1
|
Zhang S, Yang Z, Yang X, Ma X, Ma Q, Ma M, Zhang J. Plant-Soil Interactions Shape Arbuscular Mycorrhizal Fungal Diversity and Functionality in Eastern Tibetan Meadows. J Fungi (Basel) 2025; 11:337. [PMID: 40422671 DOI: 10.3390/jof11050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Arbuscular mycorrhizal (AM) fungi occur in the interface between soils and plants. Yet, the impacts of the plant community functional composition and soil properties on AM fungal communities remain poorly understood in the face of ongoing climate change. Here, we investigated the AM fungal community in alpine meadow habitats of the Tibetan Plateau by linking fungal species richness to plant community functional composition and soil parameters at three latitudinal sites. High-throughput sequencing of the AM fungal small subunit rRNA gene was performed to characterize fungal communities. We found that AM fungal diversity and plant functional diversity, as well as the contents of soil nutrients, were significantly higher in the southernmost site, Hongyuan (HY). Total soil nitrogen and soil-available phosphorus explained the variation in AM fungal diversity, while AM fungal biomass was best predicted by the plant community-weighed mean nitrogen:phosphorus ratio (CWM-N:P). Glomus species preferentially occurred in the northernmost site of Hezuo (HZ). Distance-based redundancy analysis (db-RDA) revealed that AM fungal community structure was influenced by not only CWM-N:P but also by plant community-weighed mean photosynthetic rate (CWM-Pn), soil total carbon, and plant community functional dispersion (FDis). We conclude that plant traits and soil properties are crucial for nutrient-carbon (C) exchange, as fungal symbionts may shape AM communities in this vast alpine meadow ecosystem. Our findings provide timely insight into AM fungal community assembly from the perspective of nutrient-C exchange dynamics in the Tibetan Plateau's alpine meadow habitats.
Collapse
Affiliation(s)
- Shihu Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Zhengying Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xuechun Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoyu Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Qun Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Miaojun Ma
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jiajia Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Vázquez-Ramírez J, Venn SE. Snow, fire and drought: how alpine and treeline soil seed banks are affected by simulated climate change. ANNALS OF BOTANY 2025; 135:223-238. [PMID: 38011645 PMCID: PMC11805938 DOI: 10.1093/aob/mcad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Seed persistence in soil depends on environmental factors that affect seed dormancy and germination, such as temperature and water availability. In high-elevation ecosystems, rapid changes in these environmental factors because of climate change can impact future plant recruitment. To date, our knowledge on how soil seed banks from high-elevation environments will respond to climate change and extreme climate-related events is limited. Here, using the seedling emergence method, we investigated the effects of reduced snow cover, fire and drought on the density and diversity of germinants from soil seed banks of two high-elevation plant communities: a tall alpine herbfield and a treeline ecotone. METHODS In Autumn 2020, we collected soil samples and characterized the standing vegetation of both communities at Kosciuszko National Park, Australia. Subsequently, we carried out a factorial experiment and subjected the soil samples to a series of manipulative treatments using greenhouse studies. KEY RESULTS The treeline had a larger and more diverse soil seed bank than the herbfield. A reduction in snow had a negative effect on the number of germinants in the herbfield and increased the dissimilarity with the standing vegetation, whereas the treeline responses were mainly neutral. Fire did not significantly affect the number of germinants but decreased the evenness values in both communities. The drought treatment reduced the number and richness of germinants and increased the dissimilarity with the standing vegetation in both communities. Plant functional forms explained some of the detected effects, but seed functional traits did not. CONCLUSIONS Our study suggests that simulated climate change will affect plant recruitment from soil seed banks in a variety of ways. Changes in snow cover and incidences of fire and drought might be key drivers of germination from the soil seed bank and therefore the future composition of alpine plant communities.
Collapse
Affiliation(s)
- Jerónimo Vázquez-Ramírez
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Susanna E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| |
Collapse
|
3
|
Zhang X, Duan J, Ji Y, Liu W, Gao J. Leaf nutrient traits exhibit greater environmental plasticity compared to resource utilization traits along an elevational gradient. FRONTIERS IN PLANT SCIENCE 2024; 15:1484744. [PMID: 39628531 PMCID: PMC11611591 DOI: 10.3389/fpls.2024.1484744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024]
Abstract
Studying key leaf functional traits is crucial for understanding plant resource utilization strategies and growth. To explore the patterns and driving factors of key leaf functional traits in forests along elevational gradients under global change, we collected survey data from 697 forests across China from 2008 to 2020. This study examined the elevational patterns of Specific Leaf Area (SLA, m²/kg), Leaf Dry Matter Content (LDMC, g/g), Leaf Nitrogen (LN, mg/g), and Leaf Phosphorus (LP, mg/g), and their responses to climate, soil nutrients, and stand factors. The results showed distinct differences in these key leaf traits at different elevational gradients. Generally, as elevation increased, SLA decreased, while LDMC significantly increased (P < 0.001), and LN first increase and then decreased (P < 0.001). The direct influence of elevation on the spatial variation of key leaf traits was greater than its indirect effects (through environmental and stand factors). The elevational patterns of leaf traits related to resource utilization strategies (SLA and LDMC) were mainly influenced by climate (temperature and precipitation) and soil nutrient factors, showing opposite trends in response to environmental changes. The patterns of leaf nutrient traits (LN and LP) along elevational gradients were primarily influenced by climatic factors, with LN exhibiting greater environmental plasticity. Compared to other stand factors, forest age predominantly influenced the spatial variation of key leaf traits, especially SLA. These findings have significant theoretical implications for revealing how plants adapt to global change.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Jie Duan
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| | - Yuhui Ji
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| | - Weiguo Liu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
4
|
Xing Y, Deng S, Bai Y, Wu Z, Luo J. Leaf Functional Traits and Their Influencing Factors in Six Typical Vegetation Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2423. [PMID: 39273907 PMCID: PMC11397209 DOI: 10.3390/plants13172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Leaf functional traits (LFTs) have become a popular topic in ecological research in recent years. Here, we measured eight LFTs, namely leaf area (LA), specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf potassium content (LKC), in six typical vegetation communities (sclerophyllous evergreen broad-leaved forests, temperate evergreen coniferous forests, cold-temperate evergreen coniferous forests, alpine deciduous broad-leaved shrubs, alpine meadows, and alpine scree sparse vegetation) in the Chayu River Basin, southeastern Qinghai-Tibet Plateau. Our aim was to explore their relationships with evolutionary history and environmental factors by combining the RLQ and the fourth-corner method, and the method of testing phylogenetic signal. The results showed that (i) there were significant differences in the eight LFTs among the six vegetation communities; (ii) the K values of the eight LFTs were less than 1; and (iii) except for LCC, all other LFTs were more sensitive to environmental changes. Among these traits, LA was the most affected by the environmental factors, followed by LNC. It showed that the LFTs in the study were minimally influenced by phylogenetic development but significantly by environmental changes. This study further verified the ecological adaptability of plants to changes in environmental factors and provides a scientific basis for predicting the distribution and diffusion direction of plants under global change conditions.
Collapse
Affiliation(s)
- Yuting Xing
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Shiqin Deng
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Yuanyin Bai
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhengjie Wu
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Jian Luo
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| |
Collapse
|
5
|
Guo Z, Zhao Y, Zhang P, Zhang H, Baskin CC, Zhang T, Chen Y, Hu G, Yang X, Mao H, Zhang Z, Ma M. Rodents mediate the relationship between seed rain, seed bank, and plant community with increased grazing disturbance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2984. [PMID: 38753679 DOI: 10.1002/eap.2984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024]
Abstract
Seed rain and the soil seed bank represent the dispersal of seeds in space and time, respectively, and can be important sources of recruitment of new individuals during plant community regeneration. However, the temporal dynamics of seed rain and the mechanisms by which the seed rain and soil seed bank may play a role in plant community regeneration with increased grazing disturbance remain unclear. Seed rain, soil seed bank, aboveground vegetation, and rodent density were sampled along a grazing gradient in an alpine marsh on the eastern Tibetan Plateau. We described the temporal dynamics of seed dispersal using Bayesian generalized mixed models, and nonmetric multidimensional scaling and the structural equation model were used to examine the effects of grazing disturbance on the relative role of seed rain and soil seed bank on aboveground plant community regeneration. The temporal dynamics of seed rain changed from a unimodal to a bimodal pattern with increased grazing disturbance. Both species diversity and seed density of the seed rain and seed bank increased significantly with increased grazing disturbance. Increased grazing disturbance indirectly increased the similarity of composition between seed rain, seed bank, and aboveground plant community by directly increasing species diversity and abundance of aboveground plant community. However, increased grazing disturbance also indirectly decreased the similarity of seed rain, soil seed bank, and aboveground plant community by directly increasing rodent density. The similarity between seed rain and aboveground plant community was greater than that of the soil seed bank and aboveground plant community with increased grazing disturbance. Grazing disturbance spreads the risk of seed germination and seedling establishment by changing the temporal dynamics of seed dispersal. Plants (positive) and rodents (negative) mediated the role of seed rain and soil seed bank in plant community regeneration. The role of seed rain in plant community regeneration is higher than the seed bank in disturbed alpine marshes. Our findings increase our understanding of the regeneration process of the plant community, and they provide valuable information for the conservation and restoration of alpine marsh ecosystems.
Collapse
Affiliation(s)
- Zengpeng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Yunpeng Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Panhong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Tianwu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Yaya Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Guorui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiangrong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - He Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhenkuan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
6
|
Wang X, Ge W, Zhang M, Fernández-Pascual E, Moles A, Saatkamp A, Rosbakh S, Bu H, Panahi P, Ma M. Large and non-spherical seeds are less likely to form a persistent soil seed bank. Proc Biol Sci 2024; 291:20232764. [PMID: 38864324 DOI: 10.1098/rspb.2023.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
There is some evidence that seed traits can affect the long-term persistence of seeds in the soil. However, findings on this topic have differed between systems. Here, we brought together a worldwide database of seed persistence data for 1474 species to test the generality of seed mass-shape-persistence relationships. We found a significant trend for low seed persistence to be associated with larger and less spherical seeds. However, the relationship varied across different clades, growth forms and species ecological preferences. Specifically, relationships of seed mass-shape-persistence were more pronounced in Poales than in other order clades. Herbaceous species that tend to be found in sites with low soil sand content and precipitation have stronger relationships between seed shape and persistence than in sites with higher soil sand content and precipitation. For the woody plants, the relationship between persistence and seed morphology was stronger in sites with high soil sand content and low precipitation than in sites with low soil sand content and higher precipitation. Improving the ability to predict the soil seed bank formation process, including burial and persistence, could benefit the utilization of seed morphology-persistence relationships in management strategies for vegetation restoration and controlling species invasion across diverse vegetation types and environments.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University , Lanzhou, Gansu Province 730000, People's Republic of China
| | - Wenjing Ge
- Institute of Soil Eco-environment, School of Ecology and Environment, Zhengzhou University , Zhengzhou, Henan Province 450001, People's Republic of China
| | - Mingting Zhang
- School of Life Sciences, Lanzhou University , Lanzhou, Gansu Province 730000, People's Republic of China
| | - Eduardo Fernández-Pascual
- IMIB Biodiversity Research Institute (University of Oviedo - CSIC - Principality of Asturias), University of Oviedo , Oviedo, E-33600 Mieres, Spain
| | - Angela Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney , Sydney, NSW 2052, Australia
| | - Arne Saatkamp
- Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Facultés St Jérôme, case 421 , 13397 Marseille, France
| | - Sergey Rosbakh
- Department of Plant and Environmental Sciences, University of Copenhagen , 1871 Frederiksberg, Denmark
| | - Haiyan Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University , Lanzhou, Gansu Province 730000, People's Republic of China
| | - Parisa Panahi
- National Botanical Garden of Iran, Botany Research Division, Research Institute of Forests & Rangelands, Agricultural Research, Education and Extension Organization (AREEO) , Tehran, Iran
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University , Lanzhou, Gansu Province 730000, People's Republic of China
| |
Collapse
|
7
|
Wu Y, Yang Z, Chen S, Sui M, Zhang G, Liu Q, Chen D, Ding F, Zang L. How do species richness and its component dependence vary along the natural restoration in extremely heterogeneous forest ecosystems? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120265. [PMID: 38382441 DOI: 10.1016/j.jenvman.2024.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Giant habitat heterogeneity is an important factor contributing to the high species richness (SR) in karst forests. Yet, the driving factor behind the alterations in SR patterns during natural restoration remains unclear. In this study, we established the forest dynamics plots along the natural restoration sequence (including shrub-tree mixed forest stage (SC), secondary forest stage (SG) and old-growth forest sage (OG)) in degraded karst forests to compare the SR and the dependence on its components (including total community abundance, species abundance distribution (SAD), and conspecific spatial aggregation (CSA)) among stages of natural restoration. By evaluating the degree of contribution of the components to local SR and rarefied SR, we found that the SG exhibited the highest local SR, while the rarefied SR remained increasing along the restoration sequence after controlling the sample size. At SC-SG stage, SAD and CSA contributed negatively to the differences in SR, while abundance made a positive contribution to SR differences. At SG-OG, abundance contributed positively to the difference in SR at all scales, while SAD contributed negatively at small scales. No significant contribution of CSA was found at observed scales. In addition, local SR varied more significantly with PIE than with abundance. Our research emphasizes the importance of eliminating the influence of abundance on species richness in forest ecology and management, as well as the significance of separately evaluating the components that shape the diversity patterns.
Collapse
Affiliation(s)
- Yuhang Wu
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zeyu Yang
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Shiren Chen
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Mingzhen Sui
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China
| | - Guangqi Zhang
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China
| | - Qingfu Liu
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China
| | - Danmei Chen
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China
| | - Fangjun Ding
- Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China
| | - Lipeng Zang
- Research Center of Forest Ecology, Collage of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Libo, Guizhou, 558400, China.
| |
Collapse
|
8
|
Niu B, Fu G. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168878. [PMID: 38029973 DOI: 10.1016/j.scitotenv.2023.168878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Plant diversity and soil microbial diversity are closely related, and they maintain the health and stability of terrestrial ecosystems. As a hotspot region of global biodiversity research, both air temperature and precipitation of the Qinghai-Xizang Plateau tend to increase in future. Based on an overview of the responses of grassland/alpine ecosystems to seasonal asymmetric warming and increased precipitation worldwide, we elaborated the advancements and uncertainties on the responses of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau. The future research focus of plant diversity and soil microbial diversity in the alpine grasslands of the Qinghai-Xizang Plateau under climate warming and increased precipitation was proposed. Generally, previous studies found that the responses of plant species diversity and soil microbial species diversity to warming and increased precipitation differed between alpine meadows and alpine steppes, but few studies focused on their responses to warming and increased precipitation in alpine desert steppes. Previous studies mainly focused on species diversity, although phylogenetic and functional diversities are also important aspects of biodiversity. Previous studies mainly explained responses of plant diversity and soil microbial diversity to warming and increased precipitation based on niche theory, although neutral theory is also the other important mechanism in regulating biodiversity. Moreover, previous studies almost ignored the coupling relationship between plant diversity and soil microbial diversity. Therefore, the following four aspects need to be strengthened, including the responses of plant diversity and soil microbial diversity to warming and increased precipitation in alpine desert steppes, the responses of plant and soil microbial phylogenetic diversity and functional diversity to warming and increased precipitation, combining the niche theory and neutral theory to examining the mechanism of biodiversity, and the coupling relationships between plant diversity and soil microbial diversity under warming and increased precipitation.
Collapse
Affiliation(s)
- Ben Niu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Fu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Zhao M, Loreau M, Ochoa-Hueso R, Zhang H, Yang J, Zhang Y, Liu H, Jiang Y, Han X. Decoupled responses of above- and below-ground beta-diversity to nitrogen enrichment in a typical steppe. Ecol Lett 2024; 27:e14339. [PMID: 38037734 DOI: 10.1111/ele.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
Increased atmospheric nitrogen (N) deposition affects biodiversity in terrestrial ecosystems. However, we do not know whether the effects of N on above-ground plant β-diversity are coupled with changes occurring in the soil seed bank. We conducted a long-term N-addition experiment in a typical steppe and found that above-ground β-diversity increased and then decreased with increasing N addition, whereas below-ground β-diversity decreased linearly. This suggests decoupled dynamics of plant communities and their soil seed bank under N enrichment. Species substitution determined above- and below-ground β-diversity change via an increasing role of deterministic processes with N addition. These effects were mostly driven by differential responses of the above-ground vegetation and the soil seed bank β-diversities to N-induced changes in environmental heterogeneity, increased soil inorganic N concentrations and soil acidification. Our findings highlight the importance of considering above- and below-ground processes simultaneously for effectively conserving grassland ecosystems under N enrichment.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | - Raúl Ochoa-Hueso
- Department of Biology, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, IVAGRO, University of Cádiz, Cádiz, Spain
| | - Hongxiang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Heyong Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Yu F, Zhang L, Wang Y, Yi X, Zhang S, Ma J, Dong Z, Chen G, Ma K. High rodent abundance increases seed removal but decreases scatter-hoarding and seedling recruitment along an elevational gradient. Integr Zool 2023; 18:843-858. [PMID: 36300758 DOI: 10.1111/1749-4877.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The distributions of small rodents in mountainous environments across different elevations can provide important information regarding the effects of climate change on the dispersal of plant species. However, few studies of oak forest ecosystems have compared the elevational patterns of sympatric rodent diversity, seed dispersal, seed bank, and seedling abundance. Thus, we tested the differences in the seed disperser composition and abundance, seed dispersal, seed bank abundance, and seedling recruitment for Quercus wutaishanica along 10 elevation levels in the Taihang Mountains, China. Our results provide strong evidence that complex asymmetric seed dispersal and seedling regeneration exist along an elevational gradient. The abundance of rodents had a significant negative correlation with the elevation and the seed removal rates peaked and then declined with increasing elevation. The seed removal rates were higher at middle and lower elevations than higher elevations but acorns were predated by 5 species of seed predators at middle and lower elevations, and thus, there was a lower likelihood of recruitment compared with those dropped beneath mother oaks at higher elevations. More importantly, the number of individual seeds in the seed bank and seedlings increased with the elevation, although dispersal services were reduced at sites lacking rodents. As conditional mutualists, the rodents could possibly act as antagonistic seed predators rather than mutualistic seed dispersers at low and middle elevations, thereby resulting in the asymmetric pattern of rodent and seedling abundance with increasing elevation to affect the community assembly and ecosystem functions on a large spatial scale.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Linjun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jianmin Ma
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Du Z, Wang J, An H, Zhang H, Chen G. Responses of soil seed banks to drought on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161142. [PMID: 36572295 DOI: 10.1016/j.scitotenv.2022.161142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The global increase in drought frequency and intensity in large areas has potentially important effects on soil seed banks (SSBs). However, a systematic evaluation of the impact of drought on SSBs at a global scale has not yet been well understood. We evaluated the effects of drought on SSBs and identified the association key drivers in the current meta-analysis. The overall effects of drought on soil seed density and richness were weak negative and positive, respectively. Drought significantly increased soil seed density by 11.94 % in forest ecosystem, whereas soil seed richness were significantly increased in vascular plants (7.39 %). Linear mixed-effect results showed that soil seed density and richness significantly reduced as increasing drought intensity. In addition, geography (altitude) has significance in controlling the lnRR of soil seed density by altering climate (mean annual precipitation, drought) and soil properties (pH, soil organic carbon, and clay content) in the structural equation model, whereas soil seed richness was controlled by geography (altitude, and latitude) via climate (mean annual precipitation). In summary, the results suggested the size of SSBs response to drought and its relationship with drought intensity in terrestrial ecosystems, it may shed light on ecosystem restoration, succession, and management using SSBs when estimating the future drought.
Collapse
Affiliation(s)
- Zhongyu Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jia Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Hui An
- School of Ecology and Environment, Ningxia University, Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan 750021, China
| | - Handan Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
12
|
Ma M, Baskin CC, Zhao Y, An H. Light controls alpine meadow community assembly during succession by affecting species recruitment from the seed bank. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2782. [PMID: 36479756 DOI: 10.1002/eap.2782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Some research indicates that soil seed banks can promote species coexistence through storage effects. However, the seed bank mechanism that maintains plant assembly and its role in degraded grassland restoration are still not clear. We collected seed bank samples from early, mid and late secondary successional stages of an abandoned subalpine meadow on the Tibetan Plateau, and samples from each stage were exposed to full (i.e., natural), mid, and low light treatments in the field to represent light availability at the bottom/understory (soil surface) of a plant community in the early, mid and late stages of succession, respectively. Species richness, seed density, species composition, and community weighted mean values (CWMs) of seed mass of the species whose seeds germinated in soil samples were evaluated. In response to the light treatments, species richness increased significantly with increased light only for the late successional stage, seed density increased significantly with increased light only in the early and mid successional stages, and seed mass decreased significantly with increased light only in the mid and late successional stages. Species composition differed significantly among the light treatments only in the late successional stage. For the successional series, species richness and seed mass of the species that germinated increased significantly with succession only under mid and full light treatments. Seed density decreased significantly with succession in each light treatment. Species composition differed significantly between the early- and late stage and between the mid and late stage in each light treatment. Both the abiotic (light) and biotic (seed mass) factors influence seed bank recruitment to the plant community. Regeneration of small-seeded species in the seed bank was inhibited under low light in the late successional stage. The balance of stochastic and deterministic processes along a successional gradient was determined by regeneration from the seed bank depending on light intensity change. Differences in seed response to light intensity change largely determined plant community assembly. Our findings should help in the development of effective conservation and restoration strategies.
Collapse
Affiliation(s)
- Miaojun Ma
- State Key Laboratory of Grassland and Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yunpeng Zhao
- State Key Laboratory of Grassland and Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| | - Hang An
- State Key Laboratory of Grassland and Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Collins SL, Zhao Y, Zhang T, Yang X, An H, Hu G, Xin C, Zhou J, Sheng X, He M, Zhang P, Guo Z, Zhang H, Li L, Ma M. Warming reduced flowering synchrony and extended community flowering season in an alpine meadow on the Tibetan Plateau. Ecology 2023; 104:e3862. [PMID: 36062319 DOI: 10.1002/ecy.3862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
The timing of phenological events is highly sensitive to climate change, and may influence ecosystem structure and function. Although changes in flowering phenology among species under climate change have been reported widely, how species-specific shifts will affect phenological synchrony and community-level phenology patterns remains unclear. We conducted a manipulative experiment of warming and precipitation addition and reduction to explore how climate change affected flowering phenology at the species and community levels in an alpine meadow on the eastern Tibetan Plateau. We found that warming advanced the first and last flowering times differently and with no consistent shifts in flowering duration among species, resulting in the entire flowering period of species emerging earlier in the growing season. Early-flowering species were more sensitive to warming than mid- and late-flowering species, thereby reducing flowering synchrony among species and extending the community-level flowering season. However, precipitation and its interactions with warming had no significant effects on flowering phenology. Our results suggest that temperature regulates flowering phenology from the species to community levels in this alpine meadow community, yet how species shifted their flowering timing and duration in response to warming varied. This species-level divergence may reshape flowering phenology in this alpine plant community. Decreasing flowering synchrony among species and the extension of community-level flowering seasons under warming may alter future trophic interactions, with cascading consequences to community and ecosystem function.
Collapse
Affiliation(s)
- Yaya Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yunpeng Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Tianwu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangrong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hang An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guorui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chunming Xin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Juan Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiongjie Sheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mingrui He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Panhong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zengpeng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Lanping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Cao J, Li B, Qi R, Liu T, Chen X, Gao B, Liu K, Baskin CC, Zhao Z. Negative impacts of human disturbances on the seed bank of subalpine forests are offset by climatic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158249. [PMID: 36028043 DOI: 10.1016/j.scitotenv.2022.158249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Precipitation and temperature in the subalpine region have increased dramatically in recent decades due to global warming, and human disturbances have continued to impact the vegetation in the region. Seed bank plays an important role in population recovery, but there are few studies on the synergistic effects of human disturbances and climate change on seed bank. We analyzed the synergistic effects of human disturbances and climate change on seed bank samples from 20 sites in the subalpine coniferous forest region using grazing and logging as the disturbance intensity gradient and precipitation and temperature as climate variables. The species diversity of aboveground vegetation all changed significantly (p < 0.05) with precipitation, temperature and disturbance level, while the seed bank richness and density did not. Furthermore, the species composition of the seed bank varied significantly less than that of the aboveground vegetation at different levels of disturbance (p < 0.001). Thus, seed bank showed a strong buffering capacity against the risk of local extinction caused by environmental changes that shift the species composition and diversity of aboveground vegetation. In addition, soil and litter are important influences controlling seed bank density in subalpine forests, and the results of structural equation modelling suggest that both disturbance and climate change can indirectly regulate the seed bank by changing the physicochemical properties of soil and litter. We conclude that increases in precipitation and temperature driven by climate change can buffer the negative effects of disturbances on the seed bank.
Collapse
Affiliation(s)
- Jiahao Cao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, LanZhou University, Lanzhou 730070, China; Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China
| | - Bo Li
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China.
| | - Rui Qi
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China
| | - Ting Liu
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China
| | - Xuelong Chen
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China
| | - Benqiang Gao
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China; Gansu Bailongjiang National Forest Ecosystem Research Station, Zhouqu 746300, China
| | - Kun Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, LanZhou University, Lanzhou 730070, China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, USA; Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
| | - Zhigang Zhao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, LanZhou University, Lanzhou 730070, China.
| |
Collapse
|
15
|
An H, Baskin CC, Ma M. Nonlinear response of the soil seed bank and its role in plant community regeneration with increased grazing disturbance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Hang An
- State Key Laboratory of Grassland and Agro‐ecosystems, College of Ecology Lanzhou University Lanzhou Gansu Province P.R. China
| | - Carol C. Baskin
- Department of Biology University of Kentucky Lexington, KY 40506, USA and Department of Plant and Soil Sciences, University of Kentucky Lexington KY
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro‐ecosystems, College of Ecology Lanzhou University Lanzhou Gansu Province P.R. China
| |
Collapse
|
16
|
Zhao Y, Wang G, Zhao M, Wang M, Jiang M. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152035. [PMID: 34856265 DOI: 10.1016/j.scitotenv.2021.152035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Soil salinization has become a widespread threat to the structure and ecological functioning of inland wetlands globally. Soil seed banks can be important for plant regeneration in salinizing wetlands. To explore the effects of soil salinization on soil seed banks and their potential role in revegetation, we studied the structure and composition of plant communities and soil seed banks along a soil salinization gradient, and analyzed the responses of Carex-dominated and Phragmites-dominated communities to saline-alkaline stress in the Songnen Plain, China. We found that the dominant species of aboveground vegetation were different along the soil salinization gradient. Carex spp. dominated in the non-salinized and mild salinity wetlands, and Phragmites australis dominated in wetlands with moderate and high levels of salinity. The species richness of aboveground vegetation, and the density and richness of soil seed banks were higher in wetlands with lower salinity. The structural equation model indicated that the difference in soil salinization was directly associated with the aboveground species richness, and density and richness of the soil seed banks, while it was indirectly associated with the density and richness of the soil seed banks by directly affecting the composition and the species richness of the aboveground vegetation. Soil seed banks in Phragmites communities were more tolerant of saline-alkaline stress than Carex communities. This study indicates that soil salinization affects the size and composition of soil seed banks and limits their role in plant regeneration in wetlands of the Songnen Plain. In addition to hydrological regulation, the reduction of soil salinity is necessary to protect and restore biodiversity in salinizing wetlands.
Collapse
Affiliation(s)
- Yantong Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China.
| | - Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
17
|
Fire-Related Cues Significantly Promote Seed Germination of Some Salt-Tolerant Species from Non-Fire-Prone Saline-Alkaline Grasslands in Northeast China. PLANTS 2021; 10:plants10122675. [PMID: 34961146 PMCID: PMC8707350 DOI: 10.3390/plants10122675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Seed germination in response to fire-related cues has been widely studied in species from fire-prone ecosystems. However, the germination characteristics of species from non-fire-prone ecosystems, such as the saline-alkaline grassland, where fire occasionally occurs accidentally or is used as a management tool, have been less studied. Here, we investigate the effects of different types of fire cues (i.e., heat and smoke water) and their combined effect on the seed germination of 12 species from the saline-alkaline grassland. The results demonstrated that heat shock significantly increased the germination percentage of Suaeda glauca and Kochia scoparia var. sieversiana seeds. Smoke water significantly increased the germination percentage of Setaria viridis and K. scoparia seeds. However, compared with single fire cue treatments, the combined treatment neither promoted nor inhibited seed germination significantly in most species. These results suggest that fire cues can be used as germination enhancement tools for vegetation restoration and biodiversity protection of the saline-alkaline grassland.
Collapse
|
18
|
Global patterns of potential future plant diversity hidden in soil seed banks. Nat Commun 2021; 12:7023. [PMID: 34857747 PMCID: PMC8639999 DOI: 10.1038/s41467-021-27379-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Soil seed banks represent a critical but hidden stock for potential future plant diversity on Earth. Here we compiled and analyzed a global dataset consisting of 15,698 records of species diversity and density for soil seed banks in natural plant communities worldwide to quantify their environmental determinants and global patterns. Random forest models showed that absolute latitude was an important predictor for diversity of soil seed banks. Further, climate and soil were the major determinants of seed bank diversity, while net primary productivity and soil characteristics were the main predictors of seed bank density. Moreover, global mapping revealed clear spatial patterns for soil seed banks worldwide; for instance, low densities may render currently species-rich low latitude biomes (such as tropical rain-forests) less resilient to major disturbances. Our assessment provides quantitative evidence of how environmental conditions shape the distribution of soil seed banks, which enables a more accurate prediction of the resilience and vulnerabilities of plant communities and biomes under global changes.
Collapse
|
19
|
Ma M, Collins SL, Ratajczak Z, Du G. Soil Seed Banks, Alternative Stable State Theory, and Ecosystem Resilience. Bioscience 2021. [DOI: 10.1093/biosci/biab011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In restoration ecology, the transition from desired to degraded state is based solely on the composition of the aboveground plant community, whereas belowground propagules are often neglected. We developed a conceptual framework integrating seed bank dynamics into alternative stable state theory, highlighting the important relationship between aboveground and belowground composition. This integration emphasizes the role of resilience in systems that appear to have shifted to an “undesirable” state. Belowground propagules, especially soil seed and bud banks, provide buffering capacity and may serve as valuable indicators of potential resistance to state transition based on the degree of similarity between belowground and aboveground vegetation composition. Ecosystem states may have multiple components that differ in their rate of change, as well as in their capacity to promote resilience. We recommend that the application of alternative stable state theory from a management perspective should incorporate components of both above- and belowground vegetation.
Collapse
Affiliation(s)
- Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zak Ratajczak
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Guozhen Du
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|