenty-two years of research, 2000-2021. World J Microbiol Biotechnol 2024; 40:110. [PMID: 38411743 DOI: 10.1007/s11274-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.
Collapse
Affiliation(s)
- Cleyson Pantoja Serrão
- Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, CEP 66075-110, PA, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFPA, Belém, CEP 66075-110, PA, Brazil
| | | | - Paulo Canas Rodrigues
- Departamento de Estatística, Universidade Federal da Bahia (UFBA), Salvador, CEP 40170-110, BA, Brazil
| | | |
Collapse
|
5
|
Huang D, An Q, Huang S, Tan G, Quan H, Chen Y, Zhou J, Liao H. Biomod2 modeling for predicting the potential ecological distribution of three Fritillaria species under climate change. Sci Rep 2023; 13:18801. [PMID: 37914761 PMCID: PMC10620159 DOI: 10.1038/s41598-023-45887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.
Collapse
Affiliation(s)
- Deya Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Guodong Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
6
|
Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 2023; 21:640-656. [PMID: 37131070 PMCID: PMC10153038 DOI: 10.1038/s41579-023-00900-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain
| | - Jan E Leach
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pankaj Trivedi
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Jeger MJ, Fielder H, Beale T, Szyniszewska AM, Parnell S, Cunniffe NJ. What Can Be Learned by a Synoptic Review of Plant Disease Epidemics and Outbreaks Published in 2021? PHYTOPATHOLOGY 2023; 113:1141-1158. [PMID: 36935375 DOI: 10.1094/phyto-02-23-0069-ia] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A synoptic review of plant disease epidemics and outbreaks was made using two complementary approaches. The first approach involved reviewing scientific literature published in 2021, in which quantitative data related to new plant disease epidemics or outbreaks were obtained via surveys or similar methodologies. The second approach involved retrieving new records added in 2021 to the CABI Distribution Database, which contains over a million global geographic records of organisms from over 50,000 species. The literature review retrieved 186 articles, describing studies in 62 categories (pathogen species/species complexes) across more than 40 host species on six continents. Pathogen species with more than five articles were Bursaphelenchus xylophilus, 'Candidatus Liberibacter asiaticus', cassava mosaic viruses, citrus tristeza virus, Erwinia amylovora, Fusarium spp. complexes, F. oxysporum f. sp. cubense, Magnaporthe oryzae, maize lethal necrosis co-infecting viruses, Meloidogyne spp. complexes, Pseudomonas syringae pvs., Puccinia striiformis f. sp. tritici, Xylella fastidiosa, and Zymoseptoria tritici. Automated searches of the CABI Distribution Database identified 617 distribution records new in 2021 of 283 plant pathogens. A further manual review of these records confirmed 15 pathogens reported in new locations: apple hammerhead viroid, apple rubbery wood viruses, Aphelenchoides besseyi, Biscogniauxia mediterranea, 'Ca. Liberibacter asiaticus', citrus tristeza virus, Colletotrichum siamense, cucurbit chlorotic yellows virus, Erwinia rhapontici, Erysiphe corylacearum, F. oxysporum f. sp. cubense Tropical race 4, Globodera rostochiensis, Nothophoma quercina, potato spindle tuber viroid, and tomato brown rugose fruit virus. Of these, four pathogens had at least 25% of all records reported in 2021. We assessed two of these pathogens-tomato brown rugose fruit virus and cucurbit chlorotic yellows virus-to be actively emerging in/spreading to new locations. Although three important pathogens-'Ca. Liberibacter asiaticus', citrus tristeza virus, and F. oxysporum f. sp. cubense-were represented in the results of both our literature review and our interrogation of the CABI Distribution Database, in general, our dual approaches revealed distinct sets of plant disease outbreaks and new records, with little overlap. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Ascot, U.K
| | | | | | | | - Stephen Parnell
- Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Warwick, U.K
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
8
|
Dong Y, Gao J, Hulcr J. Insect wood borers on commercial North American tree species growing in China: review of Chinese peer-review and grey literature. ENVIRONMENTAL ENTOMOLOGY 2023:7135596. [PMID: 37083727 DOI: 10.1093/ee/nvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Invasive insect wood borers are a threat to global forests and tree-related industries as they can damage trees and spread plant pathogens. Reports of damages by wood borers on plants that were planted overseas may facilitate the identification of potential invaders and speed up risk assessment. However, much of this information remains unavailable to the international plant protection community due to language barriers, lack of digitization, or limited circulation of regional literature. Here, we investigated reports of wood borers on 7 important North American commercial tree species planted in China (Carya illinoinensis, Liquidambar styraciflua, Pinus elliottii, Pinus taeda, Quercus texana, Quercus rubra, and Quercus virginiana) in peer-reviewed as well as "grey" (nonpeer-reviewed) Chinese literature. A total of 60 unique wood borer records were found, yielding reports of 4 orders, 39 genera, and 44 species of insect wood borers. Among Coleoptera, longhorned beetles (Cerambycidae) were the most commonly reported colonizers of North American trees in China. Chinese peer-reviewed reports of pests on alien plants are a valuable tool to survey for potential wood-boring invaders of North America, and wherever North American trees are planted and have the potential to encounter Asian invasive insects. Digitization and dissemination of non-English literature are essential for contemporary risk assessment. On the other hand, the nonpeer reviewed "grey" literature, primarily agency reports and student theses, provided only 5% of the records; many incidental observations were unreliable.
Collapse
Affiliation(s)
- Yiyi Dong
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
9
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
López DN, Fuentes-Contreras E, Ruiz C, Ide S, Estay SA. A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NEOBIOTA 2023. [DOI: 10.3897/neobiota.81.87362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The arrival of Europeans to the Americas triggered a massive exchange of organisms on a continental scale. This exchange was accelerated by the rapid increase in the movement of people and goods during the 20th century. In Chile, scientific and technical literature contains hundreds of records of non-native insect species established in different parts of the territory, from the hyperarid Atacama Desert to the Magallanes Region. Here, we analyse temporal trends, taxonomic diversity, biogeographic origin and main impacts of these species on different sectors in Chile from the European arrival to the present. Our task includes a review of old records in museum catalogues, libraries, collections, expedition records and catalogues. Almost 600 species of non-native insects have been reported to be established in Chile. Introductions started with the very arrival of Europeans to the central valley of Chile and underwent a huge acceleration in the second half of the 20th century. The order Hemiptera was the most prevalent amongst non-native insects. Most species are linked to agriculture and forestry. Species are of Palearctic origin in more than 50% of the records. In terms of temporal trends, the rate of established non-native species shows an abrupt increase at the beginning of the 1950s. This change may be associated with the strong development in agriculture and forestry in Chile after World War II and the increase in intercontinental air traffic. We believe that the understanding of past patterns of introductions is an important component in the design of current policies to minimise the impact of invasive insects.
Collapse
|
11
|
Ma M, Taylor PWJ, Chen D, Vaghefi N, He JZ. Major Soilborne Pathogens of Field Processing Tomatoes and Management Strategies. Microorganisms 2023; 11:263. [PMID: 36838227 PMCID: PMC9958975 DOI: 10.3390/microorganisms11020263] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Bebber DP. Weather does influence fungal and oomycete crop disease outbreaks, but ProMED-mail reports don't prove it. THE NEW PHYTOLOGIST 2022; 234:1557-1558. [PMID: 35397171 PMCID: PMC9325474 DOI: 10.1111/nph.18101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
|
13
|
Hulme PE. Global drivers of herbicide-resistant weed richness in major cereal crops worldwide. PEST MANAGEMENT SCIENCE 2022; 78:1824-1832. [PMID: 35043546 PMCID: PMC9306702 DOI: 10.1002/ps.6800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The number of herbicide-resistant weeds differs across the globe but the reasons for this variation are poorly understood. Taking a macroecological approach, the role of six drivers of herbicide resistance in a country was examined for barley, maize, rice and wheat crops worldwide. Drivers captured agronomic measures (crop harvested area, herbicide and fertilizer input) as well as sources of sampling bias that result in under-reporting of herbicide resistance (human population density, research intensity and time since the first record of resistance). RESULTS Depending on the crop, best subset regression models explained between 60% and 80% of the variation in herbicide-resistant weeds recorded in countries worldwide. Global prevalence of herbicide-resistant weeds is likely underestimated, especially in countries with limited capability in herbicide research. Numbers of resistant weeds worldwide will continue to increase. Agricultural intensification, captured by fertilizer and herbicide input, as well as further expansion of crop harvested area are primary drivers of future herbicide-resistant weeds. CONCLUSION Because the evolution of herbicide resistance lags behind the selection pressures imposed by fertilizer and herbicide inputs, several countries (e.g. Brazil, South Africa, Uruguay) appear to exhibit a 'herbicide resistance debt' in which current agronomic conditions have set the scene for higher numbers of herbicide-resistant weeds than currently observed. Future agricultural expansion will lead to more herbicide-resistant weeds, especially in developing countries as their economies grow and where herbicide resistance is currently under-reported. A global strategy for increasing national capability in herbicide resistance research is needed. © 2022 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Philip E Hulme
- Bio‐Protection Research CentreLincoln UniversityCanterburyNew Zealand
| |
Collapse
|
14
|
Affiliation(s)
- Daniel P Bebber
- Department of Biosciences and Global Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
15
|
Wang C, Wang X, Jin Z, Müller C, Pugh TAM, Chen A, Wang T, Huang L, Zhang Y, Li LXZ, Piao S. Occurrence of crop pests and diseases has largely increased in China since 1970. NATURE FOOD 2022; 3:57-65. [PMID: 37118481 DOI: 10.1038/s43016-021-00428-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/08/2021] [Indexed: 04/30/2023]
Abstract
Crop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces. Among the climatic factors considered, warmer nighttime temperatures contribute most to the increasing occurrence of CPDs (11% ± 9%). Projections of future CPDs show that at the end of this century, climate change will lead to an increase in CPD occurrence by 243% ± 110% under a low-emissions scenario (SSP126) and 460% ± 213% under a high-emissions scenario (SSP585), with the magnitude largely dependent on the impacts of warmer nighttime temperatures and decreasing frost days. This observation-based evidence highlights the urgent need to accurately account for the increasing risk of CPDs in mitigating the impacts of climate change on food production.
Collapse
Affiliation(s)
- Chenzhi Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Minnesota-Twin, MN, USA
| | - Christoph Müller
- Climate Resilience, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Thomas A M Pugh
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Tao Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Ling Huang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuan Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Laurent X Z Li
- Laboratoire de Météorologie Dynamique, Sorbonne Université, CNRS, IPSL, Paris, France
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Anand G, Rajeshkumar KC. Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Castillo AI, Tsai CW, Su CC, Weng LW, Lin YC, Cho ST, Almeida RPP, Kuo CH. Genetic differentiation of Xylella fastidiosa following the introduction into Taiwan. Microb Genom 2021; 7:000727. [PMID: 34898423 PMCID: PMC8767338 DOI: 10.1099/mgen.0.000727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
The economically important plant pathogen Xylella fastidiosa has been reported in multiple regions of the globe during the last two decades, threatening a growing list of plants. Particularly, X. fastidiosa subspecies fastidiosa causes Pierce's disease (PD) of grapevines, which is a problem in the USA, Spain, and Taiwan. In this work, we studied PD-causing subsp. fastidiosa populations and compared the genome sequences of 33 isolates found in Central Taiwan with 171 isolates from the USA and two from Spain. Phylogenetic relationships, haplotype networks, and genetic diversity analyses confirmed that subsp. fastidiosa was recently introduced into Taiwan from the Southeast USA (i.e. the PD-I lineage). Recent core-genome recombination events were detected among introduced subsp. fastidiosa isolates in Taiwan and contributed to the development of genetic diversity. The genetic diversity observed includes contributions through recombination from unknown donors, suggesting that higher genetic diversity exists in the region. Nevertheless, no recombination event was detected between X. fastidiosa subsp. fastidiosa and the endemic sister species Xylella taiwanensis, which is the causative agent of pear leaf scorch disease. In summary, this study improved our understanding of the genetic diversity of an important plant pathogenic bacterium after its invasion to a new region.
Collapse
Affiliation(s)
- Andreina I. Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Chiou-Chu Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan, ROC
| | - Ling-Wei Weng
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| |
Collapse
|
18
|
Shan A, Pan J, Kang KJ, Pan M, Wang G, Wang M, He Z, Yang X. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117741. [PMID: 34280743 DOI: 10.1016/j.envpol.2021.117741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding the comprehensive effect on crop production and quality, soil acidification, and Cd accumulation and distribution for wheat-rice rotation under N fertilization and continuous straw return is important for proper contaminated agricultural soil management. A 2-year paddy field experiment was conducted to study the effects of above factors change in the Zhejiang province, China. Fertilization treatments included: conventional N fertilizer application (N3), 20% reduction of N application (N2), 40% reduction of N application (N1), combined with three portions of straw incorporation: all straws retention (N3), half of the straws into the fields (S2), 20% straws retention(S1). The N1 treatments significantly decreased crop yields compared to N2 and N3 treatments. Except for C2-wheat, soil pH generally decreased with increasing N fertilizer input in the order of N1>N2>N3, regardless of how many straws was amended. Moreover, we found that straw addition plus N fertilization had a intersystem impacts on Cd accumulation, distribution and availability. Although total Cd had different trends among 4 experimental seasons, when the N reduced 20% applied, the DTPA-Cd contents were lowest among 3 out of four experimental seasons, except for that of C2-wheat, where N2 treatments ranked the second lower contents. For most seasons, Cd contents in straws were higher than soils and lowest in grains, and S2N2 treatment performed an intermediate value among all treatments. Furthermore, our study demonstrated that S2 or N2 treatments or S2N2 reduced the potential risk of plant diseases and pests with lower disease index, disease cluster rate. Notably, the relative outbreak of pests was remarkably suppressed under S2 treatments, especially S2N2. Thus, these findings demonstrated that in wheat-rice rotation reducing 20% N fertilization with 50% straw returning may be a win-win practice in this region for the equilibrium between agricultural productivity, quality and low Cd polluted risk.
Collapse
Affiliation(s)
- Anqi Shan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jianqing Pan
- Technical Extension Station of Soil Fertilizer and Rural Energy, Changxing, Huzhou, PR China
| | - Kyong Ju Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Mei Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
19
|
Gougherty AV, Davies TJ. Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecol Lett 2021; 25:101-112. [PMID: 34719086 DOI: 10.1111/ele.13908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Tree pests cause billions of dollars of damage annually; yet, we know little about what limits their regional composition and distribution. Here, we model the co-occurrence of 4510 pests and 981 tree host genera spread across 233 countries. We show the composition of tree pests is primarily driven by the phylogenetic composition of host trees, whereas effects of climate and geography tend to be more minor. Pests that utilise many hosts tend to be more widespread; however, most pests do not fill the geographic range of their hosts-indicating that many pests could expand their extents if able to overcome barriers limiting their current distribution. Our results suggest that the establishment of pests in new regions may be largely dictated by the presence of suitable host trees, but more work is needed to fully understand the influences climate has on the distributions of individual pest species.
Collapse
Affiliation(s)
- Andrew V Gougherty
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Silva G, Tomlinson J, Onkokesung N, Sommer S, Mrisho L, Legg J, Adams IP, Gutierrez-Vazquez Y, Howard TP, Laverick A, Hossain O, Wei Q, Gold KM, Boonham N. Plant pest surveillance: from satellites to molecules. Emerg Top Life Sci 2021; 5:275-287. [PMID: 33720345 PMCID: PMC8166340 DOI: 10.1042/etls20200300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.
Collapse
Affiliation(s)
- Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jenny Tomlinson
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | - Nawaporn Onkokesung
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Sarah Sommer
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Latifa Mrisho
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - James Legg
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | | | - Thomas P Howard
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Alex Laverick
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Kaitlin M Gold
- Plant Pathology and Plant Microbe Biology Section, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, U.S.A
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
21
|
Jiao X, Takishita Y, Zhou G, Smith DL. Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. FRONTIERS IN PLANT SCIENCE 2021; 12:634796. [PMID: 33815442 PMCID: PMC8009966 DOI: 10.3389/fpls.2021.634796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 05/20/2023]
Abstract
Crop disease remains a major problem to global food production. Excess use of pesticides through chemical disease control measures is a serious problem for sustainable agriculture as we struggle for higher crop productivity. The use of plant growth promoting rhizobacteria (PGPR) is a proven environment friendly way of controlling plant disease and increasing crop yield. PGPR suppress diseases by directly synthesizing pathogen-antagonizing compounds, as well as by triggering plant immune responses. It is possible to identify and develop PGPR that both suppress plant disease and more directly stimulate plant growth, bringing dual benefit. A number of PGPR have been registered for commercial use under greenhouse and field conditions and a large number of strains have been identified and proved as effective biocontrol agents (BCAs) under environmentally controlled conditions. However, there are still a number of challenges before registration, large-scale application, and adoption of PGPR for the pest and disease management. Successful BCAs provide strong theoretical and practical support for application of PGPR in greenhouse production, which ensures the feasibility and efficacy of PGPR for commercial horticulture production. This could be pave the way for widespread use of BCAs in agriculture, including under field conditions, to assist with both disease management and climate change conditions.
Collapse
Affiliation(s)
- Xiurong Jiao
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Yoko Takishita
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Guisheng Zhou
- Institute of Agricultural Science and Technology Development of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Donald L. Smith
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Kiss L, Vaghefi N, Bransgrove K, Dearnaley JDW, Takamatsu S, Tan YP, Marston C, Liu SY, Jin DN, Adorada DL, Bailey J, Cabrera de Álvarez MG, Daly A, Dirchwolf PM, Jones L, Nguyen TD, Edwards J, Ho W, Kelly L, Mintoff SJL, Morrison J, Németh MZ, Perkins S, Shivas RG, Smith R, Stuart K, Southwell R, Turaganivalu U, Váczy KZ, Blommestein AV, Wright D, Young A, Braun U. Australia: A Continent Without Native Powdery Mildews? The First Comprehensive Catalog Indicates Recent Introductions and Multiple Host Range Expansion Events, and Leads to the Re-discovery of Salmonomyces as a New Lineage of the Erysiphales. Front Microbiol 2020; 11:1571. [PMID: 32765452 PMCID: PMC7378747 DOI: 10.3389/fmicb.2020.01571] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
In contrast to Eurasia and North America, powdery mildews (Ascomycota, Erysiphales) are understudied in Australia. There are over 900 species known globally, with fewer than currently 60 recorded from Australia. Some of the Australian records are doubtful as the identifications were presumptive, being based on host plant-pathogen lists from overseas. The goal of this study was to provide the first comprehensive catalog of all powdery mildew species present in Australia. The project resulted in (i) an up-to-date list of all the taxa that have been identified in Australia based on published DNA barcode sequences prior to this study; (ii) the precise identification of 117 specimens freshly collected from across the country; and (iii) the precise identification of 30 herbarium specimens collected between 1975 and 2013. This study confirmed 42 species representing 10 genera, including two genera and 13 species recorded for the first time in Australia. In Eurasia and North America, the number of powdery mildew species is much higher. Phylogenetic analyses of powdery mildews collected from Acalypha spp. resulted in the transfer of Erysiphe acalyphae to Salmonomyces, a resurrected genus. Salmonomyces acalyphae comb. nov. represents a newly discovered lineage of the Erysiphales. Another taxonomic change is the transfer of Oidium ixodiae to Golovinomyces. Powdery mildew infections have been confirmed on 13 native Australian plant species in the genera Acacia, Acalypha, Cephalotus, Convolvulus, Eucalyptus, Hardenbergia, Ixodia, Jagera, Senecio, and Trema. Most of the causal agents were polyphagous species that infect many other host plants both overseas and in Australia. All powdery mildews infecting native plants in Australia were phylogenetically closely related to species known overseas. The data indicate that Australia is a continent without native powdery mildews, and most, if not all, species have been introduced since the European colonization of the continent.
Collapse
Affiliation(s)
- Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kaylene Bransgrove
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - John D. W. Dearnaley
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Susumu Takamatsu
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Laboratory of Plant Pathology, Faculty of Bioresources, Mie University, Tsu, Japan
| | - Yu Pei Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Craig Marston
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Shu-Yan Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dan-Ni Jin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dante L. Adorada
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Jordan Bailey
- Plant Pathology & Mycology Herbarium, New South Wales Department of Primary Industries, Orange, NSW, Australia
| | | | - Andrew Daly
- Plant Health Diagnostic Service, New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Pamela Maia Dirchwolf
- Department of Plant Protection, Faculty of Agricultural Science, National University of the Northeast, Corrientes, Argentina
| | - Lynne Jones
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | | | - Jacqueline Edwards
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Wellcome Ho
- New Zealand Ministry for Primary Industries, Auckland, New Zealand
| | - Lisa Kelly
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD, Australia
| | - Sharl J. L. Mintoff
- Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | - Jennifer Morrison
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Sandy Perkins
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Roger G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Reannon Smith
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Kara Stuart
- Ecosciences Precinct, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Ronald Southwell
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Sydney, NSW, Australia
| | | | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
| | - Annie Van Blommestein
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Dominie Wright
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Anthony Young
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Uwe Braun
- Herbarium, Department of Geobotany and Botanical Garden, Institute for Biology, Martin Luther University, Halle (Saale), Germany
| |
Collapse
|
23
|
Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. ACTA ACUST UNITED AC 2020; 1:332-342. [PMID: 37128085 DOI: 10.1038/s43016-020-0075-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
Emerging fungal and oomycete pathogens infect staple calorie crops and economically important commodity crops, thereby posing a significant risk to global food security. Our current agricultural systems - with emphasis on intensive monoculture practices - and globalized markets drive the emergence and spread of new pathogens and problematic traits, such as fungicide resistance. Climate change further promotes the emergence of pathogens on new crops and in new places. Here we review the factors affecting the introduction and spread of pathogens and current disease control strategies, illustrating these with the historic example of the Irish potato famine and contemporary examples of soybean rust, wheat blast and blotch, banana wilt and cassava root rot. Our Review looks to the future, summarizing what we see as the main challenges and knowledge gaps, and highlighting the direction that research must take to face the challenge of emerging crop pathogens.
Collapse
|