1
|
Gough CM, Buma B, Jentsch A, Mathes KC, Fahey RT. Disturbance theory for ecosystem ecologists: A primer. Ecol Evol 2024; 14:e11403. [PMID: 38826158 PMCID: PMC11139967 DOI: 10.1002/ece3.11403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Understanding what regulates ecosystem functional responses to disturbance is essential in this era of global change. However, many pioneering and still influential disturbance-related theorie proposed by ecosystem ecologists were developed prior to rapid global change, and before tools and metrics were available to test them. In light of new knowledge and conceptual advances across biological disciplines, we present four disturbance ecology concepts that are particularly relevant to ecosystem ecologists new to the field: (a) the directionality of ecosystem functional response to disturbance; (b) functional thresholds; (c) disturbance-succession interactions; and (d) diversity-functional stability relationships. We discuss how knowledge, theory, and terminology developed by several biological disciplines, when integrated, can enhance how ecosystem ecologists analyze and interpret functional responses to disturbance. For example, when interpreting thresholds and disturbance-succession interactions, ecosystem ecologists should consider concurrent biotic regime change, non-linearity, and multiple response pathways, typically the theoretical and analytical domain of population and community ecologists. Similarly, the interpretation of ecosystem functional responses to disturbance requires analytical approaches that recognize disturbance can promote, inhibit, or fundamentally change ecosystem functions. We suggest that truly integrative approaches and knowledge are essential to advancing ecosystem functional responses to disturbance.
Collapse
Affiliation(s)
- Christopher M. Gough
- Department of Biology, College of Humanities & SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brian Buma
- Environmental Defense FundBoulderColoradoUSA
- Department of Integrative BiologyUniversity of Colorado DenverDenverColoradoUSA
| | - Anke Jentsch
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Kayla C. Mathes
- Department of Biology, College of Humanities & SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robert T. Fahey
- Department of Natural Resources and the Environment & Center for Environmental Sciences and EngineeringUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
3
|
Zhang P, Jiao L, Xue R, Wei M, Wang X, Li Q. Wet events increase tree growth recovery after different drought intensities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171595. [PMID: 38492585 DOI: 10.1016/j.scitotenv.2024.171595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Understanding the dynamics of tree recovery after drought is critical for predicting the state of tree growth in the context of future climate change. While there has been a great deal of researches showing that drought events can cause numerous significant negative effects on tree growth, the positive effects of post-drought wetting events on tree growth remain unclear. Therefore, we analyzed the effect of wet and dry events on the radial growth of trees in Central Asia using data on the width of tree rings. The results showed that 1) Drought is the main limiting factor for radial growth of trees in Central Asia, and that as the intensity and sensitivity of drought increases, tree resistance decreases and recovery rises, and more frequent droughts reduce tree resistance. 2) Tree radial growth varied significantly with wet and dry conditions, with wet events before and after drought events significantly enhancing tree radial growth. 3) When drought is followed by a wetting event, the relationship between tree resistance and recovery is closer to the "line of full resilience", with a significant increase in recovery, and compensatory growth is more likely to occur. Thus, wetting events have a significant positive effect on tree radial growth and are a key factor in rapid tree growth recovery after drought.
Collapse
Affiliation(s)
- Peng Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Liang Jiao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China.
| | - Ruhong Xue
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Mengyuan Wei
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Xuge Wang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| | - Qian Li
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
| |
Collapse
|
4
|
Knapp PA, Soulé PT, Mitchell TJ, Catherwood AA, Lewis HS. Increasing radial growth in old-growth high-elevation conifers in Southern California, USA, during the exceptional "hot drought" of 2000-2020. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:743-748. [PMID: 38214750 DOI: 10.1007/s00484-024-02619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Hot droughts, droughts attributed to below-average precipitation and exceptional warmth, are increasingly common in the twenty-first century, yet little is known about their effect on coniferous tree growth because of their historical rarity. In much of the American West, including California, radial tree growth is principally driven by precipitation, and narrow ring widths are typically associated with either drier or drought conditions. However, for species growing at high elevations (e.g., Larix lyalli, Pinus albicaulis), growth can be closely aligned with above-average temperatures with maximum growth coinciding with meteorological drought, suggesting that the growth effects of drought span from adverse to beneficial depending on location. Here, we compare radial growth responses of three high-elevation old-growth pines (Pinus jeffreyi, P. lambertiana, and P. contorta) growing in the San Jacinto Mountains, California, during a twenty-first-century hot drought (2000-2020) largely caused by exceptional warmth and a twentieth-century drought (1959-1966) principally driven by precipitation deficits. Mean radial growth during the hot drought was 12% above average while 18% below average during the mid-century drought illustrating that the consequences of environmental stress exhibit spatiotemporal variability. We conclude that the effects of hot droughts on tree growth in high-elevation forests may produce responses different than what is commonly associated with extended dry periods for much of western North America's forested lands at lower elevational ranges and likely applies to other mountainous regions (e.g., Mediterranean Europe) defined by summer-dry conditions. Thus, the climatological/biological interactions discovered in Southern California may offer clues to the unique nature of high-elevation forested ecosystems globally.
Collapse
Affiliation(s)
- Paul A Knapp
- Carolina Tree-Ring Science Laboratory, Department of Geography, Environment and Sustainability, University of North Carolina Greensboro, Greensboro, NC, USA.
| | - Peter T Soulé
- Appalachian Tree Ring Lab, Department of Geography and Planning, Appalachian State University, Boone, NC, USA
| | - Tyler J Mitchell
- Carolina Tree-Ring Science Laboratory, Department of Geography, Environment and Sustainability, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Avery A Catherwood
- Carolina Tree-Ring Science Laboratory, Department of Geography, Environment and Sustainability, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Hunter S Lewis
- Carolina Tree-Ring Science Laboratory, Department of Geography, Environment and Sustainability, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
5
|
Hood SM, Crotteau JS, Cleveland CC. Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2940. [PMID: 38212051 DOI: 10.1002/eap.2940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/12/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5-10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB-induced changes to forest structure and fuels increased the fire hazard 20 years post-treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.
Collapse
Affiliation(s)
- Sharon M Hood
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Justin S Crotteau
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Cory C Cleveland
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Perret DL, Evans MEK, Sax DF. A species' response to spatial climatic variation does not predict its response to climate change. Proc Natl Acad Sci U S A 2024; 121:e2304404120. [PMID: 38109562 PMCID: PMC10769845 DOI: 10.1073/pnas.2304404120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
The dominant paradigm for assessing ecological responses to climate change assumes that future states of individuals and populations can be predicted by current, species-wide performance variation across spatial climatic gradients. However, if the fates of ecological systems are better predicted by past responses to in situ climatic variation through time, this current analytical paradigm may be severely misleading. Empirically testing whether spatial or temporal climate responses better predict how species respond to climate change has been elusive, largely due to restrictive data requirements. Here, we leverage a newly collected network of ponderosa pine tree-ring time series to test whether statistically inferred responses to spatial versus temporal climatic variation better predict how trees have responded to recent climate change. When compared to observed tree growth responses to climate change since 1980, predictions derived from spatial climatic variation were wrong in both magnitude and direction. This was not the case for predictions derived from climatic variation through time, which were able to replicate observed responses well. Future climate scenarios through the end of the 21st century exacerbated these disparities. These results suggest that the currently dominant paradigm of forecasting the ecological impacts of climate change based on spatial climatic variation may be severely misleading over decadal to centennial timescales.
Collapse
Affiliation(s)
- Daniel L. Perret
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI02912
| | | | - Dov F. Sax
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| |
Collapse
|
7
|
Schönbeck L, Arteaga M, Mirza H, Coleman M, Mitchell D, Huang X, Ortiz H, Santiago LS. Plant physiological indicators for optimizing conservation outcomes. CONSERVATION PHYSIOLOGY 2023; 11:coad073. [PMID: 37711583 PMCID: PMC10498484 DOI: 10.1093/conphys/coad073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marc Arteaga
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Humera Mirza
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mitchell Coleman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Tejon Ranch Conservancy, Frazier Park, CA 93225, USA
| | - Denise Mitchell
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinyi Huang
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Haile Ortiz
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092. Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
8
|
Fang W, Huang Q, Huang G, Ming B, Quan Q, Li P, Guo Y, Zheng X, Feng G, Peng J. Assessment of dynamic drought-induced ecosystem risk: Integrating time-varying hazard frequency, exposure and vulnerability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118176. [PMID: 37207461 DOI: 10.1016/j.jenvman.2023.118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Terrestrial ecosystems, occupying 28.26% of Earth's surface, are extensively at risk from droughts, which is likely to propagate into human communities owing to loss of vital services. Ecosystem risk also tends to fluctuate within anthropogenically-forced nonstationary environments, raising considerable concerns about effectiveness of mitigation strategies. This study aims to assess dynamic ecosystem risk induced by droughts and identify risk hotspots. Bivariate nonstationary drought frequency was initially derived as a hazard component of risk. By coupling vegetation coverage and biomass quantity, a two-dimensional exposure indicator was developed. Trivariate likelihood of vegetation decline was calculated under arbitrary droughts to intuitively determine ecosystem vulnerability. Ultimately, time-variant drought frequency, exposure and vulnerability were multiplied to derive dynamic ecosystem risk, followed by hotspot and attribution analyses. Risk assessment implemented in the drought-prevalent Pearl River basin (PRB) of China during 1982-2017 showed that meteorological droughts in eastern and western margins, although less frequent, were prolonged and aggravated in contrast to prevalence of less persistent and severe droughts in the middle. In 86.12% of the PRB, ecosystem exposure maintains high levels (0.62). Relatively high vulnerability (>0.5) occurs in water-demanding agroecosystems, exhibiting a northwest-southeast-directed extension. A 0.1-degree risk atlas unveils that high and medium risks occupy 18.96% and 37.99% of the PRB, while risks are magnified in the north. The most pressing hotspots with high risk continuing to escalate reside in the East River and Hongliu River basins. Our results provide knowledge of composition, spatio-temporal variability and driving mechanism of drought-induced ecosystem risk, which will assist in risk-based mitigation prioritization.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Qiang Huang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada
| | - Bo Ming
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Quan Quan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Pei Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Yi Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Xudong Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Gang Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Jian Peng
- Department of Remote Sensing, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Remote Sensing Centre for Earth System Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
González-Pérez A, Álvarez-Esteban R, Penas Á, del Río S. Bioclimatic Characterisation of Specific Native Californian Pinales and Their Future Suitability under Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:1966. [PMID: 37653883 PMCID: PMC10224251 DOI: 10.3390/plants12101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Rising temperatures and changes in precipitation patterns under climate change scenarios are accelerating the depletion of soil moisture and increasing the risk of drought, disrupting the conditions that many plant species need to survive. This study aims to establish the bioclimatic characterisation, both qualitative and quantitative, of ten native Californian Pinales for the period 1980-2019, and to determine their habitat suitability by 2050. To achieve this, an exhaustive search of the Gbif database for records of ten conifer taxa was carried out. To conduct the bioclimatic characterisation of the studied taxa, we worked with the monthly values of average temperature and precipitation for the period 1980-2019 from 177 meteorological stations. Linear regressions was performed in order to compile the future evolution of California's climate. Suitable areas and optimal areas were defined at the present time (1980-2019) and its future projection (2050). We applied Boolean logic and, in this investigation, the Conditional Logic Operator (CON) was used to determine the possible species presence (one) or absence (zero) for each of the 15 variables analysed. In general, most of the conifers studied here will experience a reduction in their habitat range in California by the year 2050 due to climate change, as well as the displacement of species towards optimal areas. Furthermore, the results have highlighted the applicability of bioclimatology to future conditions under climate change. This will aid conservation managers in implementing strategic measures to ameliorate the detrimental impacts of climate change, thereby ensuring the ecological integrity and sustainability of the affected conifer species.
Collapse
Affiliation(s)
- Alejandro González-Pérez
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Campus de Vegazana s/n, 24071 León, Spain
| | - Ramón Álvarez-Esteban
- Department of Economics and Statistics (Statistics and Operations Research Area), Faculty of Economics and Business, University of Leon, Campus de Vegazana s/n, 24071 León, Spain;
| | - Ángel Penas
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| | - Sara del Río
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| |
Collapse
|
10
|
Díaz‐Martínez P, Ruiz‐Benito P, Madrigal‐González J, Gazol A, Andivia E. Positive effects of warming do not compensate growth reduction due to increased aridity in Mediterranean mixed forests. Ecosphere 2023. [DOI: 10.1002/ecs2.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Paloma Díaz‐Martínez
- Instituto de Ciencias Agrarias Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Paloma Ruiz‐Benito
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida Universidad de Alcala Alcalá de Henares Spain
- Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment University of Alcala Alcalá de Henares Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE‐CSIC) Zaragoza Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
11
|
Klesse S, Wohlgemuth T, Meusburger K, Vitasse Y, von Arx G, Lévesque M, Neycken A, Braun S, Dubach V, Gessler A, Ginzler C, Gossner MM, Hagedorn F, Queloz V, Samblás Vives E, Rigling A, Frei ER. Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157926. [PMID: 35985592 DOI: 10.1016/j.scitotenv.2022.157926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity.
Collapse
Affiliation(s)
- S Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - T Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - K Meusburger
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Y Vitasse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - G von Arx
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - M Lévesque
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - A Neycken
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - S Braun
- Institute for Applied Plant Biology AG, Witterswil, Switzerland
| | - V Dubach
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - A Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - C Ginzler
- Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Gossner
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland; Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - F Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Queloz
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - E Samblás Vives
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - A Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - E R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| |
Collapse
|
12
|
Williams J, Stella JC, Voelker SL, Lambert AM, Pelletier LM, Drake JE, Friedman JM, Roberts DA, Singer MB. Local groundwater decline exacerbates response of dryland riparian woodlands to climatic drought. GLOBAL CHANGE BIOLOGY 2022; 28:6771-6788. [PMID: 36045489 PMCID: PMC9804274 DOI: 10.1111/gcb.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13 C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13 C) during peak drought years. However, patterns of radial growth and Δ13 C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13 C for individual trees, and higher inter-correlation of Δ13 C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year-1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.
Collapse
Affiliation(s)
- Jared Williams
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - John C. Stella
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
- Department of Sustainable Resources ManagementState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Steven L. Voelker
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMichiganUSA
| | - Adam M. Lambert
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Cheadle Center for Biodiversity and Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Lissa M. Pelletier
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
| | - John E. Drake
- Department of Sustainable Resources ManagementState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | | | - Dar A. Roberts
- Department of GeographyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Michael Bliss Singer
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- School of Earth and Environmental SciencesCardiff UniversityCardiffUK
- Water Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
13
|
Peltier DMP, Anderegg WRL, Guo JS, Ogle K. Contemporary tree growth shows altered climate memory. Ecol Lett 2022; 25:2663-2674. [PMID: 36257775 DOI: 10.1111/ele.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Trees are long-lived organisms, exhibiting temporally complex growth arising from strong climatic "memory." But conditions are becoming increasingly arid in the western USA. Using a century-long tree-ring network, we find altered climate memory across the entire range of a widespread western US conifer: growth is supported by precipitation falling further into the past (+15 months), while increasingly impacted by more recent temperature conditions (-8 months). Tree-ring datasets can be biased, so we confirm altered climate memory in a second, ecologically-sampled tree-ring network. Predicted drought responses show trees may have also become more sensitive to repeat drought. Finally, plots near sites with relatively longer precipitation memory and shorter temperature memory had significantly lower recent mortality rates (R2 = 0.61). We argue that increased drought frequency has altered climate memory, demonstrate how non-stationarity may arise from failure to account for memory, and suggest memory length may be predictive of future tree mortality.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Jessica S Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA.,School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
14
|
Jing M, Zhu L, Liu S, Cao Y, Zhu Y, Yan W. Warming-induced drought leads to tree growth decline in subtropics: Evidence from tree rings in central China. FRONTIERS IN PLANT SCIENCE 2022; 13:964400. [PMID: 36212337 PMCID: PMC9539437 DOI: 10.3389/fpls.2022.964400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Subtropical forests provide diverse ecosystem services to human society. However, how subtropical tree species respond to climate change is still unclear. Using a dendrochronological method, we studied the radial growth patterns and species-specific responses of four main tree species in subtropical China to recent warming and drought. Results showed that the long-term drought caused by global warming and reduced precipitation since 1997 had resulted in the growth decline of Pinus massoniana, Castanea henryi and Castanopsis eyrei but not for Liquidambar formosana. Four species had similar sensitivities to the previous year and the current year, which is probably due to the carryover effect and temporal autocorrelation of climate data. Tree growth was positively correlated with growing season precipitation and relative humidity while negatively correlated with vapor pressure deficit. The negative relationship of tree radial growth with temperatures in the previous and current summer and the positive correlation with precipitation gradually strengthened after 1997. Therefore, we highlighted that drought-induced tree decline in subtropical forests is probably a common phenomenon, and it needed to verify by more tree-ring studies on a large scale. The species-specific responses of tree radial growth to climate change are not obvious, but they still should be considered in regional carbon balance and forest dynamics. Considering future climate change, species that are more drought tolerant should be considered as potential plantation species.
Collapse
Affiliation(s)
- Mengdan Jing
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Liangjun Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Yang Cao
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yu Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
Water Uptake and Hormone Modulation Responses to Nitrogen Supply in Populus simonii under PEG-Induced Drought Stress. FORESTS 2022. [DOI: 10.3390/f13060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, the effects of nitrogen (N) supply on water uptake, drought resistance, and hormone regulation were investigated in Populus simonii seedlings grown in hydroponic solution with 5% polyethylene glycol (PEG)-induced drought stress. While acclimating to drought, the P. simonii seedlings exhibited a reduction in growth; differential expression levels of aquaporins (AQPs); activation of auxin (IAA) and abscisic acid (ABA) signaling pathways; a decrease in the net photosynthetic rate and transpiration rate; and an increase in stable nitrogen isotope composition (δ15N), total soluble substances, and intrinsic water use efficiency (WUEi), with a shift in the homeostasis of reactive oxygen species (ROS) production and scavenging. A low N supply (0.01 mM NH4NO3) or sufficient N supply (1 mM NH4NO3) exhibited distinct morphological, physiological, and transcriptional responses during acclimation to drought, primarily due to strong responses in the transcriptional regulation of genes encoding AQPs; higher soluble phenolics, total N concentrations, and ROS scavenging; and lower transpiration rates, IAA content, ABA content, and ROS accumulation with a sufficient N supply. P. simonii can differentially manage water uptake and hormone modulation in response to drought stress under deficient and sufficient N conditions. These results suggested that increased N may contribute to drought tolerance by decreasing the transpiration rate and O2− production while increasing water uptake and antioxidant enzyme activity.
Collapse
|
16
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|