1
|
Luo J, Duan H, Xu Y, Shen M, Zhang Y, Xiao Q, Ni G, Wang K, Xin Y, Qi T, Feng L, Qiu Y, Jeppesen E, Woolway RI. Global trends and regime state shifts of lacustrine aquatic vegetation. Innovation (N Y) 2025; 6:100784. [PMID: 40098676 PMCID: PMC11910881 DOI: 10.1016/j.xinn.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/30/2024] [Indexed: 03/19/2025] Open
Abstract
Aquatic vegetation (AV) is vital for maintaining the health of lake ecosystems, with submerged aquatic vegetation (SAV) and floating/emergent aquatic vegetation (FEAV) representing clear and shaded states, respectively. However, global SAV and FEAV dynamics are poorly understood due to data scarcity. To address this gap, we developed an innovative AV mapping algorithm and workflow using satellite imagery (1.4 million Landsat images) from 1989 to 2021 and created a global database of AV across 5,587 shallow lakes. Our findings suggest that AV covers 108,186 km2 on average globally, accounting for 28.9% (FEAV, 15.8%; SAV, 13.1%) of the total lake area. Over two decades, we observed a notable transition: SAV decreased by 30.4%, while FEAV increased by 15.6%, leading to a substantial net loss of AV. This global trend indicates a shift from clear to shaded conditions, increasingly progressing toward turbid states dominated by phytoplankton. We found that human-induced eutrophication was the primary driver of change until the early 2010s, after which global warming and rising lake temperatures became the dominant drivers. These trends serve as a warning sign of deteriorating lake health worldwide. With future climate warming and intensified eutrophication, these ongoing trends pose a significant risk of disrupting lake ecosystems.
Collapse
Affiliation(s)
- Juhua Luo
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Hongtao Duan
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Ying Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Ming Shen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yunlin Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Qitao Xiao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guigao Ni
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yihao Xin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Tianci Qi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinguo Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Erik Jeppesen
- Limnology Laboratory, Department of Biology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Ecoscience and Center for Water Technology (WATEC), Aarhus University, 8000 Aarhus, Denmark
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | | |
Collapse
|
2
|
Mi C, Rinke K, Shatwell T. Optimizing selective withdrawal strategies to mitigate hypoxia under water-level reduction in Germany's largest drinking water reservoir. J Environ Sci (China) 2024; 146:127-139. [PMID: 38969441 DOI: 10.1016/j.jes.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2024]
Abstract
Water-level reduction frequently occurs in deep reservoirs, but its effect on dissolved oxygen concentration is not well understood. In this study we used a well-established water quality model to illustrate effects of water level dynamics on oxygen concentration in Rappbode Reservoir, Germany. We then systematically elucidated the potential of selective withdrawal to control hypoxia under changing water levels. Our results documented a gradual decrease of hypolimnetic oxygen concentration under decreasing water level, and hypoxia occurred when the initial level was lower than 410 m a.s.l (71 m relative to the reservoir bottom). We also suggested that changes of hypoxic region, under increasing hypolimnetic withdrawal discharge, followed a unimodal trajectory with the maximum hypoxic area projected under the discharge between 3 m3/sec and 4 m3/sec. Besides, our results illustrated the extent of hypoxia was most effectively inhibited if the withdrawal strategy was applied at the end of stratification with the outlet elevation at the deepest part of the reservoir. Moreover, hypoxia can be totally avoided under a hybrid elevation withdrawal strategy using surface withdrawal during early and mid stratification, and deep withdrawal at the end of stratification. We further confirmed the decisive role of thermal structure in the formation of hypoxia under water-level reduction and withdrawal strategies. We believe the conclusions from this study can be applied to many deep waters in the temperate zone, and the results should guide stakeholders to mitigate negative impacts of hypoxia on aquatic ecosystems.
Collapse
Affiliation(s)
- Chenxi Mi
- Helmholtz Centre for Environmental Research, Department of Lake Research, Magdeburg 39114, Germany; College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Karsten Rinke
- Helmholtz Centre for Environmental Research, Department of Lake Research, Magdeburg 39114, Germany
| | - Tom Shatwell
- Helmholtz Centre for Environmental Research, Department of Lake Research, Magdeburg 39114, Germany
| |
Collapse
|
3
|
Liu C, Liu Y, Bai G, Li Q, Zhou Q, Liu L, Kong L, Xia S, Wu Z, Quintana M, Li T, Zhang Y. Silicate-based mineral materials promote submerged plant growth: Insights from plant physiology and microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175992. [PMID: 39241876 DOI: 10.1016/j.scitotenv.2024.175992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Restoring submerged plants naturally has been a significant challenge in water ecology restoration programs. Some silicate-based mineral materials have shown promise in improving the substrate properties for plant growth. While it is well-established that silicate mineral materials enhance submerged plant growth by improving salt release and reducing salt stress, the influence of rhizosphere microorganisms on phytohormone synthesis and key enzyme activities has been underestimated. This study focused on two typical silicate mineral materials, bentonite and maifanite, to investigate their effects on Myriophyllum oguraense from both plant physiology and microbiome perspectives. The results demonstrated that both bentonite and maifanite regulated the synthesis of phytohormones such as gibberellin (GA) and methyl salicylate (MESA), leading to inhibition of cellular senescence and promotion of cell division. Moreover, these silicate mineral materials enhanced the activity of antioxidant enzymes, thereby reducing intracellular reactive oxygen species levels. They also optimized the structure of rhizosphere microbial communities, increasing the proportion of functional microorganisms like Nitrospirota and Sva0485, which indirectly influenced plant metabolism. Analysis of sediment physicochemical properties revealed increased rare earth elements, macronutrients, and oxygen content in pore water in the presence of silicate materials, creating favorable conditions for root growth. Overall, these findings shed light on the multifaceted mechanisms by which natural silicate mineral materials promote the growth of aquatic plants, offering a promising solution for restoring aquatic vegetation in eutrophic lake sediments.
Collapse
Affiliation(s)
- Changzi Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunli Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Tao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Jia D, Wei S, Wang S. Meta-analysis revealed the factors affecting the functions of ecological floating bed in removing nitrogen and phosphorus from eutrophic water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59712-59726. [PMID: 39367218 DOI: 10.1007/s11356-024-35241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Ecological floating bed (EFB) has been widely used to remove nitrogen and phosphorus from eutrophic water. However, its effects on nitrogen and phosphorus removal are different in various studies. Presently it has not been systematically clear what factors produce effects on EFB removing nitrogen and phosphorus from eutrophic water. In this study, we performed a meta-analysis of 169 articles to discuss the effects of EFB characteristics and experimental conditions on EFB removing nitrogen and phosphorus. Results showed that EFB generally decreased nitrogen and phosphorus concentrations in eutrophic water regardless of EFB characteristics and experimental conditions. EFB showed better effects on simultaneously removing TN, NH4+-N, and TP when it had one of the characteristics: constructed by monocots, 2-3 plant species, an area of 1.1-3.0 m2, and the coverage of 21%-40%. However, NO3--N removal by EFB was complicated due to the effects of nitrification and denitrification. Moreover, EFB plant density also showed different effects on nitrogen and phosphorus removal. Experimental conditions produced evident effects on EFB removing nitrogen and phosphorus, and it showed better effects under one of the conditions: water temperature of 16-25℃, experimental duration of 31-60 days, long hydraulic retention time, and aeration. This study indicates that EFB can significantly remove nitrogen and phosphorus from eutrophic water, and it is an effective technology to control water eutrophication, but the effects of EFB characteristics and environmental conditions on EFB function should be considered in application.
Collapse
Affiliation(s)
- Deyi Jia
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuainan Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Yuan G, Levi EE, Davidson TA, Lauridsen TL, Søndergaard M, Yang Z, Wu A, Cao T, Li Y, Fu H, Jeppesen E. Warming alters the network of physiological traits and their contribution to plant abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173573. [PMID: 38823703 DOI: 10.1016/j.scitotenv.2024.173573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Eti E Levi
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Thomas A Davidson
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Torben L Lauridsen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Martin Søndergaard
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Zhenzhi Yang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Te Cao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 60800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Lin Y, Cheng C, Dai Y, Li W, Chen J, Chen M, Xie P, Gao Q, Fan X, Deng X. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173024. [PMID: 38719048 DOI: 10.1016/j.scitotenv.2024.173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. β-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on β-cyclocitral levels in water. Here, we conducted a study on the β-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), β-cyclocitral in the water (Wcyc), β-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, β-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of β-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit β-cyclocitral, the release of β-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of β-cyclocitral.
Collapse
Affiliation(s)
- Yu Lin
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yutai Dai
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Weijie Li
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiping Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environment, Tibet University, Lhasa 850012, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mo Chen
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
7
|
Chen S, Jiang L, Ma S, Wu Y, Ye Q, Chang Y, Ye Y, Chen K. Response of a submerged macrophyte (Vallisneria natans) to water depth gradients and sediment nutrient concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169154. [PMID: 38065501 DOI: 10.1016/j.scitotenv.2023.169154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Submerged plants constitute a vital component of shallow lake ecosystems, where water depth and sediment nitrogen‑phosphorus content are two key factors influencing their growth. This study focuses on Vallisneria natans and investigates the morphological and physiological changes of V. natans under the interaction of three water depth gradients and two different sediment nutrient levels. It explores the mechanisms through which varying sediment nutrient conditions under different water depths affect the growth of V. natans. The results indicate that both independent and interactive effects of water depth and sediment nutrient status significantly impact the morphology, antioxidant enzyme activity, and photosynthetic pigment content of V. natans, with water depth having a greater influence. To adapt to increased water depth-induced light stress, V. natans responds morphologically by increasing leaf length, leaf width, and decreasing maximum root length. Physiologically, it enhances its antioxidant regulation capacity and photosynthetic efficiency by increasing antioxidant enzyme activity, root vitality, and photosynthetic pigment content to counter weak light stress. However, these adaptations are insufficient to cope with excessively deep waters (200 cm). Sediment nutrient levels primarily control the growth of V. natans by affecting its root system. When sediment nitrogen and phosphorus content is lower, V. natans exhibits greater total root volume and surface area to enhance nutrient absorption efficiency. Water depth not only directly influences the growth of submerged plants but may also impact the migration and transformation of phosphorus in sediments, further exacerbating its effects on the growth of these plants, thus accelerating the regime shift of shallow lakes. Therefore, this study reveals V. natans' response strategies to varying water depths and sediment nutrient levels, determining suitable water levels and sediment nutrient conditions for its growth. These research findings provide a scientific basis for water level management and ecological restoration of submerged aquatic plants in shallow lakes.
Collapse
Affiliation(s)
- Siwen Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhan Ma
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Yue Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ye
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiheng Chang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ye Ye
- Sino-Japan Friendship Centre for Environmental Protection, Beijing 100029, China
| | - Kaining Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Cui Z, Huang Q, Sun J, Wan B, Zhang S, Shen J, Wu J, Li J, Yang C. The Secchi disk depth to water depth ratio affects morphological traits of submerged macrophytes: Development patterns and ecological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167882. [PMID: 37858823 DOI: 10.1016/j.scitotenv.2023.167882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Water clarity, represented by Secchi disk depth (SD), and water depth (WD) alter bottom light availability, and SD/WD is critical for morphological trait development of submerged macrophytes in freshwater ecosystems. However, the underlying mechanism and trait development patterns of submerged macrophytes to a decreasing SD/WD gradient remains largely unknown. Here, we performed a 42-day mesocosm experiment with the erect type submerged macrophyte, Hydrilla verticillata, along a decreasing SD/WD gradient to study the relationship of morphological trait development with light availability, to determine the critical SD/WD at which changes in the development of morphological traits occur, and to gain insights into the potential mechanism involved. The results indicate that most of the morphological traits, including biomass, relative growth rate, number of clonal propagules, and the root/shoot ratio decreased with a decrease in the SD/WD ratio. Conversely, plant height and shoot increment rate increased with a decrease in the SD/WD ratio. Principal component analysis indicated that the SD/WD ratio is critical in determining the growth, stability, and reproduction of H. verticillata, and that only SD/WD ratios ≥ 0.45 and ≥0.55 ensured growth ability and stability, respectively. Possible development patterns of functional traits in relation to SD/WD reduction were investigated, and patterns of key traits of H. verticillata were distinct from those of Vallisneria natans, indicating different strategies for the adaptation to conditions of decreasing light availability. These results highlight the role of adaptive changes in morphology, resource allocation and life strategies for the maintenance of growth, stability and resilience of submerged macrophytes in low light conditions. Our present study provides a basis from which we could enhance our understanding of the critical transition mechanisms involved in morphological trait development in response to bottom light availability.
Collapse
Affiliation(s)
- Zhijie Cui
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiajia Sun
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Bin Wan
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Shaohua Zhang
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianwei Shen
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jingwen Wu
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changtao Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China.
| |
Collapse
|
9
|
Lengyel E, Stenger-Kovács C, Boros G, Al-Imari TJK, Novák Z, Bernát G. Anticipated impacts of climate change on the structure and function of phytobenthos in freshwater lakes. ENVIRONMENTAL RESEARCH 2023; 238:117283. [PMID: 37783333 DOI: 10.1016/j.envres.2023.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Climate change threatens surface waters worldwide, especially shallow lakes where one of the expected consequences is a sharp increase in their water temperatures. Phytobenthos is an essential, but still less studied component of aquatic ecosystems, and it would be important to learn more about how global warming will affect this community in shallow lakes. In this research, the effects of different climate change scenarios (SSP2-4.5 and SSP5-8.5, as intermediate and high emission scenarios) on the structure and function of the entire phytobenthos community using species- and trait-based approaches were experimentally investigated in an outdoor mesocosm system. Our results show that the forecasted 3 °C increase in temperature will already exert significant impacts on the benthic algal community by (1) altering its species and (2) trait composition (smaller cell size, lower abundance of colonial and higher of filamentous forms); (3) decreasing Shannon diversity; and (4) enhancing the variability of the community. Higher increase in the temperature (+5 °C) will imply more drastic alterations in freshwater phytobenthos by (1) inducing very high variability in species composition and compositional changes even in phylum level (towards higher abundance of Cyanobacteria and Chlorophyta at the expense of Bacillariophyta); (2) continuing shift in trait composition (benefits for smaller cell volume, filamentous life-forms, non-motile and weakly attached taxa); (3) further reducing the functional diversity; (4) increasing biofilm thickness (1.4 μm/°C) and (5) decreasing maximum quantum yield of photosystem II. In conclusion, already the intermediate emission scenario will predictably induce high risk in biodiversity issues, the high emission scenario will imply drastic impacts on the benthic algae endangering even the function of the ecosystem.
Collapse
Affiliation(s)
- Edina Lengyel
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary; HUN-REN-PE Limnoecology Research Group, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Csilla Stenger-Kovács
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary; HUN-REN-PE Limnoecology Research Group, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Gergely Boros
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| | - Tiba Jassam Kaison Al-Imari
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Zoltán Novák
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| | - Gábor Bernát
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| |
Collapse
|
10
|
Botrel M, Maranger R. Global historical trends and drivers of submerged aquatic vegetation quantities in lakes. GLOBAL CHANGE BIOLOGY 2023; 29:2493-2509. [PMID: 36786043 DOI: 10.1111/gcb.16619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/21/2022] [Accepted: 01/15/2023] [Indexed: 05/31/2023]
Abstract
Submerged aquatic vegetation (SAV) in lake littoral zones is an inland water wetland type that provides numerous essential ecosystem services, such as supplying food and habitat for fauna, regulating nutrient fluxes, stabilizing sediments, and maintaining a clear water state. However, little is known on how inland SAV quantities are changing globally in response to human activities, where loss threatens the provisioning of these ecosystem services. In this study, we generate a comprehensive global synthesis of trends in SAV quantities using time series (>10 years) in lakes and identify their main drivers. We compiled trends across methods and metrics, integrating both observational and paleolimnological approaches as well as diverse measures of SAV quantities, including areal extent, density, or abundance classes. The compilation revealed that knowledge on SAV is mostly derived from temperate regions, with major gaps in tropical, boreal, and mountainous lake-rich regions. Similar to other wetland types, we found that 41% of SAV times series are largely decreasing mostly due to land use change and resulting eutrophication. SAV is, however, increasing in 28% of cases, primarily since the 1980s. We show that trends and drivers of SAV quantities vary regionally, with increases in Europe explained mainly by management, decreases in Asia due to eutrophication and land use change, and variable trends in North America consistent with invasive species arrival. By providing a quantitative portrait of trends in SAV quantities worldwide, we identify knowledge gaps and future SAV research priorities. By considering the drivers of different trends, we also offer insight to future lake management related to climate, positive restoration actions, and change in community structure on SAV quantities.
Collapse
Affiliation(s)
- Morgan Botrel
- Département de sciences biologiques, Complexe des sciences, Université de Montréal, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Montreal, Quebec, Canada
| | - Roxane Maranger
- Département de sciences biologiques, Complexe des sciences, Université de Montréal, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Montreal, Quebec, Canada
| |
Collapse
|
11
|
Huang S, Wang Z, Song Q, Hong J, Jin T, Huang H, Zheng Z. Potential mechanism of humic acid attenuating toxicity of Pb 2+ and Cd 2+ in Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160974. [PMID: 36563757 DOI: 10.1016/j.scitotenv.2022.160974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Humic substances are widely present in aquatic environments. Due to the high affinity of humic substances for metals, the interactions have been particularly studied. To assess the effect of humic acid (HA) on submerged macrophytes and biofilms exposed to heavy metal stress, Vallisneria natans was exposed to solutions containing different concentrations of HA (0.5-2.0 mg·L-1), Pb2+ (1 mg·L-1) and Cd2+ (1 mg·L-1). Results suggested that HA positively affected the plant growth and alleviated toxicity by complexing with metals. HA increased the accumulation of metals in plant tissues and effectively induced antioxidant responses and protein synthesis. It was also noted that the exposure of HA and metals promoted the abundance and altered the structure of microbial communities in biofilms. Moreover, the positive effects of HA were considered to be related to the expression of related genes resulting from altered DNA methylation levels, which were mainly reflected in the altered type of demethylation. These results demonstrate that HA has a protective effect against heavy metal stress in Vallisneria natans by inducing effective defense mechanisms, altering biofilms and DNA methylation patterns in aquatic ecosystems.
Collapse
Affiliation(s)
- Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Qixuan Song
- School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| | - Jun Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tianyu Jin
- School of Public Administration, Zhejiang University of Finance &Economics, Hangzhou 310018, China
| | - Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
12
|
Yang C, Shen X, Shi X, Cui Z, Nan J, Lu H, Li J, Huang Q. Impact of submerged macrophytes on growth and 2-MIB release risk of Pseudanabaena sp.: From field monitoringa to cultural experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130052. [PMID: 36182878 DOI: 10.1016/j.jhazmat.2022.130052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The off-flavor compound 2-methylisoborneol (2-MIB) is generally associated with the proliferation and metabolism of filamentous cyanobacteria in shallow freshwater ecosystems. Here field monitoring in East Taihu Lake from July to October 2021, along with cultural experiments, was conducted to determine the impact of submerged macrophytes on the growth and 2-MIB production of filamentous cyanobacteria. Pseudanabaena sp. was identified as the 2-MIB producer with the highest detection rate (100%) and correlation coefficient (R=0.68, p < 0.001). The 2-MIB concentration and algal growth in the macrophyte-dominated zones were markedly decreased compared with those in the phytoplankton-dominated zone. Five submerged macrophytes classified into flat-leaf type (Vallisneria natans and Potamogeton crispus) and thin-leaf type (Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum) exhibited strong inhibition effects against Pseudanabaena sp.: Overall inhibition efficiencies (IEs) of 92.7% ± 6.8% and 92.7% ± 8.4% for cell growth and 2-MIB production were achieved, respectively. Moreover, the thin-leaf macrophytes exhibited significant higher IEs for cell growth (94.0% vs. 84.7%) and 2-MIB production (99.4% vs. 82.6%) than the flat-leaf macrophytes and can be selected as pioneer species in controlling odor problems. Nutrient uptake, increasing water clarity, shading effects, and allelopathic effects of the submerged macrophytes were found to be the dominant inhibition mechanisms.
Collapse
Affiliation(s)
- Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China; Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Xinyi Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Zhijie Cui
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Zhang C, Pei H, Lu C, Liu C, Wang W, Zhang X, Liu P, Lei G. Indirect herbivore biomanipulation may halt regime shift from clear to turbid after macrophyte restoration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120242. [PMID: 36162564 DOI: 10.1016/j.envpol.2022.120242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication transforms clear water into turbid water in shallow lakes. Current restoration techniques focus on re-establishing the clear-water state rather than on its maintenance. We investigated the response of submerged macrophytes to temporary grass carp (Ctenopharyngodon idella) and scraping snail (Bellamya aeruginosa) introductions. We also explored the impacts of herbivores on underwater light conditions to identify their long- and short-term potential to halt regime shift from clear to turbid after clear-water state reestablishment. Herbivores reduced both the biomass of submerged macrophytes and accumulated nutrients in the tissue of submerged macrophytes. This potentially avoided the pulse of endogenous nutrient release which would have exceeded the threshold required for the regime shift from clear to turbid. However, herbivores had a non-significant impact on submerged macrophyte-reduced light attenuation coefficient, which has a positive linear relationship with water chlorophyll a. Further, grass carp and snails enhanced the inhibition ratio of submerged macrophytes to phytoplankton by 3.96 and 2.13 times, respectively. Our study provides novel findings on the potential of herbivore introduction as an indirect biomanipulation tool for halting the regime shift of shallow lakes from clear to turbid after the restoration of submerged macrophytes.
Collapse
Affiliation(s)
- Chengxiang Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cai Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Cunqi Liu
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Wei Wang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaobo Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peizhong Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guangchun Lei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
15
|
Yıldız D, Yalçın G, Jovanović B, Boukal DS, Vebrová L, Riha D, Stanković J, Savić-Zdraković D, Metin M, Akyürek YN, Balkanlı D, Filiz N, Milošević D, Feuchtmayr H, Richardson JA, Beklioğlu M. Effects of a microplastic mixture differ across trophic levels and taxa in a freshwater food web: In situ mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155407. [PMID: 35469887 DOI: 10.1016/j.scitotenv.2022.155407] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/16/2022] [Indexed: 05/22/2023]
Abstract
The ubiquitous presence of microplastics (MP) in aquatic ecosystems can affect organisms and communities in multiple ways. While MP research on aquatic organisms has primarily focused on marine ecosystems and laboratory experiments, the community-level effects of MP in freshwaters, especially in lakes, are poorly understood. To examine the impact of MP on freshwater lake ecosystems, we conducted the first in situ community-level mesocosm experiment testing the effects of MP on a model food web with zooplankton as main herbivores, odonate larvae as predators, and chironomid larvae as detritivores for seven weeks. The mesocosms were exposed to a mixture of the most abundant MP polymers found in freshwaters, added at two different concentrations in a single pulse to the water surface, water column and sediment. Water column MP concentrations declined sharply during the first two weeks of the experiment. Contrary to expectations, MP ingestion by zooplankton was low and limited mainly to large-bodied Daphnia, causing a decrease in biomass. Biomass of the other zooplankton taxa did not decrease. Presence of MP in the faecal pellets of odonate larvae that fed on zooplankton was indicative of a trophic transfer of MP. The results demonstrated that MP ingestion varies predictably with MP size, as well as body size and feeding preference of the organism, which can be used to predict the rates of transfer and further effects of MP on freshwater food webs. For chironomids, MP had only a low, short-term impact on emergence patterns while their wing morphology was significantly changed. Overall, the impact of MP exposure on the experimental food web and cross-ecosystem biomass transfer was lower than expected, but the experiment provided the first in situ observation of MP transfer to terrestrial ecosystems by emerging chironomids.
Collapse
Affiliation(s)
- Dilvin Yıldız
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey; Earth System Science, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.
| | - Gülce Yalçın
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey; Ecosystem Research and Implementation Centre, Middle East Technical University, Ankara, Turkey.
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Lucie Vebrová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Derya Riha
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jelena Stanković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Dimitrija Savić-Zdraković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Melisa Metin
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey
| | - Yasmin Naz Akyürek
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey
| | - Deniz Balkanlı
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey
| | - Nur Filiz
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey; Ecosystem Research and Implementation Centre, Middle East Technical University, Ankara, Turkey
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Heidrun Feuchtmayr
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Jessica A Richardson
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Meryem Beklioğlu
- Department of Biological Sciences, Limnology Laboratory, Middle East Technical University, Ankara, Turkey; Ecosystem Research and Implementation Centre, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
16
|
Yang C, Shi X, Nan J, Huang Q, Shen X, Li J. Morphological responses of the submerged macrophyte Vallisneria natans along an underwater light gradient: A mesocosm experiment reveals the importance of the Secchi depth to water depth ratio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152199. [PMID: 34890676 DOI: 10.1016/j.scitotenv.2021.152199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Bottom light availability (BLA), represented by the ratio of the Secchi disk depth to water depth (SD/WD), plays a fundamental role in the growth and reproduction of submerged macrophytes. However, studies thus far have mainly explored the interactions between macrophyte responses and BLA through field investigations; this means that knowledge of such responses to various underwater light conditions in mesocosm experiments is rudimentary at best. We hypothesized that the growth and clonal reproduction of submerged macrophytes decrease with decreasing BLA and collapse beyond a critical threshold. Here we performed a 42-day outdoor mesocosm experiment with a species of perennial submerged macrophyte, Vallisneria natans, along a decreasing SD/WD gradient. Over this gradient, the primary morphological traits (plant height, root length, plant biomass), relative growth rate, and shoot increment rate of V. natans exhibited a significant trend of initial increase followed by a decrease. The photoinhibition occurred at high and low-light stress, indicating that an intermediate SD/WD (0.55-0.65) provides optimal growth conditions. The number of ramets, ramet biomass, ramet/total biomass ratio, and root/shoot ratio all decreased with decreasing SD/WD ratio, suggesting that V. natans allocates more resources for clonal reproduction and population stability rather than increased shoot biomass at higher BLA conditions. The results of principal component analysis and threshold detection indicated that the growth traits of V. natans had a higher SD/WD tipping point value (0.55 vs. 0.50) than the reproductive capacity and stability, indicating that only values of SD/WD ≥ 0.55 ensured the growth and the vegetative reproduction of V. natans. Additionally, an inverted U-shaped relationship between growth traits and a linear relationship between reproduction and stability reflect the resource allocation strategies and resilience of V. natans to decreasing underwater light conditions.
Collapse
Affiliation(s)
- Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Xinyi Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai 200092, China.
| | - Xiaobing Shen
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Sun L, Wang J, Wu Y, Gao T, Liu C. Community Structure and Function of Epiphytic Bacteria Associated With Myriophyllum spicatum in Baiyangdian Lake, China. Front Microbiol 2021; 12:705509. [PMID: 34603230 PMCID: PMC8484960 DOI: 10.3389/fmicb.2021.705509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Epiphytic bacteria on the surfaces of submerged macrophytes play important roles in the growth of the host plant, nutrient cycling, and the conversion of pollutants in aquatic systems. A knowledge of the epiphytic bacterial community structure could help us to understand these roles. In this study, the abundance, diversity, and functions of the epiphytic bacterial community of Myriophyllum spicatum collected from Baiyangdian Lake in June, August, and October 2019 were studied using quantitative PCR (qPCR), high-throughput sequencing, and the prediction of functions. An analysis using qPCR showed that the epiphytic bacteria were the most abundant in October and the least abundant in August. High-throughput sequencing revealed that Proteobacteria, Gammaproteobacteria, and Aeromonas were the dominant phylum, class, and genus in all the samples. The common analyses of operational taxonomic units (OTUs), NMDS, and LDA showed that the epiphytic bacterial communities were clustered together based on the seasons. The results of a canonical correlation analysis (CCA) showed that the key water quality index that affected the changes of epiphytic bacterial community of M. spicatum was the total phosphorus (TP). The changes in abundance of Gammaproteobacteria negatively correlated with the TP. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the epiphytic bacterial community were chemoheterotrophy, nitrate reduction, and fermentation. These results suggest that the epiphytic bacterial community of M. spicatum from Baiyangdian Lake varies substantially with the seasons and environmental conditions.
Collapse
Affiliation(s)
- Lei Sun
- School of Life Sciences, Hebei University, Baoding, China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China.,Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, China
| | - Jiashuo Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Yangyang Wu
- School of Life Sciences, Hebei University, Baoding, China
| | - Tianyu Gao
- School of Life Sciences, Hebei University, Baoding, China
| | - Cunqi Liu
- School of Life Sciences, Hebei University, Baoding, China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
18
|
Gao Y, Wang L, Hu X, Zhang Z, Liu B, Zhang X, Wang G. Rapid adaptive responses of rosette-type macrophyte Vallisneria natans juveniles to varying water depths: The role of leaf trait plasticity. Ecol Evol 2021; 11:14268-14281. [PMID: 34707853 PMCID: PMC8525151 DOI: 10.1002/ece3.8142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
Rosette-type submerged macrophytes are widely distributed across a range of water depths in shallow lakes and play a key role in maintaining ecosystem structures and functions. However, little is known about the rapid adaptive responses of such macrophytes to variations in water depth, especially at the juvenile stage. Here, we conducted a short-term in situ mesocosm experiment, in which the juveniles of Vallisneria natans were exposed to a water depth gradient ranging from 20 to 360 cm. Twenty-two leaf-related traits were examined after 4 weeks of growth in a shallow lake. Most (18) traits of V. natans generally showed high plasticity in relation to water depth. Specifically, juveniles allocated more biomass to leaves and had higher specific leaf area, leaf length-to-width ratio, chlorophyll content, and carotenoids content in deep waters, displaying trait syndrome associated with high resource acquisition. In contrast, V. natans juveniles in shallow waters had higher leaf dry matter content, leaf soluble carbohydrate content, carotenoids per unit chlorophyll, and peroxidase activity, pertaining to resource conservation. Notably, underwater light intensity was found to be the key factor explaining the trait plasticity along the water depth gradient, and 1.30 mol photons m-2 d-1 (at 270 cm) could be the optimal irradiance level based on the total biomass of V. natans juveniles. The present study highlights the significance of leaf trait plasticity for rosette-type macrophytes in response to variations in water depth and sheds new light on the differences between trade-offs in deep- and shallow-water areas.
Collapse
Affiliation(s)
- Yuxuan Gao
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Lei Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Xiaoqing Hu
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Zhuolun Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Baogui Liu
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Guoxiang Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| |
Collapse
|