1
|
Lötters S, Böning P, Bailon S, Castañeda JDB, Boistel R, Catenazzi A, Chaparro JC, Chávez G, Chujutalli A, Coen L, Coloma LA, Crawford AJ, Culebras J, Martínez JCC, Daza JM, Riva IDELA, Ellwein DJ, Ernst R, Flechas SV, Fouquet A, Guayasamin JM, Heine C, Jorge RF, Jung A, Jungfer KH, Kaffenberger N, Krehenwinkel H, Marca ELA, Lampo M, Rangel GFM, Orsen L, Paluh DJ, Gonzalez JLP, Perrin J, Riera ABQ, Reyes-Puig JP, Ross BRR, Rössler DC, Solano LAR, Salazar-Valenzuela D, Vazquez JCS, Sowinski M, Terán-Valdez A, Tovar-Ortiz A, Veith M, Venegas P, May RVON, Weitkamp T, Plewnia A. A roadmap for harlequin frog systematics, with a partial revision of Amazonian species related to Atelopus spumarius. Zootaxa 2025; 5571:1-76. [PMID: 40173732 DOI: 10.11646/zootaxa.5571.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Indexed: 04/04/2025]
Abstract
Harlequin frogs, genus Atelopus, are a species-rich group of bufonid anurans from the Neotropics with more than 100 species. For nearly four decades now, this group has suffered from massive population declines. Almost all species are threatened with extinction, and many populations and several species are considered extinct or possibly extinct. This results in a limited sampling available for studies on harlequin frog systematics, especially in terms of molecular genetic information. However, efficient conservation of harlequin frogs requires an improved taxonomy. This is further complicated through the circumstance that many Atelopus species are relatively poor in external morphological characters combined with a high level of intra-specific character variation (e.g. coloration and body size). At the same time, cryptic diversity exists with well differentiated species (supported by osteology and molecular genetics) almost indistinguishable by external morphology. We compiled the largest dataset to date for mitochondrial (12S, 16S, cyt b) and nuclear (POMC, RAG1) markers and present a phylogeny (likelihood and Bayesian inference methods) including 152 samples from 104 populations scattered over the entire geographic range of the genus. Four allo- or parapatric main clades are distinguished: I. Sierra Nevada; II. Venezuelan-Andean; III. Andean-Chocó-Central American (with the ignescens and the varius-longirostris clades); and IV Amazonian (containing the tricolor and the flavescens-spumarius clades). The phylogenetic relationships within these clades remain to be resolved. Taxonomic implications included both splitting and lumping, but taxonomic action is here only taken for populations related to A. spumarius from western Amazonia. Besides redescriptions of A. spumarius sensu stricto and A. colomai, we describe two new species based on morphology, skull osteology and bioacoustics. Additional yet understudied populations from Amazonia may be allocated to these species or may represent additional undescribed taxa.
Collapse
|
2
|
Bubenikova J, Plasil M, Burger PA, Horin P. Four new genome sequences of the Pallas's cat ( Otocolobus manul): an insight into the patterns of within-species variability. Front Genet 2024; 15:1463774. [PMID: 39720181 PMCID: PMC11667119 DOI: 10.3389/fgene.2024.1463774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Manul (Otocolobus manul) is the only representative of the genus Otocolobus, which makes up the Leopard Cat lineage along with the genus Prionailurus. Their habitat is characterized by harsh environmental conditions. Although their populations are probably more stable than previously thought, it is still the case that their population size is declining. Conservation programs exist to protect manuls, but those based on captive breeding are often unsuccessful due to their increased susceptibility to diseases. The manul is therefore a suitable model species for evolutionary and diversity studies as well as for studying mechanisms of adaptation to harsh environment and mechanisms of susceptibility to diseases. Recently, the genome of the O. manul based on nanopore long-range sequencing has been published. Aiming to better understand inter- and intraspecific variation of the species, we obtained information on genome sequences of four other manuls, based on whole genome resequencing via the Illumina platform. On average, we detected a total of 3,636,571 polymorphic variants. Information on different types of structural variants and on the extent of SNP homozygosity, not available from the reference genome, was retrieved. The average whole-genome heterozygosity was almost identical to that found in the O. manul reference genome. In this context, we performed a more detailed analysis of the candidate gene EPAS1 potentially related to adaptation to the hypoxic environment. This analysis revealed both inter- and intraspecific variation, confirmed the presence of a previously described non-synonymous substitution in exon 15 unique to manuls and identified three additional unique non-synonymous substitutions located in so far not analyzed EPAS1 exonic sequences. The analysis of lncRNA located in the intron 7 of EPAS1 revealed interspecific variability and monomorphic nature of the sequence among analyzed manuls. The data obtained will allow more detailed analyses of the manul genome, focusing on genes and pathways involved in their adaptation to the environment and in susceptibility to diseases. This information can be helpful for optimizing conservation programs for this understudied species.
Collapse
Affiliation(s)
- Jana Bubenikova
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
| | - Martin Plasil
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna (VETMEDUNI), Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
- Department of Animal Genetics, VETUNI Brno, Brno, Czechia
| |
Collapse
|
3
|
Wen G, Xie H, Luo S, Yang C, Tang X, Hu Y, Du W. Outbreeding management offers the promise of genetic rescue for an endangered lizard. Curr Zool 2024; 70:721-727. [PMID: 39678817 PMCID: PMC11634679 DOI: 10.1093/cz/zoae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 12/17/2024] Open
Abstract
Inbreeding and loss of genetic diversity increase the extinction risk of small isolated populations. Genetic rescue by augmenting gene flow is a powerful means for the restoration of lost genetic variation. In this study, we used multigenerational pedigrees and neutral genetic markers to assess the consequences of outbreeding management in the Chinese and Vietnamese populations of the endangered crocodile lizard, Shinisaurus crocodilurus. Compared with the purebred Chinese population, the outbreeding population exhibited greater molecular genetic variation and a 3-fold larger population size. Moreover, the first-generation hybrids had a longer lifespan than purebreds, suggesting that outbreeding depression did not occur, but the long-term fitness effect of outbreeding needs to be further evaluated. Our study provides valuable insights into the potential for genetic rescue in the endangered crocodile lizard, emphasizing the importance of an evidence-based genetic management approach to address the risks of inbreeding and outbreeding depression in threatened populations.
Collapse
Affiliation(s)
- Guannan Wen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1# Beichen West Road, Chaoyang District, Beijing, 100101, P.R. China
| | - Hongxin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1# Beichen West Road, Chaoyang District, Beijing, 100101, P.R. China
- University of Chinese Academy of Sciences, 19A# Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Shuyi Luo
- Daguishan National Nature Reserve for Crocodile Lizards, 80# Jianshe West Road, Babu District, Hezhou, 542800, Guangxi, P.R. China
| | - Chunsheng Yang
- Daguishan National Nature Reserve for Crocodile Lizards, 80# Jianshe West Road, Babu District, Hezhou, 542800, Guangxi, P.R. China
| | - Xianwu Tang
- Daguishan National Nature Reserve for Crocodile Lizards, 80# Jianshe West Road, Babu District, Hezhou, 542800, Guangxi, P.R. China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1# Beichen West Road, Chaoyang District, Beijing, 100101, P.R. China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1# Beichen West Road, Chaoyang District, Beijing, 100101, P.R. China
| |
Collapse
|
4
|
Byrne AQ. What Can Frogs Teach Us about Resilience? Adaptive Renewal in Amphibian and Academic Ecosystems. Integr Comp Biol 2024; 64:795-806. [PMID: 38821517 DOI: 10.1093/icb/icae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Examples of resilience in nature give us hope amid a growing biodiversity crisis. While resilience has many definitions across disciplines, here I discuss resilience as the ability to continue to adapt and persist. Naturally, as biologists, we seek to uncover the underlying mechanisms that can help us explain the secrets of resilience across scales, from individuals to species to ecosystems and beyond. Perhaps we also ponder what the secrets to resilience are in our own lives, in our own research practices, and academic communities. In this paper, I highlight insights gained through studies of amphibian resilience following a global disease outbreak to uncover shared patterns and processes linked to resilience across amphibian communities. I also reflect on how classical resilience heuristics could be more broadly applied to these processes and to our own academic communities. Focusing on the amphibian systems that I have worked in-the Golden Frogs of Panama (Atelopus zeteki/varius) and the Mountain Yellow-Legged Frogs of California (Rana muscosa/sierrae)-I highlight shared and unique characteristics of resilience across scales and systems and discuss how these relate to adaptive renewal cycles. Reflecting on this work and previous resilience scholarship, I also offer my own thoughts about academia and consider what lessons we could take from mapping our own adaptive trajectories and addressing threats to our own community resilience.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Wilber MQ, DeMarchi JA, Briggs CJ, Streipert S. Rapid Evolution of Resistance and Tolerance Leads to Variable Host Recoveries following Disease-Induced Declines. Am Nat 2024; 203:535-550. [PMID: 38635360 DOI: 10.1086/729437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.
Collapse
|
6
|
Carvalho T, Belasen AM, Toledo LF, James TY. Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Curr Opin Microbiol 2024; 78:102435. [PMID: 38387210 DOI: 10.1016/j.mib.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anat M Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
7
|
Trumbo DR, Hardy BM, Crockett HJ, Muths E, Forester BR, Cheek RG, Zimmerman SJ, Corey-Rivas S, Bailey LL, Funk WC. Conservation genomics of an endangered montane amphibian reveals low population structure, low genomic diversity and selection pressure from disease. Mol Ecol 2023; 32:6777-6795. [PMID: 37864490 DOI: 10.1111/mec.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence. Genomic diversity (π = 0.00034-0.00040) and effective population sizes (Ne = 8.9-38.4) were low, likely due to post-Pleistocene founder effects and Bd-related population crashes over the last three decades. Population structure was also low, likely due to formerly high connectivity among a higher density of geographically proximate populations. Boreal toad gene flow was facilitated by low precipitation, cold minimum temperatures, less tree canopy, low heat load and less urbanization. We found >8X more putatively adaptive loci related to Bd intensity than to all other environmental factors combined, and evidence for genes under selection related to immune response, heart development and regulation and skin function. These data suggest boreal toads in habitats with Bd have experienced stronger selection pressure from disease than from other, broad-scale environmental variations. These findings can be used by managers to conserve and recover the species through actions including reintroduction and supplementation of populations that have declined due to Bd.
Collapse
Affiliation(s)
- D R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - B M Hardy
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - H J Crockett
- Colorado Parks and Wildlife, Fort Collins, Colorado, USA
| | - E Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - B R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - R G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - S J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - S Corey-Rivas
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - L L Bailey
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W C Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Pröhl H, Rodríguez A. Importance of Genetic-Fitness Correlations for the Conservation of Amphibians. Animals (Basel) 2023; 13:3564. [PMID: 38003181 PMCID: PMC10668650 DOI: 10.3390/ani13223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Endangered animals suffer from isolation of their habitats. Isolation leads to a reduction in population size as well as a decrease in genetic diversity and a concomitant increase in the risk of extinction. Amphibians are the most endangered vertebrate class. Besides habitat loss, fragmentation and isolation, amphibians are threatened by emerging diseases e.g., chytrid fungus or Ranavirus. By employing experiments, researchers investigate whether changes in genetic diversity within or among isolated populations affect amphibian fitness. While genetic diversity estimates are based on molecular markers, typically microsatellites, fitness is mostly measured as tadpole performance in rearing experiments often under varying environmental conditions. Tadpole performances (e.g., body mass, growth rate and survival) have been found to be negatively affected by low genetic diversity, as several studies have found a positive association between genetic diversity and these fitness traits. Moreover, infection with pathogens also seems to be more likely in individuals or populations with lower genetic diversity. Overall, these genetic-fitness correlations seem to be more pronounced or detectable in smaller, declining populations but not in larger populations. Genomic studies, which sample a larger fraction of the genome, are still scarce in the conservation genetic literature on amphibians. These are likely to increase in upcoming years and may reveal adaptive variants that protect against dangerous pathogens or environmental changes. Altogether, genetic-fitness correlation studies should be a priority in order to develop effective management plans for the genetic rescue of isolated, imperilled amphibian populations.
Collapse
Affiliation(s)
- Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany;
| | | |
Collapse
|
9
|
Nistelberger HM, Roycroft E, Macdonald AJ, McArthur S, White LC, Grady PGS, Pierson J, Sims C, Cowen S, Moseby K, Tuft K, Moritz C, Eldridge MDB, Byrne M, Ottewell K. Genetic mixing in conservation translocations increases diversity of a keystone threatened species, Bettongia lesueur. Mol Ecol 2023. [PMID: 37715549 DOI: 10.1111/mec.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices. Here, we used reduced representation sequencing (ddRADseq) data to report on the current genetic health of three remnant and seven translocated boodie (Bettongia lesueur) populations, now extinct on the Australian mainland. In addition, we used exon capture data from seven historical mainland specimens and a subset of contemporary samples to compare pre-decline and current diversity. Both data sets showed the significant impact of population founder source (whether multiple or single) on the genetic diversity of translocated populations. Populations founded by animals from multiple sources showed significantly higher genetic diversity than the natural remnant and single-source translocation populations, and we show that by mixing the most divergent populations, exon capture heterozygosity was restored to levels close to that observed in pre-decline mainland samples. Relatedness estimates were surprisingly low across all contemporary populations and there was limited evidence of inbreeding. Our results show that a strategy of genetic mixing has led to successful conservation outcomes for the species in terms of increasing genetic diversity and provides strong rationale for mixing as a management strategy.
Collapse
Affiliation(s)
- Heidi M Nistelberger
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Emily Roycroft
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna J Macdonald
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shelley McArthur
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Lauren C White
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Pierson
- Australian Wildlife Conservancy, Subiaco, Western Australia, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Moseby
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Craig Moritz
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mark D B Eldridge
- Terrestrial Vertebrates, Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
10
|
Gass J, Voyles J. When Defenses Fail: Atelopus zeteki Skin Secretions Increase Growth of the Pathogen Batrachochytrium dendrobatidis. Integr Comp Biol 2022; 62:1595-1605. [PMID: 35640912 PMCID: PMC9801971 DOI: 10.1093/icb/icac060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023] Open
Abstract
To combat the threat of emerging infectious diseases in wildlife, ecoimmunologists seek to understand the complex interactions among pathogens, their hosts, and their shared environments. The cutaneous fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of innumerable amphibian species, including the Panamanian golden frog (Atelopus zeteki). Given that Bd can evade or dampen the acquired immune responses of some amphibians, nonspecific immune defenses are thought to be especially important for amphibian defenses against Bd. In particular, skin secretions constitute a vital component of amphibian innate immunity against skin infections, but their role in protecting A. zeteki from Bd is unknown. We investigated the importance of this innate immune component by reducing the skin secretions from A. zeteki and evaluating their effectiveness against Bd in vitro and in vivo. Following exposure to Bd in a controlled inoculation experiment, we compared key disease characteristics (e.g., changes in body condition, prevalence, pathogen loads, and survival) among groups of frogs that had their skin secretions reduced and control frogs that maintained their skin secretions. Surprisingly, we found that the skin secretions collected from A. zeteki increased Bd growth in vitro. This finding was further supported by infection and survival patterns in the in vivo experiment where frogs with reduced skin secretions tended to have lower pathogen loads and survive longer compared to frogs that maintained their secretions. These results suggest that the skin secretions of A. zeteki are not only ineffective at inhibiting Bd but may enhance Bd growth, possibly leading to greater severity of disease and higher mortality in this highly vulnerable species. These results differ from those of previous studies in other amphibian host species that suggest that skin secretions are a key defense in protecting amphibians from developing severe chytridiomycosis. Therefore, we suggest that the importance of immune components cannot be generalized across all amphibian species or over time. Moreover, the finding that skin secretions may be enhancing Bd growth emphasizes the importance of investigating these immune components in detail, especially for species that are a conservation priority.
Collapse
Affiliation(s)
- Jordan Gass
- Department of Biology, University of Nevada at Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada at Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
11
|
Womack MC, Steigerwald E, Blackburn DC, Cannatella DC, Catenazzi A, Che J, Koo MS, McGuire JA, Ron SR, Spencer CL, Vredenburg VT, Tarvin RD. State of the Amphibia 2020: A Review of Five Years of Amphibian Research and Existing Resources. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2022005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Molly C. Womack
- Department of Biology, Utah State University, Logan, Utah 84322; . ORCID: 0000-0002-3346-021X
| | - Emma Steigerwald
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - David C. Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611; . ORCID: 0000-0002-1810-9886
| | - David C. Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712; . ORCID: 0000-0001-8675-0520
| | | | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; . ORCID: 0000-0003-4246-6
| | - Michelle S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador; . ORCID: 0000-0001-6300-9350
| | - Carol L. Spencer
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Vance T. Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| |
Collapse
|
12
|
Torres-Sánchez M, Longo AV. Linking pathogen-microbiome-host interactions to explain amphibian population dynamics. Mol Ecol 2022; 31:5784-5794. [PMID: 36130047 DOI: 10.1111/mec.16701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023]
Abstract
Symbiotic interactions can determine the evolutionary trajectories of host species, influencing genetic variation through selection and changes in demography. In the context of strong selective pressures such as those imposed by infectious diseases, symbionts providing defences could contribute to increase host fitness upon pathogen emergence. Here, we generated genome-wide data of an amphibian species to find evidence of evolutionary pressures driven by two skin symbionts: a batrachochytrid fungal pathogen and an antifungal bacterium. Using demographic modelling, we found evidence of decreased effective population size, probably due to pathogen infections. Additionally, we investigated host genetic associations with infection status, antifungal bacterium abundance and overall microbiome diversity using structural equation models. We uncovered relatively lower nucleotide diversity in infected frogs and potential heterozygote advantage to recruit the candidate beneficial symbiont and fight infections. Our models indicate that environmental conditions have indirect effects on symbiont abundance through both host body traits and microbiome diversity. Likewise, we uncovered a potential offsetting effect among host heterozygosity-fitness correlations, plausibly pointing to different ecological and evolutionary processes among the three species due to dynamic interactions. Our findings revealed that evolutionary pressures not only arise from the pathogen but also from the candidate beneficial symbiont, and both interactions shape the genetics of the host. Our results advance knowledge about multipartite symbiotic relationships and provide a framework to model ecological and evolutionary dynamics in wild populations. Finally, our study approach can be applied to inform conservation actions such as bioaugmentation strategies for other imperilled amphibians affected by infectious diseases.
Collapse
Affiliation(s)
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Pearson KC, Tarvin RD. A review of chemical defense in harlequin toads (Bufonidae: Atelopus). Toxicon X 2022; 13:100092. [PMID: 35146414 PMCID: PMC8801762 DOI: 10.1016/j.toxcx.2022.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Toads of the genus Atelopus are chemically defended by a unique combination of endogenously synthesized cardiotoxins (bufadienolides) and neurotoxins which may be sequestered (guanidinium alkaloids). Investigation into Atelopus small-molecule chemical defenses has been primarily concerned with identifying and characterizing various forms of these toxins while largely overlooking their ecological roles and evolutionary implications. In addition to describing the extent of knowledge about Atelopus toxin structures, pharmacology, and biological sources, we review the detection, identification, and quantification methods used in studies of Atelopus toxins to date and conclude that many known toxin profiles are unlikely to be comprehensive because of methodological and sampling limitations. Patterns in existing data suggest that both environmental (toxin availability) and genetic (capacity to synthesize or sequester toxins) factors influence toxin profiles. From an ecological and evolutionary perspective, we summarize the possible selective pressures acting on Atelopus toxicity and toxin profiles, including predation, intraspecies communication, disease, and reproductive status. Ultimately, we intend to provide a basis for future ecological, evolutionary, and biochemical research on Atelopus.
Collapse
Affiliation(s)
- Kannon C. Pearson
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|