1
|
Pernicová N, Urban O, Čáslavský J, Kolář T, Rybníček M, Sochová I, Peñuelas J, Bošeľa M, Trnka M. Impacts of elevated CO 2 levels and temperature on photosynthesis and stomatal closure along an altitudinal gradient are counteracted by the rising atmospheric vapor pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171173. [PMID: 38401718 DOI: 10.1016/j.scitotenv.2024.171173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.
Collapse
Affiliation(s)
- Natálie Pernicová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic.
| | - Josef Čáslavský
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Josep Peñuelas
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Michal Bošeľa
- Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, SK-960 01 Zvolen, Slovakia
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
2
|
Kearsley E, Verbeeck H, Stoffelen P, Janssens SB, Yakusu EK, Kosmala M, De Mil T, Bauters M, Kitima ER, Ndiapo JM, Chuda AL, Richardson AD, Wingate L, Ilondea BA, Beeckman H, van den Bulcke J, Boeckx P, Hufkens K. Historical tree phenology data reveal the seasonal rhythms of the Congo Basin rainforest. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10136. [PMID: 38476212 PMCID: PMC10926959 DOI: 10.1002/pei3.10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
Tropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics. High phenological variability within and across species and in climate-phenology relationships is observed. The onset of leaf phenophases in deciduous species was triggered by drought and light availability for a subset of species and showed a species-specific decoupling in time along a bi-modal seasonality. The majority of the species remain evergreen, although central African forests experience relatively low rainfall. Annually a maximum of 1.5% of the canopy is in leaf senescence or leaf turnover, with overall phenological variability dominated by a few deciduous species, while substantial variability is attributed to asynchronous events of large and/or abundant trees. Our results underscore the importance of accounting for constituent signals in canopy-wide scaling and the interpretation of remotely sensed phenology signals.
Collapse
Affiliation(s)
- Elizabeth Kearsley
- Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- BlueGreen LabsMelseleBelgium
| | - Hans Verbeeck
- Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| | | | - Steven B. Janssens
- Meise Botanic GardenMeiseBelgium
- Department of Biology, Leuven Plant InstituteKULeuvenLeuvenBelgium
| | - Emmanuel Kasongo Yakusu
- UGent‐Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Faculté de gestion des ressources naturelles renouvelablesUniversité de KisanganiKisanganiDemocratic Republic of Congo
| | - Margaret Kosmala
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- CIBO TechnologiesCambridgeMassachusettsUSA
| | - Tom De Mil
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio‐TechUniversity of LiègeGemblouxBelgium
| | - Marijn Bauters
- Isotope Bioscience Laboratory ‐ ISOFYS, Department of Green Chemistry and TechnologyGhent UniversityGentBelgium
- Research Group of Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpWilrijkBelgium
| | - Elasi Ramanzani Kitima
- Institut National pour l'Etude et la Recherche Agronomiques‐INERAYangambiDemocratic Republic of Congo
| | - José Mbifo Ndiapo
- Institut National pour l'Etude et la Recherche Agronomiques‐INERAYangambiDemocratic Republic of Congo
| | - Adelard Lonema Chuda
- Institut National pour l'Etude et la Recherche Agronomiques‐INERAYangambiDemocratic Republic of Congo
| | - Andrew D. Richardson
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- School of Informatics, Computing and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | | | - Bhély Angoboy Ilondea
- UGent‐Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Institut National pour l'Étude et la Recherche AgronomiquesKinshasaDemocratic Republic of Congo
| | - Hans Beeckman
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
| | - Jan van den Bulcke
- UGent‐Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory ‐ ISOFYS, Department of Green Chemistry and TechnologyGhent UniversityGentBelgium
| | - Koen Hufkens
- Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- BlueGreen LabsMelseleBelgium
- INRAE, UMR ISPAVillenave d'OrnonFrance
| |
Collapse
|
3
|
Lai Y, Tang S, Lambers H, Hietz P, Tang W, Gilliam FS, Lu X, Luo X, Lin Y, Wang S, Zeng F, Wang Q, Kuang Y. Global change progressively increases foliar nitrogen-phosphorus ratios in China's subtropical forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17201. [PMID: 38385993 DOI: 10.1111/gcb.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations (P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, whileP CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT andP CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.
Collapse
Affiliation(s)
- Yuan Lai
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Songbo Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Frank S Gilliam
- Department of Earth and Environmental Sciences, University of West Florida, Pensacola, Florida, USA
| | - Xiankai Lu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xianzhen Luo
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yutong Lin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Wang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Feiyan Zeng
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuanwen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Feeley KJ, Bernal-Escobar M, Fortier R, Kullberg AT. Tropical Trees Will Need to Acclimate to Rising Temperatures-But Can They? PLANTS (BASEL, SWITZERLAND) 2023; 12:3142. [PMID: 37687387 PMCID: PMC10490527 DOI: 10.3390/plants12173142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
For tropical forests to survive anthropogenic global warming, trees will need to avoid rising temperatures through range shifts and "species migrations" or tolerate the newly emerging conditions through adaptation and/or acclimation. In this literature review, we synthesize the available knowledge to show that although many tropical tree species are shifting their distributions to higher, cooler elevations, the rates of these migrations are too slow to offset ongoing changes in temperatures, especially in lowland tropical rainforests where thermal gradients are shallow or nonexistent. We also show that the rapidity and severity of global warming make it unlikely that tropical tree species can adapt (with some possible exceptions). We argue that the best hope for tropical tree species to avoid becoming "committed to extinction" is individual-level acclimation. Although several new methods are being used to test for acclimation, we unfortunately still do not know if tropical tree species can acclimate, how acclimation abilities vary between species, or what factors may prevent or facilitate acclimation. Until all of these questions are answered, our ability to predict the fate of tropical species and tropical forests-and the many services that they provide to humanity-remains critically impaired.
Collapse
Affiliation(s)
- Kenneth J. Feeley
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA; (M.B.-E.); (R.F.); (A.T.K.)
| | | | | | | |
Collapse
|
5
|
Goll DS, Bauters M, Zhang H, Ciais P, Balkanski Y, Wang R, Verbeeck H. Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa. THE NEW PHYTOLOGIST 2023; 237:2054-2068. [PMID: 36226674 DOI: 10.1111/nph.18535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Spatial redistribution of nutrients by atmospheric transport and deposition could theoretically act as a continental-scale mechanism which counteracts declines in soil fertility caused by nutrient lock-up in accumulating biomass in tropical forests in Central Africa. However, to what extent it affects carbon sinks in forests remains elusive. Here we use a terrestrial biosphere model to quantify the impact of changes in atmospheric nitrogen and phosphorus deposition on plant nutrition and biomass carbon sink at a typical lowland forest site in Central Africa. We find that the increase in nutrient deposition since the 1980s could have contributed to the carbon sink over the past four decades up to an extent which is similar to that from the combined effects of increasing atmospheric carbon dioxide and climate change. Furthermore, we find that the modelled carbon sink responds to changes in phosphorus deposition, but less so to nitrogen deposition. The pronounced response of ecosystem productivity to changes in nutrient deposition illustrates a potential mechanism that could control carbon sinks in Central Africa. Monitoring the quantity and quality of nutrient deposition is needed in this region, given the changes in nutrient deposition due to human land use.
Collapse
Affiliation(s)
- Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Marijn Bauters
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, 9000, Belgium
- Department of Environment, Computational and Applied Vegetation Ecology - CAVElab, Ghent University, Ghent, 9000, Belgium
| | - Haicheng Zhang
- Department Geoscience, Environment & Society, Université Libre de Bruxelles, Bruxelles, 1050, Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Yves Balkanski
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Rong Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200438, China
- Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
- Center for Urban Eco-Planning & Design, Fudan University, Shanghai, 200438, China
- Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai, 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hans Verbeeck
- Department of Environment, Computational and Applied Vegetation Ecology - CAVElab, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Tang Y, Schiestl-Aalto P, Lehmann MM, Saurer M, Sahlstedt E, Kolari P, Leppä K, Bäck J, Rinne-Garmston KT. Estimating intra-seasonal photosynthetic discrimination and water use efficiency using δ13C of leaf sucrose in Scots pine. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:321-335. [PMID: 36255219 PMCID: PMC9786842 DOI: 10.1093/jxb/erac413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/17/2022] [Indexed: 05/31/2023]
Abstract
Sucrose has a unique role in recording environmental and physiological signals during photosynthesis in its carbon isotope composition (δ13C) and transport of the signal to tree rings. Yet, instead of sucrose, total organic matter (TOM) or water-soluble carbohydrates (WSC) are typically analysed in studies that follow δ13C signals within trees. To study how the choice of organic material may bias the interpretation of δ13C records, we used mature field-grown Scots pine (Pinus sylvestris) to compare for the first time δ13C of different leaf carbon pools with δ13C of assimilates estimated by a chamber-Picarro system (δ13CA_Picarro), and a photosynthetic discrimination model (δ13CA_model). Compared with sucrose, the other tested carbon pools, such as TOM and WSC, poorly recorded the seasonal trends or absolute values of δ13CA_Picarro and δ13CA_model. Consequently, in comparison with the other carbon pools, sucrose δ13C was superior for reconstructing changes in intrinsic water use efficiency (iWUE), agreeing in both absolute values and intra-seasonal variations with iWUE estimated from gas exchange. Thus, deriving iWUE and environmental signals from δ13C of bulk organic matter can lead to misinterpretation. Our findings underscore the advantage of using sucrose δ13C to understand plant physiological responses in depth.
Collapse
Affiliation(s)
| | - Paulina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Elina Sahlstedt
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
| | - Kersti Leppä
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Katja T Rinne-Garmston
- Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
7
|
Flores BM, Staal A. Feedback in tropical forests of the Anthropocene. GLOBAL CHANGE BIOLOGY 2022; 28:5041-5061. [PMID: 35770837 PMCID: PMC9542052 DOI: 10.1111/gcb.16293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Tropical forests are complex systems containing myriad interactions and feedbacks with their biotic and abiotic environments, but as the world changes fast, the future of these ecosystems becomes increasingly uncertain. In particular, global stressors may unbalance the feedbacks that stabilize tropical forests, allowing other feedbacks to propel undesired changes in the whole ecosystem. Here, we review the scientific literature across various fields, compiling known interactions of tropical forests with their environment, including the global climate, rainfall, aerosols, fire, soils, fauna, and human activities. We identify 170 individual interactions among 32 elements that we present as a global tropical forest network, including countless feedback loops that may emerge from different combinations of interactions. We illustrate our findings with three cases involving urgent sustainability issues: (1) wildfires in wetlands of South America; (2) forest encroachment in African savanna landscapes; and (3) synergistic threats to the peatland forests of Borneo. Our findings reveal an unexplored world of feedbacks that shape the dynamics of tropical forests. The interactions and feedbacks identified here can guide future qualitative and quantitative research on the complexities of tropical forests, allowing societies to manage the nonlinear responses of these ecosystems in the Anthropocene.
Collapse
Affiliation(s)
- Bernardo M. Flores
- Graduate Program in EcologyFederal University of Santa CatarinaFlorianopolisBrazil
| | - Arie Staal
- Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
8
|
Okello J, Bauters M, Verbeeck H, Kasenene J, Boeckx P. Aboveground carbon stocks, woody and litter productivity along an elevational gradient in the Rwenzori Mountains, Uganda. Biotropica 2022. [DOI: 10.1111/btp.13114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Joseph Okello
- Isotope Bioscience Laboratory – ISOFYS Ghent University Ghent Belgium
- CAVElab‐ Computational and Applied Vegetation Ecology Ghent University Ghent Belgium
- School of Agriculture and Environmental Sciences Mountains of the Moon University Fort Portal Uganda
- National Agricultural Research Organisation Mbarara Zonal Agricultural Research and Development Institute Mbarara Uganda
| | - Marijn Bauters
- Isotope Bioscience Laboratory – ISOFYS Ghent University Ghent Belgium
- CAVElab‐ Computational and Applied Vegetation Ecology Ghent University Ghent Belgium
| | - Hans Verbeeck
- CAVElab‐ Computational and Applied Vegetation Ecology Ghent University Ghent Belgium
| | - John Kasenene
- School of Agriculture and Environmental Sciences Mountains of the Moon University Fort Portal Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory – ISOFYS Ghent University Ghent Belgium
| |
Collapse
|
9
|
Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, Groffman PM, Fulweiler RW, Angerer J, Read QD, Reich PB, Templer PH, Elmore AJ. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 2022; 376:eabh3767. [PMID: 35420945 DOI: 10.1126/science.abh3767] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The productivity of ecosystems and their capacity to support life depends on access to reactive nitrogen (N). Over the past century, humans have more than doubled the global supply of reactive N through industrial and agricultural activities. However, long-term records demonstrate that N availability is declining in many regions of the world. Reactive N inputs are not evenly distributed, and global changes-including elevated atmospheric carbon dioxide (CO2) levels and rising temperatures-are affecting ecosystem N supply relative to demand. Declining N availability is constraining primary productivity, contributing to lower leaf N concentrations, and reducing the quality of herbivore diets in many ecosystems. We outline the current state of knowledge about declining N availability and propose actions aimed at characterizing and responding to this emerging challenge.
Collapse
Affiliation(s)
- Rachel E Mason
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | | | - Nina K Lany
- Northern Research Station, USDA Forest Service, Durham, NH, USA
| | - Mathieu Jonard
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Scott V Ollinger
- Earth Systems Research Center, University of New Hampshire, Durham, NH, USA
| | - Peter M Groffman
- Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY, USA.,Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Robinson W Fulweiler
- Department of Earth and Environment, Boston University, Boston, MA, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - Jay Angerer
- Fort Keogh Livestock and Range Research Laboratory, USDA Agricultural Research Service, Miles City, MT, USA
| | - Quentin D Read
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Andrew J Elmore
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA.,Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| |
Collapse
|
10
|
Ichie T, Igarashi S, Yoshihara R, Takayama K, Kenzo T, Niiyama K, Nur Hajar ZS, Hyodo F, Tayasu I. Verification of the accuracy of the recent 50 years of tree growth and long‐term change in intrinsic water‐use efficiency using xylem Δ
14
C and δ
13
C in trees in an aseasonal tropical rainforest. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomoaki Ichie
- Faculty of Agriculture and Marine Science Kochi University Nankoku Japan
| | - Shuichi Igarashi
- Faculty of Agriculture and Marine Science Kochi University Nankoku Japan
| | - Ryo Yoshihara
- Graduate School of Integrated Arts and Sciences Kochi University Nankoku Japan
| | - Kanae Takayama
- Faculty of Agriculture and Marine Science Kochi University Nankoku Japan
| | - Tanaka Kenzo
- Japan International Research Center for Agricultural Sciences Tsukuba Japan
| | - Kaoru Niiyama
- Forestry and Forest Products Research Institute Tsukuba Japan
| | | | - Fujio Hyodo
- Research Core for Interdisciplinary Sciences Okayama University Okayama Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature Kyoto Japan
| |
Collapse
|
11
|
Farahat E, Cherubini P, Saurer M, Gärtner H. Wood anatomy and tree-ring stable isotopes indicate a recent decline in water-use efficiency in the desert tree Moringa peregrina. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:127-137. [PMID: 34633523 DOI: 10.1007/s00484-021-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The ability of desert plants to adapt to future climate changes and maximize their water-use efficiency will determine their survival. This study uses wood anatomy and δ13C and δ18O isotope analyses to investigate how Moringa peregrina trees in the Egyptian desert have responded to the environment over the last 10 years. Our results show that M. peregrina tree-ring widths (TRWs) have generally declined over the last decade, although individual series are characterized by high variability and low Rbars. Vessel lumen area percentages (VLA%) are low in wet years but increase significantly in dry years, such as the period 2017-2020. Stable δ13C isotope values decrease between 2010 (- 23.4‰) and 2020 (- 24.9‰), reflecting an unexpected response to an increase in drought conditions. The mean δ18O value (± standard error, SE) for the first ten rings of each tree from bark to pith (2020-2010) is 33.0 ‰ ± 0.85 with a range of 29.2-36.3‰, which indicates a common drought signal. The intrinsic water-use efficiency (iWUE) declines gradually with time, from 130.0 µmol mol-1 in 2010 to 119.4 µmol mol-1 in 2020. The intercellular carbon concentration (Ci) and Ci/Ca ratio increase over the same period, likely as a result of decreasing iWUE. The results show that M. peregrina trees seem to cool their leaves and the boundary air at the cost of saving water.
Collapse
Affiliation(s)
- Emad Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, P.O. 11790, Cairo, Egypt.
| | - Paolo Cherubini
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Holger Gärtner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Meeus S, Van den Bulcke J, wyffels F. From leaf to label: A robust automated workflow for stomata detection. Ecol Evol 2020; 10:9178-9191. [PMID: 32953053 PMCID: PMC7487252 DOI: 10.1002/ece3.6571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Plant leaf stomata are the gatekeepers of the atmosphere-plant interface and are essential building blocks of land surface models as they control transpiration and photosynthesis. Although more stomatal trait data are needed to significantly reduce the error in these model predictions, recording these traits is time-consuming, and no standardized protocol is currently available. Some attempts were made to automate stomatal detection from photomicrographs; however, these approaches have the disadvantage of using classic image processing or targeting a narrow taxonomic entity which makes these technologies less robust and generalizable to other plant species. We propose an easy-to-use and adaptable workflow from leaf to label. A methodology for automatic stomata detection was developed using deep neural networks according to the state of the art and its applicability demonstrated across the phylogeny of the angiosperms.We used a patch-based approach for training/tuning three different deep learning architectures. For training, we used 431 micrographs taken from leaf prints made according to the nail polish method from herbarium specimens of 19 species. The best-performing architecture was tested on 595 images of 16 additional species spread across the angiosperm phylogeny.The nail polish method was successfully applied in 78% of the species sampled here. The VGG19 architecture slightly outperformed the basic shallow and deep architectures, with a confidence threshold equal to 0.7 resulting in an optimal trade-off between precision and recall. Applying this threshold, the VGG19 architecture obtained an average F-score of 0.87, 0.89, and 0.67 on the training, validation, and unseen test set, respectively. The average accuracy was very high (94%) for computed stomatal counts on unseen images of species used for training.The leaf-to-label pipeline is an easy-to-use workflow for researchers of different areas of expertise interested in detecting stomata more efficiently. The described methodology was based on multiple species and well-established methods so that it can serve as a reference for future work.
Collapse
Affiliation(s)
| | | | - Francis wyffels
- Department of Electronics and Information SystemsIDLab‐AIROGhent University‐‐imecZwijnaardeBelgium
| |
Collapse
|