1
|
Wang Z, Feng M, Johnson MF, Lipani A, Chan F. The role of reservoir size in driving methane emissions in China. WATER RESEARCH 2025; 279:123441. [PMID: 40058189 DOI: 10.1016/j.watres.2025.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/06/2025]
Abstract
Reservoirs play a crucial role as sources of methane (CH₄) emissions, with emission rates and quantities varying widely depending on reservoir size due to factors such as surface area, water depth, usage, operational methods, and spatial distribution. Gaining insights into emission characteristics across different reservoir sizes can aid in designing and managing reservoirs to mitigate CH₄ emissions effectively. In this study, machine learning models were applied to estimate both diffusive and ebullitive CH₄ emissions across 97,435 reservoirs in China, spanning five categories of storage capacity. This comprehensive assessment covers nearly all reservoirs within the country, revealing total CH₄ emissions of approximately 5,414 Gg. Reservoirs > 0.01 km3 are responsible for about 90 % of these emissions, primarily due to high diffusive flux rates and extensive surface areas. Elevated CH₄ diffusion in reservoirs > 0.01 km3 is largely influenced by their thermal stratification and capacity for organic matter accumulation. Furthermore, these reservoirs are particularly vulnerable to climate warming, which could accelerate CH₄ emission rates more rapidly in larger reservoirs than in smaller ones (below 0.01 km³). Consequently, prioritising CH₄ management in reservoirs > 0.01 km3 is imperative. Nevertheless, the high ebullitive flux of CH₄ in reservoirs < 0.01 km3, linked to their shallow depth, highlighting the potential for significant CH₄ ebullition from smaller aquatic systems. Given large and small-ranged reservoirs' distinct spatial distribution patterns, targeted management strategies are recommended: project-level management for large reservoirs and basin-level approaches for smaller reservoirs.
Collapse
Affiliation(s)
- Zilin Wang
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Meili Feng
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Matthew F Johnson
- School of Geography, Sir Clive Granger Building, University of Nottingham, University Park, Nottingham NG7 2R, United Kingdom.
| | | | - Faith Chan
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China; Water@Leeds Research Institute and School of Geography, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
He S, Guo X, Zhao M, Chen D, Fu S, Tian G, Xu H, Liang X, Wang H, Li G, Liu X. Ecological restoration reduces greenhouse gas emissions by altering planktonic and sedimentary microbial communities in a shallow eutrophic lake. ENVIRONMENTAL RESEARCH 2025; 275:121400. [PMID: 40090476 DOI: 10.1016/j.envres.2025.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Ecological restoration is a promising approach to alleviate eutrophication. However, its impacts on greenhouse gas (GHG) emissions and the underlying microbial mechanisms in different habitats of lakes remain unclear. To address this knowledge gap, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at both water-air and sediment-water interfaces of eutrophic (Caohai) and restored area (Dapokou) of Dianchi Lake, a typical eutrophic lake in China. Meanwhile, we investigated the responses of planktonic and sedimentary bacterial and fungal communities by high-throughput sequencing. Our results indicated that 6 years of ecological restoration significantly reduced CO2 and N2O fluxes by 1.0-3.6 and 2.2-2.8 folds respectively, with more pronounced variations at the water-air interface than the sediment-water interface. Ecological restoration also shifted the structures of planktonic bacterial and fungal communities remarkably, leading to a significant reduction in the relative abundances of Actinobacteriota (by 70.94%), Bacteroidota (by 61.65%), Planctomycetota (by 74.18%) and Chytridiomycota (by 95.44%). Correlation analyses further suggested that GHG fluxes at the water-air interface were significantly correlated with planktonic microbial community composition (P < 0.05), and the significant reduction of CO2 and N2O fluxes under ecological restoration could be attributed to the decreased abundances of organic matter decomposers (such as hgcI_clade, Sporichthyaceae and Acidibacter) and increased abundances of autotrophs (such as Hydrogenophaga and Cyanobium_PCC-6307) in water. Collectively, our findings verify the importance of ecological restoration in reducing GHG emissions in inland lake ecosystems, providing new insights for addressing global climate change and advancing carbon neutrality.
Collapse
Affiliation(s)
- Songbing He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xue Guo
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Mengying Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dengbo Chen
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuai Fu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gege Tian
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Huihua Xu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ximing Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Wentao G, Tingting L, Zhitong F, Lingyi X, Chen J, Honglin C, Dongfeng L, Shuangshuang L, Zuolin X, Xiaofeng W. Aquatic plants dominate spatiotemporal dynamics of N 2O fluxes in small urban lake by regulating nutrient distribution and emission path. ENVIRONMENTAL RESEARCH 2025; 274:121290. [PMID: 40043933 DOI: 10.1016/j.envres.2025.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Small urban lakes are recognized as significant sources of nitrous oxide (N2O) to the atmosphere. Despite the crucial role of aquatic plants in landscape construction and pollutant removal within urban lakes, the modulation of N2O emission dynamics and associated mechanisms by these plants remains elusive. This study investigated the N2O concentrations and fluxes from aquatic habitats covered with seven species of aquatic plants in a small urban lake, and estimated the contribution of plant-mediated N2O emissions. Meanwhile, the physicochemical parameters of water and periradicular sediments were measured synchronously to clarify the main controls of aquatic plants in regulating aquatic N2O emissions. N2O concentrations in the surface waters covered by different aquatic plants (0.041-0.659 μmol L-1) exhibit substantial variation, being 1.2-5.4 (mean of 2.8) times higher than those in open water areas (0.015-0.096 μmol L-1). The range of total N2O fluxes was 11.3-1009.0 μmol m-2 d-1, exhibiting significant spatial and temporal variations, with considerable differences observed among various plant-covered areas. Total N2O fluxes from different plant-covered areas were 1.5-16.7 times (average 7.5 times) higher than those in open water areas. It suggests that diverse aquatic plants could observably intensify the spatial variability in N2O emissions within the small urban lake. The estimated plant-mediated fluxes may contribute approximately 21%-66% of total N2O fluxes. Specifically, N2O concentrations in the stem cavities of different plants were generally higher than atmospheric levels, evidencing the mediated effect of aquatic plants on N2O emissions. While aquatic plants reduce the abundance of nutrients in surface water to varying degrees, the accumulations of carbon and nitrogen in periradicular sediments, combined with plant transport, observably enhance N2O emissions in urban lake with low pollution loads. Furthermore, the phenological processes of aquatic plants and seasonal temperature changes were found to co-affect the seasonal dynamics of aquatic N2O fluxes. Varied aquatic plants can significantly dominate spatiotemporal dynamics of the N2O emissions in urban landscape lakes.
Collapse
Affiliation(s)
- Guo Wentao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| | - Liu Tingting
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Fan Zhitong
- Yunwuping Forest Farm in Jiangjin District, Chongqing, 404000, China
| | - Xiang Lingyi
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Jian Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Chen Honglin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Li Dongfeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Liu Shuangshuang
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Xiao Zuolin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Wang Xiaofeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| |
Collapse
|
4
|
Lee H, Zhumabieke M, Jeon GU, Shin KH, Khim BK, Park JH. Differential river-to-sea transfers and CH 4 dominance of greenhouse gas emissions in urbanized and impounded estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179444. [PMID: 40253857 DOI: 10.1016/j.scitotenv.2025.179444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Estuaries are biogeochemical hotspots where greenhouse gas (GHG) emissions are significantly affected by anthropogenic disturbances, such as water pollution and impoundment. To investigate how upstream pollution affects GHG concentrations and fluxes in impounded estuaries, ten seasonal samplings were conducted over two years in three impounded estuaries in South Korea. The highest levels of all three GHGs were observed in the upper Han estuary, which traverses the megacity of Seoul, with an average CO2-equivalent GHG emission of 41 mmol m-2 d-1 (CO2: 38 %, CH4: 53 %, N2O: 9 %). CH4 accounted for 77-79 % of the CO2-equivalent GHG emissions in the other estuaries, which are impounded by a dam to limit saltwater intrusion. Seaward extensions of GHG peaks observed along the lower Han estuary, downstream of a submerged weir, were less pronounced in the other estuaries. Lowered summer-time CO2 and elevated CH4 levels across the Nakdong estuary, which has a partially open dam, indicated inputs from frequent cyanobacterial blooms in the upstream reaches impounded by eight cascade weirs. The influence of high upstream GHG levels was confined to the upper sites of the Yeongsan estuary, where a dam blocks tidal flow. Abrupt declines in CH4 levels across the Yeongsan Dam, combined with summertime increases in δ13C-CH4, imply that warming-enhanced oxidation moderated the level of CH4 produced in the deep freshwater reservoir. Overall, the results suggest that the interaction between upstream pollution and impoundment-induced transformations in estuaries can promote GHG emissions, with CH4 dominance overriding the seasonally enhanced CO2 sinks in impounded estuaries.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Maidina Zhumabieke
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gwon-Ui Jeon
- Department of Marine Science & Convergence Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Boo-Keun Khim
- Department of Oceanography & Marine Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyung Park
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
5
|
Kim SY, Kim HR, Kim JH, Lim JH, Kim IN. Investigation of the concentrations and fluxes of potent greenhouse gases (N 2O, CH 4, and CO 2) in the port and harbor seawaters of Jeju Island, Korea. MARINE POLLUTION BULLETIN 2025; 218:118176. [PMID: 40409058 DOI: 10.1016/j.marpolbul.2025.118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
Quantifying greenhouse gas (GHG) emissions from coastal environments is essential for understanding their role in climate change. Ports and harbors, which are semi-enclosed coastal systems, often experience nutrient accumulation from human activities, leading to GHG emissions. Jeju Island, with numerous ports and harbors along its coast, provides an ideal location for studying GHG emissions in these environments. This study investigates the spatial distribution, air-sea fluxes, and radiative forcing of N2O, CH4, and CO2 in Jeju's port and harbor waters during the summer of 2021. Sampling sites were classified into four categories based on dominant industry: Urban, Aquaculture, Nature tourism, and Agriculture. Greenhouse gas concentrations varied by region, with elevated N2O in urban and CH4 in tourism regions, while pCO2 was relatively low in both due to biological uptake. Additionally, Jeju's ports and harbors acted as a source of N2O, CH4, and CO2 to the atmosphere, with average fluxes of 1.67 ± 1.41 μmol m-2 d-1, 10.30 ± 10.24 μmol m-2 d-1, 0.16 ± 0.78 mmol m-2 d-1, respectively. Radiative forcing calculations indicated that while dissolved N2O levels were still low to exhibit radiative forcing, CH4 exhibited positive forcing only in the tourism region where concentrations were elevated, and CO2 concentrations were sufficiently high to exhibit radiative forcing. These findings highlight the importance of port and harbor environments as hotspots of coastal GHG emissions.
Collapse
Affiliation(s)
- Seo-Young Kim
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Hyo-Ryeon Kim
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Ju-Hyoung Kim
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, South Korea
| | - Jae-Hyun Lim
- Marine Environmental Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
6
|
Ge Z, Yan Z, Peacock M, Chang B, Zhang Y, Wu W, Li SL, Bastiviken D, Liu CQ. Village ponds are hotspots of CO 2 and CH 4 emissions regulated by biological communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126492. [PMID: 40398802 DOI: 10.1016/j.envpol.2025.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/26/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
Ponds in rural villages (village ponds) potentially emit substantial greenhouse gases (GHG), since they are pervasive and often highly eutrophic. However, few studies report GHG emissions from village ponds, which brings uncertainty in estimating GHG emission budgets. Here, we seasonally measured CO2 and CH4 concentrations and estimated their diffusive emissions from fourteen village ponds, either phytoplankton-dominated (PDPs) or free-floating plant-dominated (FDPs), across the North China Plain. The village ponds exhibited high (mean ± SD) concentrations and diffusive fluxes of CO2 (9.20 ± 0.56 mg-CO2 L-1 and 186 ± 367 mg-CO2 m-2 h-1) and CH4 (1.63 ± 4.21 mg-CH4 L-1 and 33.7 ± 82.1 mg-CH4 m-2 h-1), with FDPs (475 ± 492 mg-CO2 m-2 h-1 and 87.6 ± 120 mg-CH4 m-2 h-1) tremendously exceeding PDPs (20.74 ± 54.60 mg-CO2 m-2 h-1 and 2.92 ± 2.49 mg-CH4 m-2 h-1). Cumulatively, village ponds in the North China Plain were estimated to emit diffusive 10.39 (0.92-26.54) Tg CO2-eq yr-1, equaling 8.54 % of the total CO2 and CH4 emissions from lakes and reservoirs in China, although their area is only 0.88 % of the latter. Therefore, village ponds are hotspots of GHG emissions and should be incorporated in regional and national GHG budgets.
Collapse
Affiliation(s)
- Zhengkui Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China.
| | - Mike Peacock
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Baoxuan Chang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yunyun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - David Bastiviken
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
7
|
Chen X, Shen Y, Liu Y, Zhang F, Tian L, Wang J, Cai Y, Li Y, Chang SX. Spatiotemporal variations of dissolved nitrous oxide concentrations in small water bodies in a typical urban landscape in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126173. [PMID: 40179578 DOI: 10.1016/j.envpol.2025.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Waters in urban landscape are susceptible to nitrogen (N) pollution, potentially leading to supersaturation of dissolved nitrous oxide (N2O) and making them a source of atmospheric N2O. However, the spatiotemporal variations and driving factors of dissolved N2O concentrations in these waters remain unclear. This study examined the spatiotemporal variations of dissolved N2O in an interconnected river-lake system in a subtropical urban landscape. The annual mean dissolved N2O concentration was 0.81 μg N L-1, with a mean N2O saturation of 304 %, indicating the system could act as a N2O emitter. Under the influence of daily fluctuations in water temperature and DO, the diurnal variation of N2O was most pronounced in autumn, with the smallest amplitude observed in winter. Seasonal mean concentrations of dissolved N2O, N, phosphorus (P), chlorophyll-a (Chl-a) and dissolved oxygen (DO) peaked in winter and were lowest in summer. The central lake had significantly lower dissolved N2O, N and P concentrations, but possessed higher water temperature, pH, concentrations of Chl-a and DO than its upstream and downstream rivers. Dissolved N2O concentrations were positively correlated with concentrations of N and P, but negatively with pH, Chl-a, and DO. There was intensifying competition for N between the N2O producers and algae, particularly in summer or in the central lake area. Therefore, the spatiotemporal variations of dissolved N2O concentrations were primarily driven by the integrated effects of seasonal conditions, nutrient fluctuations and algal growth. This research can provide essential scientific guidance for developing the effective strategies to control N pollution and mitigate the risk of N2O emissions from water bodies in urban landscape.
Collapse
Affiliation(s)
- Xuebing Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, College of Carbon Neutral, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuye Shen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, College of Carbon Neutral, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yihong Liu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, College of Carbon Neutral, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fangfang Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Linlin Tian
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanjiang Cai
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, College of Carbon Neutral, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yan Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, T6G 2E3, Canada
| |
Collapse
|
8
|
Yu W, Liu F, Jiao X, Fan P, Yang H, Zhang Y, Li J, Chen J, Li X. Human-induced N-P imbalances will aggravate GHG emissions from lakes and reservoirs under persisting eutrophication. WATER RESEARCH 2025; 276:123240. [PMID: 39922139 DOI: 10.1016/j.watres.2025.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Lakes and reservoirs are hotspots for emissions of atmospheric greenhouse gas (GHG) such as CO2, CH4, and N2O, and their nutrient levels and stoichiometric status are significant drivers of GHG emissions. In recent decades, human-induced unbalanced inputs of nitrogen (N) and phosphorus (P) have enhanced the P-limiting state of inland lake and reservoir systems. However, it remains unclear whether this state transition involves global changes in nutrient-limiting systems and GHG emissions from lakes and reservoirs. In this study, a comprehensive model was developed to examine the relationship between GHG fluxes and total N (TN) and total P (TP) to predict future human-induced N over-enrichment and its impact on global GHG emissions. Our results show that excess N inputs amplified GHG emissions, with future water eutrophication (1.2×) projected to increase CO2 emissions (384.66 Tg·y-1), CH4 (7.38 Tg·y-1), and N2O (0.23 Tg·y-1) from lakes and reservoirs by 49 %, 12 %, and 25 %, respectively, amounting to approximately US$0.13 trillion ($0.08-6.91 trillion, 2015$) in social costs. A future 50 % increase in N: P will increase the relative social cost of carbon by 15 % compared to future 1.2× eutrophication levels. Given the social costs and benefits of reducing N and P pollutants in water individually and in synchronization, future long-term strategies for managing eutrophication in lakes and reservoirs need to emphasize balanced control of N and P.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China
| | - Fali Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xianglan Jiao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Pingping Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Haiquan Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China.
| | - Yongmei Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
9
|
Rodrigo MA, Puche E, Muñoz-Colmenares M, Sánchez-Carrillo S. Vascular macrophytes versus charophytes: how the macrophyte type and warming affect the sediment microbial community and the production of greenhouse gases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125654. [PMID: 40354740 DOI: 10.1016/j.jenvman.2025.125654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
In the global warming context, adaptive management strategies involve the conservation and restoration of inland waters by planning the reintroduction of macrophytes to substantially mitigate greenhouse gas emissions (GHG). The selection of appropriate species is crucial. We studied the influence of two submerged macrophyte species on GHG production, sediment-oxygen microprofiles, and microbial community composition under two thermal regimes by means of a microcosm experiment. We chose the phanerogam Myriophyllum spicatum, more typical of meso-eutrophic habitats, and the charophyte Chara hispida, more frequent in oligotrophic waters and belonging to a much less studied macrophyte group, which, moreover, exhibit contrasting functional traits (i.e., roots versus rhizoids). The presence of both macrophyte types considerably reduced the diurnal diffusive CO2 emissions due to their photosynthetic activity compared to bare-sediment situations. The radial oxygen loss of M. spicatum roots provided aerobic-microaerobic conditions beyond the first sediment centimeter, in contrast to more anoxic sediments created by C. hispida. As a result of this, each type of macrophyte determined a particular sediment microbiome. Despite dissolved CH4 being greater in the presence of plants, no statistical differences in CH4 diffusive flux caused by the presence or absence of plants was found. We demonstrated how the presence, or not, of macrophytes is more important than warming (in our case with a temperature difference of 3 °C) in relation to GHG emissions. Both species, being perennial, provide ecosystem services year-round and are strong candidates for management strategies aimed at transforming new or restored aquatic ecosystems into carbon sinks.
Collapse
Affiliation(s)
- María A Rodrigo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Catedrático José Beltrán 2, E-46980, Paterna, València, Spain.
| | - Eric Puche
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Catedrático José Beltrán 2, E-46980, Paterna, València, Spain
| | - Manuel Muñoz-Colmenares
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Catedrático José Beltrán 2, E-46980, Paterna, València, Spain
| | - Salvador Sánchez-Carrillo
- Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales-CSIC (MNCN-CSIC), Serrano 115 Bis, E-28006, Madrid, Spain
| |
Collapse
|
10
|
Zhang B, Zhou J, Wu J, Wang Y, Ye F, Shen X, Hong Y. Unlocking N 2O respiratory pathways in Stutzerimonas stutzeri PRE-2: Implications for reducing N 2O emissions from estuaries. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107044. [PMID: 40043466 DOI: 10.1016/j.marenvres.2025.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Although nitrogen cycling in nitrogen-enriched estuaries is highly active, the reported nitrous oxide (N2O) emission factor (EF5e) values for N2O emissions in estuarine environments are usually low. Therefore, biological or abiotic mechanisms control the emission of N2O from estuarine ecosystems. In this study, a pure culture of N2O-reducing bacteria was isolated from Pearl River Estuary surface sediment and identified as Stutzerimonas stutzeri PRE-2. This strain displayed a high N2O reduction capability, and the average N2O reduction rate was 17.93 ± 0.43 μmol h-1 under anoxic conditions. This reduction of N2O was coupled with the stoichiometric consumption of acetate or lactate as electron donors, suggesting that microbial N2O reduction involves electron transport. Furthermore, N2O reduction can yield energy that supports microbial growth. Genomic analysis demonstrated that the strain Stutzerimonas stutzeri PRE-2 contains a complete pathway for the reduction of N2O to N2. Typical respiratory chain inhibitors did not significantly inhibit N2O reduction activity, demonstrating that the electron transfer pathway involved in N2O reduction is unique compared to the classic respiratory chain. The integrated evidence suggests that microbial N2O reduction by Stutzerimonas stutzeri PRE-2 involves N2O respiration and may play an important role in reducing N2O emissions in estuarine ecosystems.
Collapse
Affiliation(s)
- Baoshan Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiaxian Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Tan Q, Zhu Y, Zhao Y, Zheng L, Wang X, Xing Y, Wu H, Tian Q, Zhang Y. Comparative analysis of niche adaptation strategies of AOA, AOB, and comammox along a gate-controlled river-estuary continuum. WATER RESEARCH 2025; 273:122964. [PMID: 39693717 DOI: 10.1016/j.watres.2024.122964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Ammonia oxidizers are key players in the biogeochemical nitrogen cycle. However, in critical ecological zones such as estuaries, especially those affected by widespread anthropogenic dam control, our understanding of their occurrence, ecological performance, and survival strategies remains elusive. Here, we sampled sediments along the Haihe River-Estuary continuum in China, controlled by the Haihe Tidal Gate, and employed a combination of biochemical and metagenomic approaches to investigate the abundance, activity, and composition of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and complete ammonia oxidizers (comammox). We also conducted an extensive comparison of the salinity adaptation mechanisms of different ammonia oxidizers. We found that AOB (57.55 ± 11.46 %) dominated the nitrification process upstream of the tidal gate, while comammox (68.22 ± 14.42 %) played the major role downstream. Redundancy analysis results showed that total nitrogen, ammonium, and salinity were the primary factors influencing the abundance, activity, and contribution of ammonia oxidizers. The abundance and activity of AOB were significantly positively correlated with ammonium. KEGG annotation results showed that AOA Nitrososphaera, AOB Nitrosomonas, and comammox Nitrospira had 7, 31, and 22 genes associated to salinity adaptation, respectively, and were capable of employing both the "salt-in" and "salt-out" strategies. Metagenome assembly results indicated that comammox outperformed AOA primarily in compatible solute accumulation; AOA can synthesize glutamate, whereas comammox Nitrospira can additionally synthesize glycine betaine, choline, and trehalose. The tidal gate caused sharp shifts in ammonium (from 4.10 ± 3.28 mg·kg-1 to 0.45 ± 0.10 mg·kg-1) and salinity (from 1.64 ± 0.48 ppt to 3.26 ± 0.89 ppt), playing a dominant role in driving niche differentiation of ammonia oxidizers along the Haihe River-Estuary continuum. These findings provide profound insights into the nitrogen cycle in freshwater-saltwater transition zones, especially in today's world where estuaries are widely controlled by tidal gates.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yi Zhu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, PR China.
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
12
|
Fan W, Xu Z, Liu Y, Dong Q, Zhang S, Zhu Z, Yang Z. Satellite-Based Estimation of Nitrous Oxide Concentration and Emission in a Large Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5012-5020. [PMID: 39908418 DOI: 10.1021/acs.est.4c09302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Estuaries are nitrous oxide (N2O) emission hotspots and play an important role in the global N2O budget. However, the large spatiotemporal variability of emission in complex estuary environments is challenging for large-scale monitoring and budget quantification. This study retrieved water environmental variables associated with N2O cycling based on satellite imagery and developed a machine learning model for N2O concentration estimations. The model was adopted in China's Pearl River Estuary to assess spatiotemporal N2O dynamics as well as annual total diffusive emissions between 2003 and 2022. Results showed significant variability in spatiotemporal N2O concentrations and emissions. The annual total diffusive emission ranged from 0.76 to 1.09 Gg (0.95 Gg average) over the past two decades. Additionally, results showed significant seasonal variability with the highest contribution during spring (31 ± 3%) and lowest contribution during autumn (21 ± 1%). Meanwhile, emissions peaked at river outlets and decreased in an outward direction. Spatial hotspots contributed 43% of the total emission while covering 20% of the total area. Finally, SHapley Additive exPlanations (SHAP) was adopted, which showed that temperature and salinity, followed by dissolved inorganic nitrogen, were key input features influencing estuarine N2O estimations. This study demonstrates the potential of remote sensing for the estimation of estuarine emission estimations.
Collapse
Affiliation(s)
- Wenjie Fan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuliang Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Dong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenchang Zhu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
13
|
Xiong R, Chen M, Li Y, Sun G, Huang J, Xue Y, Shan Z, Li T. Warming effects on the emission pathways of N 2O and CH 4 and the role of water column in shallow eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178705. [PMID: 39904218 DOI: 10.1016/j.scitotenv.2025.178705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Shallow lakes are frequently reported to be pivotal sources of greenhouse gases (GHGs) such as methane (CH4) and nitrous oxide (N2O) to the atmosphere, and their emissions are strongly influenced by changing climate and water eutrophic state. However, the transfer of N2O and CH4 from sediments to the atmosphere and the role of the water column in shallow eutrophic lakes remain poorly understood, particularly under warming conditions. Herein, the effects of experimental warming on diffusion and ebullition emissions of N2O and CH4 from shallow lakes and the potential drivers were investigated. Results showed that 88.68 % of N2O emissions depended on diffusion, while 61.60 % of the CH4 was emitted by ebullition. Warming significantly stimulated N2O and CH4 emissions at the water-air interface, with CH4 (0.45 eV) having a higher temperature dependence than N2O (0.25 eV). Warming also shifted CH4 emission pathways from diffusion-dominated to ebullition-dominated at approximately 20 °C. As a source, the water column contributed 35.33 %-66.51 % of N2O emissions to the atmosphere, but as a sink, it oxidized 30.00 %-67.49 % of the CH4 from the sediments. These were driven mainly by the eutrophic state, except for the direct effect of warming, such as the changes of dissolved oxygen, organic carbon, and ammonia nitrogen in the sediment and water column. Warming not only accelerated the GHGs emission from sediments, but also correspondingly changed the transferring processes of GHGs in the water column and then the emissions to the atmosphere. Understanding the complex interactions between climate warming and N2O and CH4 fluxes in shallow eutrophic lakes is critical for effective lake management and control of GHGs emissions.
Collapse
Affiliation(s)
- Rongwei Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ming Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Guangbao Sun
- Jingjiang River Bureau of Hydrology and Water Resources Survey, Hydrology Bureau of Changjiang Water Resources Commission, Jingzhou 434020, PR China
| | - Jinquan Huang
- Department of Soil and Water Conservation, Yangtze River Scientific Research Institute, Wuhan 430010, PR China
| | - Yan Xue
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, PR China
| | - Zeyuan Shan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tianqi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Dong Y, Yuan J, Li J, Liu D, Wu X, Zheng H, Wang H, Wang H, Ding W. Divergent impacts of animal bioturbation on methane and nitrous oxide emissions from mariculture ponds. WATER RESEARCH 2025; 270:122822. [PMID: 39580944 DOI: 10.1016/j.watres.2024.122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Aquaculture systems are of increasing concern as an important source of atmospheric methane (CH4) and nitrous oxide (N2O). However, the role of animals in regulating CH4 and N2O emissions from aquaculture systems remains unclear. Here, we established mesocosm trials to investigate impacts of bioturbation of different aquaculture species (i.e., clam, shrimp, and crab) on CH4 and N2O fluxes in a mariculture pond. Across the initial, middle, and final culturing stages, mean CH4 flux in mesocosm without animals was 4.81 ± 0.09 µg CH4 m‒2 h‒1, while the existence of clam, shrimp, and crab significantly increased CH4 flux by 35.3 %, 80.6 %, and 138 %, respectively. Bioturbation significantly decreased dissolved oxygen (DO) concentration by 5.19‒44.8 % but increased porewater CH4 concentration by 14.1‒59.9 %, indicating that lowered DO caused by animal respiration promoted CH4 production in sediment. Moreover, bioturbation of animals significantly increased ebullitive CH4 fluxes by 41.0‒216 %, contributing 57.4‒77.2 % of the increased CH4 emission in mesocosms with animals. However, shrimp and crab significantly reduced N2O flux by 30.3 % and 42.5 %, respectively, primarily due to lowered DO conditions suppressing nitrification and limiting NO3‒ supply for denitrification. By contrast, clam significantly increased N2O emission by 181 % because its filter-feeding behavior excreted more NH4+ and NO3‒ into overlying water and thereby facilitating N2O production. The N2O concentration in overlying water was 1.72‒2.83-fold of that in porewater, and the calculated diffusive N2O flux was 1.80‒37.5 % greater than chamber-measured N2O efflux. This implied that N2O might be primarily produced in overlying water rather than sediments, and the produced N2O can either evade as water-air fluxes or diffuse downwards into sediments to be consumed. Overall, our study advocates that aquaculture-related climate mitigation strategies should place more attention on the divergent impacts of animal bioturbation on CH4 and N2O emissions.
Collapse
Affiliation(s)
- Yanhong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Junjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyan Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xian Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huijie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huiqin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Zhang Y, Zhao G, Yang P, Song C, Wang Y, Zhang Y, Zou Y, Zheng Z, Tang KW, Li S. Aquaculture source of atmospheric N 2O in China: Comparison of system types, management practices and measurement methods. ENVIRONMENTAL RESEARCH 2025; 267:120685. [PMID: 39710234 DOI: 10.1016/j.envres.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture systems contribute to atmospheric N2O, but the magnitude of this N2O source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr-1 (4.12 Tg CO2-eq yr-1). N2O emission varied significantly according to system types, farmed species, physical dimensions of the system, hydrographical conditions, and management practices. Of these, inland pond systems had a higher N2O flux (268.38 ± 75.96 mg N m-2 yr-1) and indirect N2O emission factor (4.4 ± 0.9‰) than the other system types. Mixed species farming tended to emit less N2O than monospecific farming, whereas small (<1 ha) and shallow ponds (<1 m) were hotspots for N2O emission. Flux values based on different wind-driven diffusion models varied widely, and the model CC98 agreed most closely with direct measurements using floating chamber. Overall, aquaculture waters had a lower emission intensity than streams, rivers and reservoirs, but comparable to estuaries and lakes. Rapid expansion of the aquaculture sector and the limited N2O data for this sector, especially for rice-aquaculture co-culture systems, highlight the need for better monitoring and on-site measurements to refine the inventory of greenhouse gas emissions from the aquaculture systems.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Guanghui Zhao
- Department of Earth Science and Engineering, Shanxi Institute of Technology, Yangquan, 045000, China
| | - Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yiwen Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuxing Zou
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang, 277160, China
| | - Zhuangpeng Zheng
- School of Tourismand Historical Culture, Zhaoqing University, Zhaoqing, 526061, China
| | - Kam W Tang
- Department of Life Sciences, Texas A&M University-Corpus Christi, TX 78412, USA.
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
16
|
Gao Y, Li J, Wang S, Jia J, Wu F, Yu G. Global inland water greenhouse gas (GHG) geographical patterns and escape mechanisms under different water level. WATER RESEARCH 2025; 269:122808. [PMID: 39571522 DOI: 10.1016/j.watres.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024]
Abstract
Inland water ecosystems are unique, whereby water level changes can lead to variance in greenhouse gas (GHG) emissions. The GHG circulation intensity of inland waterbodies is high, so different water depths affect the temperature sensitivity of greenhouse gases, and have different cooling effects on CO2 storage and warming effects on CH4 emissions, being a typical GHG conversion channel. This study systematically reveals geographical GHG emission patterns from inland waterbodies and GHG impact mechanisms from regional waterbodies. Special emphasis is also paid to compounded environmental impact changes on GHG emissions under water level regulations. Additionally, we explore how increases in primary productivity can convert aquatic ecosystems from CO2 sources to CO2 sinks. However, GHG formation and emissions under ecological reservoir water level fluctuations in flood-ebb zones, intertidal tidal zones, wetlands, and lacustrine systems remain uncertain compared with those under natural hydrological conditions. Therefore, mechanisms that control GHG exchange and production processes under water level changes must first be determined, especially regarding post flood hydrological-based drying effects on GHG flux at the water-air interface. Finally, we recommend instituting environmental management and water-level control measures to reduce GHG emissions, which are favorable for minimizing GHG flux while protecting ecosystem functions and biodiversity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jiajia Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
17
|
Paranaíba JR, Struik Q, Shendurnikar S, Ma Y, Quadra GR, Kosten S. Summer CH 4 ebullition strongly determines year-round greenhouse gas emissions from agricultural ditches despite frequent dredging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123813. [PMID: 39721379 DOI: 10.1016/j.jenvman.2024.123813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Recent studies indicate that greenhouse gas (GHG) emissions from agricultural drainage ditches can be significant on a per-unit area basis, but spatiotemporal investigations are still limited. Additionally, the impact of dredging - a common management in such environments - on ditch GHG emissions is largely unknown. This study presents year-round GHG emissions from nine ditches on a dairy farm in the center of the Netherlands, where each year, approximately half of the ditches are dredged in alternating cycles. We measured monthly diffusive fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), along with ebullitive CH4 emissions, supplemented by diel flux measurements (i.e., 24-h measurements) conducted in summer and winter. Our findings indicate that while diffusive GHG fluxes exhibited low spatiotemporal variation, ebullitive CH4 emissions were significantly higher during warmer periods and marginally elevated at ditch intersections. CH4 ebullition was the dominant pathway of ditch GHG emissions, accounting for 58% of the total annual emissions, followed by CO2 (39%), and N2O (3%). Approximately 80% of the total CH4 emissions occurred through ebullition during spring and summer. The average CH4 emission factor estimated for our ditches (574 kg ha-1 year-1) is ∼40% higher than the Tier-1 value suggested by the IPCC for ditches on mineral soils (416 kg ha-1 year-1). Based on two 24-h measurement campaigns, we concluded that neglecting nighttime diffusive CO2 and CH4 emissions may lead to inaccurate estimates of annual ditch GHG emissions, with ∼12% underestimation in this study. Although dredging led to subtle increases in water-to-atmosphere GHG emissions immediately after the activity, it reduced overall annual GHG emissions by ∼35%. This study highlights the importance of CH4 ebullition and of capturing diel cycles of diffusive emissions to accurately assess ditch GHG emissions and underscores the importance of considering seasonal variations and dredging practices when budgeting ditch GHG emissions.
Collapse
Affiliation(s)
- José R Paranaíba
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - Quinten Struik
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Saumya Shendurnikar
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Yinxiao Ma
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Gabrielle R Quadra
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sarian Kosten
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Wang L, Xiang L, Wang X, Liu T, Chen H, Li D, Jian C, Guo W, Xiao Z, He Y. Utilization patterns strongly dominated the dynamics of CO 2 and CH 4 emissions from small artificial lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123613. [PMID: 39662434 DOI: 10.1016/j.jenvman.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Small lakes are significant sources of CO2 and CH4 emissions to atmosphere. The dynamics and controls of CO2 and CH4 emissions from human-dominated small lakes with diverse functions remain poorly understood. We investigated the spatiotemporal dynamics of CO2 and CH4 concentrations and fluxes in 33 small lakes around the urban area with different landscape properties and utilization patterns, to clarify the impact of human-dominated functional shift on their greenhouse gas emissions. Meanwhile, we used microcosm cultivation methods to assess the CO2 and CH4 production rates of sediments in these lakes. The results indicated that the utilization ways significantly influence the CO2 and CH4 emissions in these lakes, with urban landscape lakes and aquaculture lakes showing significantly higher emissions compared to irrigation water-supplying lakes and drinking-water lakes. Extensive urbanization and aquaculture practices could increase the risk of that small lakes turn into hotspots of CO2 and CH4 emissions, and further complicate their spatial heterogeneity. Meanwhile, the production potential of CO2 and CH4 in sediments, as well as gas fluxes in small lakes, exhibited consistent functional differentiation across different utilization patterns. They were mainly driven by changes in sediment organic carbon and microbial carbon. Additionally, the difference of organic carbon and nitrogen loads were another drives for the variability in CO2 and CH4 emissions. We highlighted that the continuous accumulation of nutrient loads in water and sediments in human-dominated small lakes has greatly enhanced the potential for carbon gas emissions. We also found that utilization ways can significantly affect the key controls of CO2 and CH4 emission from small lakes, and also influence the reliability of carbon emission prediction models based on water chemistry parameters. To accurately estimate the contribution of small lakes to the global greenhouse gas inventory, it is essential to establish adaptive predictive models that consider the uncertainties in lake carbon emissions resulting from human utilization patterns.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Lingyi Xiang
- Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; Chongqing Huadi Resources and Environmental Science and Technology Co., LTD, Chongqing, 400000, China
| | - Xiaofeng Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China.
| | - Tingting Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Honglin Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Dongfeng Li
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Chen Jian
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Wentao Guo
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Zuolin Xiao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Yixin He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
19
|
Xie S, Xia T, Li H, Chen Y, Zhang W. Variability in N 2O emission controls among different ponds within a hilly watershed. WATER RESEARCH 2024; 267:122467. [PMID: 39316960 DOI: 10.1016/j.watres.2024.122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
While it is well established that small water bodies like ponds play a disproportionately large role in contributing to N2O emissions, few studies have focused on lowland ponds in hilly watersheds. Here, we explored the characteristics of N2O concentrations and emissions from various typical ponds (village, tea, forested, and aquaculture ponds) in a hilly watershed and examined the specific controls influencing N2O production. Our findings revealed that tea ponds exhibited the highest N2O flux (8.42 ± 8.23 μmol m-2 d-1), which was 2.8 to 3.3 times greater than other types of ponds. Remarkable seasonal variations were observed in tea and forested ponds due to the seasonality of nutrient-enriched runoff, whereas such variations were less pronounced in village and aquaculture ponds. Key factors such as nitrogen levels, temperature, and dissolved oxygen (DO) emerged as the primary controls of N2O concentrations in ponds, heavily influenced by land use and human activities in their drainage areas. Specifically, N2O production in tea and aquaculture ponds was driven by N inputs from fertilization and feed, respectively, while DO levels governed the process in village and forested ponds, influenced by abundant algae and forest vegetation. This study emphasizes that environmental factors predominantly drive N2O production in ponds within hilly watersheds, but land use in the pond drainages acts as an indirect yet crucial influence. This highlights the need for future research to develop targeted emission reduction strategies based on land use to effectively mitigate N2O emissions, promising a path toward more sustainable and climate-friendly watershed management.
Collapse
Affiliation(s)
- Shuyi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Xia
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hengpeng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongjuan Chen
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China.
| | - Wangshou Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
20
|
Wu W, Comer-Warner SA, Peacock M, Han X, Li SL, Ju X, Liu CQ, Smith P, Yan Z. IPCC Emission Factor Overestimates N 2O Emissions from Agricultural Ditches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20019-20029. [PMID: 39529580 DOI: 10.1021/acs.est.4c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Agricultural ditches emit disproportionate amounts of nitrous oxide (N2O), but their contributions to regional or global N2O emissions remain unclear due to limited data. The Intergovernmental Panel on Climate Change (IPCC) recommends using emission factors (EFs) to estimate indirect N2O emission, but the EF for ditches (EF5g) is categorized as groundwater, which potentially introduces a significant bias. This study conducted a regional-scale campaign in the North China Plain, one of the world's most intensive agricultural regions, and calculated the EF5g values from agricultural ditches by the concentration method (N2O-N/NO3--N). The results found that the regional-scale mean EF5g value (0.0028) was less than half of the IPCC default value (0.006), illustrating that the current IPCC methodology significantly overestimates N2O emissions from agricultural ditches. Despite the relatively small EF5g values, agricultural ditches exhibited a high mean N2O concentration (3.36 μg L-1) and a large regional emission (1.14 ± 0.86 Gg N2O-N yr-1), which is equal to 3.8 ± 2.9% of direct N2O emission from the croplands in the North China Plain. Since ditches are ubiquitous in agricultural regions and are likely to expand under climate change, refining EF5g is crucial to accurately assess their contribution to global N2O budgets.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, U.K
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mike Peacock
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, U.K
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Pete Smith
- Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Dr., Aberdeen AB24 3UU, U.K
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Deng KK, Li YX, Yan P, Huo YC, Yang H, Chen B, He Q, Lin GJ, Guo JS. Different preferences for inorganic carbon influence CO 2 flux under Cyanobacteria or Chlorophyta dominance days. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122662. [PMID: 39332300 DOI: 10.1016/j.jenvman.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Algae play critical roles in the carbon dioxide (CO2) exchange between the water bodies and the atmosphere. However, the effects of prokaryotic and eukaryotic algae on carbon utilization, CO2 flux, and the underlying mechanisms remain poorly understood. Therefore, this study investigated the differences in carbon preferences and CO2 fluxes under different algal dominance days. Our research revealed that dissolved inorganic carbon (DIC) concentration fluctuations had a limited effect on the relative abundance of algae. However, shifts in dominant algal phyla induced changes in DIC, with Cyanobacteria preferring HCO3- and Chlorophyta preferring CO2. Analysis of the water chemistry balance indicated that the growth of Chlorophyta had a 15.59 times greater effect on CO2 sinks compared with that of Cyanobacteria. During the Cyanobacteria dominance days, the lower DIC concentration did not result in a reduction in CO2 emissions. However, increases in the dissolved organic carbon concentration provided a favorable environment for Cyanobacteria, which promoted CO2 emissions. The CCM model indicated that the growth of Chlorophyta resulted in CO2 uptake rates at least 3.57 times higher and CO2 leakage rates up to 0.97 times lower compared to Cyanobacteria, accelerating CO2 transport into the cell. Overall, CO2 sink was stronger on Chlorophyta dominance days than on Cyanobacteria dominance days. This study emphasized the influence of algal phyla on CO2 fluxes, revealing the significant CO2 sink associated with Chlorophyta. Further research should investigate how to manipulate environmental factors to favor Chlorophyta growth and effectively reduce CO2 emissions.
Collapse
Affiliation(s)
- Kai-Kai Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi-Xuan Li
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yuan-Chen Huo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Bin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Gui-Jiao Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
22
|
Liu L, Yang K, Li L, Liu W, Yuan H, Han Y, Zhang E, Zheng Y, Jia Y. The aeration and dredging stimulate the reduction of pollution and carbon emissions in a sediment microcosm study. Sci Rep 2024; 14:26172. [PMID: 39478047 PMCID: PMC11525881 DOI: 10.1038/s41598-024-75790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Sediment dredging and aeration are used as important technical measures to remediate internal loading of sediment in polluted rivers. However, previous studies have overlooked the impact of dredging and aeration on Greenhouse gases (GHGs) emission. We established three aeration rate(six different aeration intervals), one dredging treatment to investigate the effect of aeration and dredging on pollutant removals and CO2, CH4 and N2O emissions. The results indicated the pollutants and GHGs at 2.4, 3.4, 4.4 L min-1 aeration rates reached collaborative emission reduction after more than 3 h or within 1.5 h. Meanwhile, the GHGs fluxes after aeration decreased with the increasing aeration rate, with the mean CO2, CH4 and N2O fluxes of 69.74, 0.16, 7.53 mg m-2 h-1 and 33.64, 0.09, 4.17 mg m-2 h-1 before and after aeration, respectively. With respect to dredging, the pollutants and N2O reached synergic effects between reduction of pollution and carbon emissions after 1 h dredging. Specifically, the CO2 and CH4 emissions after dredging was lower than those of before dredging, but the N2O emissions was higher than those of before dredging. In addition, our analysis revealed that the dissolved oxygen (DO), oxidation-reduction potential (ORP), available potassium (AK) and ammoniacal nitrogen (NH4+-N) in the sediment influenced GHGs fluxes at the water-air interface in the aeration. Our study indicated moderate aeration and dredging can achieve the synergistic effect in reducing pollution and carbon emissions.
Collapse
Affiliation(s)
- Lixiang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ke Yang
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang, 330006, China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
| | - Weiwei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Yongwei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Enxiang Zhang
- Chongqing Research Academy of Environmental Science, Chongqing, 401336, China
| | - Yuping Zheng
- Guangzhou Transport Planning Research Institute, Guangzhou, 510030, China
| | - Yajuan Jia
- Baotou Ecological Environment Technology Center, Baotou, 014010, China
| |
Collapse
|
23
|
Song C, Liu S, Wang G, Zhang L, Rosentreter JA, Zhao G, Sun X, Yao Y, Mu C, Sun S, Hu Z, Lin S, Sun J, Li Y, Wang Y, Li Y, Raymond PA, Karlsson J. Inland water greenhouse gas emissions offset the terrestrial carbon sink in the northern cryosphere. SCIENCE ADVANCES 2024; 10:eadp0024. [PMID: 39331717 PMCID: PMC11430465 DOI: 10.1126/sciadv.adp0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Climate-sensitive northern cryosphere inland waters emit greenhouse gases (GHGs) into the atmosphere, yet their total emissions remain poorly constrained. We present a data-driven synthesis of GHG emissions from northern cryosphere inland waters considering water body types, cryosphere zones, and seasonality. We find that annual GHG emissions are dominated by carbon dioxide ([Formula: see text] teragrams of CO2; [Formula: see text]) and methane ([Formula: see text] teragrams of CH4), while the nitrous oxide emission ([Formula: see text] gigagrams of N2O) is minor. The annual CO2-equivalent (CO2e) GHG emissions from northern cryosphere inland waters total [Formula: see text] or [Formula: see text] petagrams of CO2e using the 100- or 20-year global warming potentials, respectively. Rivers emit 64% more CO2e GHGs than lakes, despite having only one-fifth of their surface area. The continuous permafrost zone contributed half of the inland water GHG emissions. Annual CO2e emissions from northern cryosphere inland waters exceed the region's terrestrial net ecosystem exchange, highlighting the important role of inland waters in the cryospheric land-aquatic continuum under a warming climate.
Collapse
Affiliation(s)
- Chunlin Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shaoda Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liwei Zhang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, China
| | - Judith A Rosentreter
- Center for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Gang Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangyang Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuanzhi Yao
- School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Cuicui Mu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, China
| | - Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhaoyong Hu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shan Lin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Juying Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuhao Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peter A Raymond
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Jan Karlsson
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| |
Collapse
|
24
|
Qu Q, Hu X, Feng R. Using the Potential Transformation of Dissolved Organic Matter to Understand Carbon Emissions from Inland Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39078620 DOI: 10.1021/acs.est.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Understanding the transformation of river dissolved organic matter (DOM) is important for assessing the emissions of greenhouse gases (GHGs) in inland waters. However, the relationships between the variations in DOM components and GHGs remain largely unknown. Here, parallel factor analysis (PARAFAC) was applied to investigate the DOM components in 46 inland rivers in China. We found that the GHG emissions in peri-urban rivers were 1.10-2.15 times greater than those in urban rivers. Microbial and environmental factors (e.g., living cell numbers, microbial activity and pH) explained more than 70% of the total variance in GHG emissions in rivers. DOM variations relationships between different components ware revealed based on compositional data principal component analysis (CoDA-PCA). Microbial-mediated DOM production and degradation were quantified, and the degradation levels in peri-urban rivers were 11.8-25.2% greater than those in urban rivers. Differences in carbon emission potential between urban and peri-urban rivers were related to DOM variances and transformations and were affected by water chemistry (e.g., NH4-N and As). This study clarifies the regulatory effects of DOM composition variations and transformations on GHG emissions, and enhances the understanding of the DOM biogeochemical cycle.
Collapse
Affiliation(s)
- Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Pan Y, Wu J, Liu G, Liu W, Ma L. Differential responses of temperature sensitivity of greenhouse gases emission to seasonal variations in plateau riparian zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124190. [PMID: 38782159 DOI: 10.1016/j.envpol.2024.124190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Riparian zones, regarded as hotspots for greenhouse gas (GHG) emissions, where the variation in temperature sensitivity (Q10) of GHG emissions is crucial for assessing GHG budgets under global warming. However, the seasonal Q10 of GHG emissions from high-elevation riparian zones and underlying microbial mechanisms are poorly documented. This study focuses on seasonal Q10 patterns of GHG emissions from riparian zones along the Lhasa River on the Tibetan Plateau. CO2 and CH4 emissions from riparian soils were more sensitive to temperature in spring than in summer. The opposite trend was observed for Q10 of N2O emissions. Soil organic carbon (SOC) had relatively large direct effects on the Q10-CO2 value in summer, whereas soil nitrate nitrogen (SNO3--N) was the determinant of Q10-CO2 value in spring. mcrA:pmoA and soil microbial biomass C (SMBC) had strong direct effects on the Q10 of CH4 emissions in summer; the Q10-CH4 value in spring was significantly affected by the mcrA abundance. SMBC and the nirK + nirS abundance were key factors affecting the Q10-N2O value. Q10-CO2 and Q10-CH4 values exhibited strong seasonalities in the lower reaches of riparian soils, mainly due to the seasonalities of SNO3--N and mcrA:pmoA, respectively. The Q10-N2O value in the middle and upper reaches of riparian soils presented seasonality, which was largely due to the seasonalities of soil ammonia nitrogen and microbial biomass carbon. During thawing, plant productivity increased, substrate carbon was sufficient, microbial biomass increased, and inorganic nitorgen and denitrifier abundance decreased, causing 29.67% and 37.47% decreases in the Q10-CO2 and Q10-CH4 values, respectively, and a 70.85% increase in the Q10-N2O value, indicating that the potential release of N2O from riparian zones along the plateau river was more susceptible to seasonal variations. Our findings are conducive to accurately evaluating the potential contribution of GHG emissions from high-elevation riparian zones to global warming.
Collapse
Affiliation(s)
- Yongtai Pan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Junjun Wu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China.
| |
Collapse
|
26
|
Zheng Y, Zhan L, Ji Q, Ma X. Seasonal isotopic and isotopomeric signatures of nitrous oxide produced microbially in a eutrophic estuary. MARINE POLLUTION BULLETIN 2024; 204:116528. [PMID: 38833950 DOI: 10.1016/j.marpolbul.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Anthropogenic input of excess nutrients stimulates massive nitrous oxide (N2O) production in estuaries with distinct seasonal variations. Here, nitrogen isotopic and isotopomeric signatures were utilized to investigate the seasonal dynamics of N2O production and nitrification at the middle reach of the eutrophic Pearl River Estuary in the south of China. Elevated N2O production primarily via ammonia oxidation (> 1 nM-N d-1) occurred from April to November, along with increased temperature and decreased dissolved oxygen concentration. This consistently oxygenated water column showed active denitrification, contributing 20-40 % to N2O production. The water column microbial N2O production generally constituted a minor fraction (10-15 %) of the estuarine water-air interface efflux, suggesting that upstream transport and tidal dilution regulated the dissolved N2O inventory in the middle reach of the estuary. Nitrification (up to 3000 nM-N d-1) played a critical role in bioavailable nitrogen conversion and N2O production, albeit with N2O yields below 0.05 %.
Collapse
Affiliation(s)
- Yijie Zheng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Liyang Zhan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qixing Ji
- Earth, Ocean and Atmospheric Sciences Thrust, the Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
| | - Xiao Ma
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China.
| |
Collapse
|
27
|
Song K, Wang S, Xu X, Ma J, Yang Y, Zeng Y, Li J, Zhou X, Zhou Y. Benthic clade II-type nitrous oxide reducers suppress nitrous oxide emissions in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172908. [PMID: 38697552 DOI: 10.1016/j.scitotenv.2024.172908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China
| | - Yuxuan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yuli Zeng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
28
|
Li Q, Yu H, Yuan P, Liu R, Jing Z, Wei Y, Tu S, Gao H, Song Y. Mitigated N 2O emissions from submerged-plant-covered aquatic ecosystems on the Changjiang River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172592. [PMID: 38642768 DOI: 10.1016/j.scitotenv.2024.172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.
Collapse
Affiliation(s)
- Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
29
|
Sun C, Liu N, Song J, Chen L, Zhang Y, Wang X. High-Resolution Estimates of N 2O Emissions from Inland Waters and Wetlands in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8736-8747. [PMID: 38723264 DOI: 10.1021/acs.est.4c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.
Collapse
Affiliation(s)
- Cheng Sun
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Nuo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Junnian Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Zhang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xian'en Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun ,Jilin 130021, China
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
30
|
Zhang Y, Yang P, Wang Y, Zhao G, Zheng Z, Zou Y, Zhang Y, Li S. Rainstorm and strong wind weathers largely increase greenhouse gases flux in shallow ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171478. [PMID: 38453071 DOI: 10.1016/j.scitotenv.2024.171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Shallow-water ponds represent the hotspots of greenhouse gas (GHG) emissions. Most current studies focus on the temporal dynamics for GHGs in water, with little consideration given to the effects of weather changes. In this study, we measured and compared the concentrations and fluxes of CO2, CH4, and N2O from a pond in Northeast China under different meteorological conditions. Results showed that the rates of CO2, CH4, and N2O emissions from pond into the atmosphere during strong winds were 85.85 ± 7.55 mmol m-2 d-1, 22.05 ± 6.80 mmol m-2 d-1, and 10.87 ± 0.72 μmol m-2 d-1, respectively, significantly higher than those measured during non-rain weather. Among which, over 88 % of CH4 emissions were contributed by ebullition. Meanwhile, the CO2 and N2O flux were also significantly higher during heavy rainfall, reaching 100.05 ± 19.76 mmol m-2 d-1 and 5.90 ± 1.03 μmol m-2 d-1, respectively. Strong winds and precipitation induced sediment disturbances, high gas transport coefficients, reduced photosynthesis and oxygen greatly promoted the GHGs escape evasion. Wind speed, air pressure, solar radiation, and dissolved oxygen in water were important influencing factors. Our results emphasize the importance of capturing short-term weather disturbance events, especially rainstorm and strong winds, to accurately assess the annual GHG budget from these shallow water ecosystems.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guanghui Zhao
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhuangpeng Zheng
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang 277160, China
| | - Yuxing Zou
- School of Tourism and Historical Culture, Zhaoqing University, Zhaoqing 526061, China
| | - Yiwen Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
31
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
Affiliation(s)
- Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, PR China
| | - Qiang Xu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 15030, PR China
| | - Jiaju Liu
- Research Center for Integrated Control of Watershed Water Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ting Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
32
|
Niu X, Wu W, Shi W, Fu Z, Han X, Li SL, Yan Z. Quantifying the contribution of methane diffusion and ebullition from agricultural ditches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170912. [PMID: 38354794 DOI: 10.1016/j.scitotenv.2024.170912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Agricultural ditches are significant methane (CH4) sources since substantial nutrient inputs stimulate CH4 production and emission. However, few studies have quantified the role of diffusion and ebullition pathways in total CH4 emission from agricultural ditches. This study measured the spatiotemporal variations of diffusive and ebullitive CH4 fluxes from a multi-level ditch system in a typical temperate agriculture area, and assessed their contributions to the total CH4 emission. Results illustrated that the mean annual CH4 flux in the ditch system reached 1475.1 mg m-2 d-1, among which 1376.7 mg m-2 d-1 was emitted via diffusion and 98.5 mg m-2 d-1 via ebullition. Both diffusive and ebullitive fluxes varied significantly across different types of ditches and seasons, with diffusion dominating CH4 emission in middle-size ditches and ebullition dominating in large-size ditches. Diffusion was primarily driven by large nutrient inputs from adjacent farmlands, while hydrological factors like water temperature and depth controlled ebullition. Overall, CH4 emission accounted for 86 % of the global warming potential across the ditch system, with 81 % attributed to diffusion and 5 % to ebullition. This study highlights the importance of agricultural ditches as hotspots for CH4 emissions, particularly the dominant role of the diffusion pathway.
Collapse
Affiliation(s)
- Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Weiwei Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zihuan Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
33
|
Lu Y, Kronzucker HJ, Yu M, Shabala S, Shi W. Nitrogen-loss and carbon-footprint reduction by plant-rhizosphere exudates. TRENDS IN PLANT SCIENCE 2024; 29:469-481. [PMID: 37802692 DOI: 10.1016/j.tplants.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Low-carbon approaches to agriculture constitute a pivotal measure to address the challenge of global climate change. In agroecosystems, rhizosphere exudates are significantly involved in regulating the nitrogen (N) cycle and facilitating belowground chemical communication between plants and soil microbes to reduce direct and indirect emissions of greenhouse gases (GHGs) and control N runoff from cultivated sites into natural water bodies. Here, we discuss specific rhizosphere exudates from plants and microorganisms and the mechanisms by which they reduce N loss and subsequent N pollution in terrestrial and aquatic environments, including biological nitrification inhibitors (BNIs), biological denitrification inhibitors (BDIs), and biological denitrification promoters (BDPs). We also highlight promising application scenarios and challenges in relation to rhizosphere exudates in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Shu W, Zhang Q, Audet J, Li Z, Leng P, Qiao Y, Tian C, Chen G, Zhao J, Cheng H, Li F. Non-negligible N 2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. WATER RESEARCH 2024; 251:121124. [PMID: 38237464 DOI: 10.1016/j.watres.2024.121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, Aarhus 8000, Denmark
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifang Leng
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Tian
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
35
|
Liang M, Zhou Z, Ren P, Xiao H, Xu-Ri, Hu Z, Piao S, Tian H, Tong Q, Zhou F, Wei J, Yuan W. Four decades of full-scale nitrous oxide emission inventory in China. Natl Sci Rev 2024; 11:nwad285. [PMID: 38487250 PMCID: PMC10939392 DOI: 10.1093/nsr/nwad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024] Open
Abstract
China is among the top nitrous oxide (N2O)-emitting countries, but existing national inventories do not provide full-scale emissions including both natural and anthropogenic sources. We conducted a four-decade (1980-2020) of comprehensive quantification of Chinese N2O inventory using empirical emission factor method for anthropogenic sources and two up-to-date process-based models for natural sources. Total N2O emissions peaked at 2287.4 (1774.8-2799.9) Gg N2O yr-1 in 2018, and agriculture-developed regions, like the East, Northeast, and Central, were the top N2O-emitting regions. Agricultural N2O emissions have started to decrease after 2016 due to the decline of nitrogen fertilization applications, while, industrial and energetic sources have been dramatically increasing after 2005. N2O emissions from agriculture, industry, energy, and waste represented 49.3%, 26.4%, 17.5%, and 6.7% of the anthropogenic emissions in 2020, respectively, which revealed that it is imperative to prioritize N2O emission mitigation in agriculture, industry, and energy. Natural N2O sources, dominated by forests, have been steadily growing from 317.3 (290.3-344.1) Gg N2O yr-1 in 1980 to 376.2 (335.5-407.2) Gg N2O yr-1 in 2020. Our study produces a Full-scale Annual N2O dataset in China (FAN2020), providing emergent counting to refine the current national N2O inventories.
Collapse
Affiliation(s)
- Minqi Liang
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Zheyan Zhou
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Peiyang Ren
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Han Xiao
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
| | - Xu-Ri
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongmin Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Qing Tong
- Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
| | - Feng Zhou
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jing Wei
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 510245, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
36
|
Baur PA, Henry Pinilla D, Glatzel S. Is ebullition or diffusion more important as methane emission pathway in a shallow subsaline lake? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169112. [PMID: 38072262 DOI: 10.1016/j.scitotenv.2023.169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Methane (CH4) emissions via ebullition contribute significantly to greenhouse gas emissions from freshwater bodies. According to the literature, the ebullition pathway may even be the most important pathway in some cases, particularly in shallow lakes. Ebullition rates are not often estimated because of the high uncertainty associated with episodic releases, leading to difficulties in their determination. This study provides an estimate of such emissions in a large, shallow, subsaline lake in eastern Austria, Lake Neusiedl, and compares them to the diffusion pathway. Ebullition gas sampling was conducted every 5-10 days over a period of 107 days from late March to mid-July 2021, using ebullition traps placed in three distinct locations: Reed belt, Channel and Open water/Lake. The aim was to study the temporal and spatial heterogeneity of ebullition and its contribution to total emissions. At the same time, several water quality and other environmental parameters were measured and then tested against the CH4 ebullition rates to explore them as potential drivers for this pathway. The carbon isotope fractionation factor (αC) of the measured CH4 ebullition gas, ranging from 1.03 to 1.06, indicates a dominance of the acetoclastic methanogenesis in the sediments of Lake Neusiedl, regardless of the location. The Reed belt location showed the highest mean CH4 ebullition rate (17 ± 28 mg CH4 m-2 d-1), which is >340-fold higher than the mean of the other two locations, and demonstrated also a strong temperature dependency. In all locations at Lake Neusiedl, the median CH4 fluxes via diffusion are significantly higher than via ebullition. Our analyses do not confirm the dominance of the ebullition pathway in any of the studied locations. Whereas at the Reed belt, ebullition accounts for 48 % of the CH4 emissions, in the other two locations, is responsible only for about 1 %.
Collapse
Affiliation(s)
- Pamela Alessandra Baur
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Geography and Regional Research, Working group Geoecology, Josef-Holaubek-Platz 2, Vienna 1090, Austria; University of Vienna, Faculty of Life Sciences, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, Vienna 1030, Austria.
| | - Daniela Henry Pinilla
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Geography and Regional Research, Working group Geoecology, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Stephan Glatzel
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Geography and Regional Research, Working group Geoecology, Josef-Holaubek-Platz 2, Vienna 1090, Austria; University of Vienna, Faculty of Life Sciences, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, Vienna 1030, Austria.
| |
Collapse
|
37
|
Fadum JM, Borton MA, Daly RA, Wrighton KC, Hall EK. Dominant nitrogen metabolisms of a warm, seasonally anoxic freshwater ecosystem revealed using genome resolved metatranscriptomics. mSystems 2024; 9:e0105923. [PMID: 38259093 PMCID: PMC10878078 DOI: 10.1128/msystems.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Nitrogen (N) availability is one of the principal drivers of primary productivity across aquatic ecosystems. However, the microbial communities and emergent metabolisms that govern N cycling in tropical lakes are both distinct from and poorly understood relative to those found in temperate lakes. This latitudinal difference is largely due to the warm (>20°C) temperatures of tropical lake anoxic hypolimnions (deepest portion of a stratified water column), which result in unique anaerobic metabolisms operating without the temperature constraints found in lakes at temperate latitudes. As such, tropical hypolimnions provide a platform for exploring microbial membership and functional diversity. To better understand N metabolism in warm anoxic waters, we combined measurements of geochemistry and water column thermophysical structure with genome-resolved metatranscriptomic analyses of the water column microbiome in Lake Yojoa, Honduras. We sampled above and below the oxycline in June 2021, when the water column was stratified, and again at the same depths and locations in January 2022, when the water column was mixed. We identified 335 different lineages and significantly different microbiome membership between seasons and, when stratified, between depths. Notably, nrfA (indicative of dissimilatory nitrate reduction to ammonium) was upregulated relative to other N metabolism genes in the June hypolimnion. This work highlights the taxonomic and functional diversity of microbial communities in warm and anoxic inland waters, providing insight into the contemporary microbial ecology of tropical ecosystems as well as inland waters at higher latitudes as water columns continue to warm in the face of global change.IMPORTANCEIn aquatic ecosystems where primary productivity is limited by nitrogen (N), whether continuously, seasonally, or in concert with additional nutrient limitations, increased inorganic N availability can reshape ecosystem structure and function, potentially resulting in eutrophication and even harmful algal blooms. Whereas microbial metabolic processes such as mineralization and dissimilatory nitrate reduction to ammonium increase inorganic N availability, denitrification removes bioavailable N from the ecosystem. Therefore, understanding these key microbial mechanisms is critical to the sustainable management and environmental stewardship of inland freshwater resources. This study identifies and characterizes these crucial metabolisms in a warm, seasonally anoxic ecosystem. Results are contextualized by an ecological understanding of the study system derived from a multi-year continuous monitoring effort. This unique data set is the first of its kind in this largely understudied ecosystem (tropical lakes) and also provides insight into microbiome function and associated taxa in warm, anoxic freshwaters.
Collapse
Affiliation(s)
- J. M. Fadum
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| | - M. A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - R. A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - K. C. Wrighton
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - E. K. Hall
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
38
|
Liu S, Gao Q, Wu J, Xie Y, Yang Q, Wang R, Cui Y. The concentration of CH 4, N 2O and CO 2 in the Pearl River estuary increased significantly due to the sediment particle resuspension and the interaction of hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168795. [PMID: 37996023 DOI: 10.1016/j.scitotenv.2023.168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Hypoxia and sediment particle resuspension (SPR) alter the biogeochemical cycle of estuarine and coastal seas, which in turn affects the production and emission of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) greenhouse gases (GHGs) in estuaries. Despite the importance of CH4, N2O and CO2 in estuarine ecosystems, little is known about their magnitude and spatiotemporal variation under the combined influence of hypoxia and SPR. This study utilized continuous mooring observations to investigate the temporal and spatial variations of GHGs before and after hypoxia in the Pearl River Estuary (PRE). The results showed that the concentration of GHGs in the water column increased significantly following hypoxia as compared to its absence. The synergistic effect of SPR and hypoxia significantly enhances GHGs production and accumulation in bottom water. Anaerobic mineralization of organic matter (OM) in an environment with severely low dissolved oxygen (DO) is the primary determinant for increased CH4 concentration, while OM and CH4 oxidation are the main drivers for maintaining high CO2 concentration in subsurface water. Hypoxic development enhanced denitrification N2O production in the water column. The presence of SPR enhanced oxygen-consuming coupled hypoxia significantly stimulated the increase of CH4, N2O and CO2 concentrations in the water column. Hypoxic development results in an increased water-air GHGs flux, but this effect may be masked by runoff plumes with high GHGs concentrations in the regions near the river outlets. This study highlights that hypoxia leads to significant increases in anaerobic GHGs production and subsequent emissions from estuarine water columns.
Collapse
Affiliation(s)
- Shuangyuan Liu
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Quanzhou Gao
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuting Xie
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianqian Yang
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruowen Wang
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongsheng Cui
- Guangdong Center for Marine Development Research, Guangzhou 510220, China
| |
Collapse
|
39
|
Li Y, Tian H, Yao Y, Shi H, Bian Z, Shi Y, Wang S, Maavara T, Lauerwald R, Pan S. Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era. Nat Commun 2024; 15:942. [PMID: 38296943 PMCID: PMC10830459 DOI: 10.1038/s41467-024-45061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr-1 in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr-1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA.
| | - Yuanzhi Yao
- School of Geographic Sciences, East China Normal University, Shanghai, 610000, China
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zihao Bian
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Shi
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Siyuan Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taylor Maavara
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Ronny Lauerwald
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Palaiseau, 91120, France
| | - Shufen Pan
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
- Department of Engineering, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
40
|
An Z, Chen F, Zheng Y, Zhou J, Liu B, Qi L, Lin Z, Yao C, Wang B, Wang Y, Li X, Yin G, Dong H, Liang X, Liu M, Hou L. Role of n-DAMO in Mitigating Methane Emissions from Intertidal Wetlands Is Regulated by Saltmarsh Vegetations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1152-1163. [PMID: 38166438 DOI: 10.1021/acs.est.3c07882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Coastal wetlands are hotspots for methane (CH4) production, reducing their potential for global warming mitigation. Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in bridging carbon and nitrogen cycles, contributing significantly to CH4 consumption. However, the role of n-DAMO in reducing CH4 emissions in coastal wetlands is poorly understood. Here, the ecological functions of the n-DAMO process in different saltmarsh vegetation habitats as well as bare mudflats were quantified, and the underlying microbial mechanisms were explored. Results showed that n-DAMO rates were significantly higher in vegetated habitats (Scirpus mariqueter and Spartina alterniflora) than those in bare mudflats (P < 0.05), leading to an enhanced contribution to CH4 consumption. Compared with other habitats, the contribution of n-DAMO to the total anaerobic CH4 oxidation was significantly lower in the Phragmites australis wetland (15.0%), where the anaerobic CH4 oxidation was primarily driven by ferric iron (Fe3+). Genetic and statistical analyses suggested that the different roles of n-DAMO in various saltmarsh wetlands may be related to divergent n-DAMO microbial communities as well as environmental parameters such as sediment pH and total organic carbon. This study provides an important scientific basis for a more accurate estimation of the role of coastal wetlands in mitigating climate change.
Collapse
Affiliation(s)
- Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Yao
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Bin Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yixuan Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
41
|
Ma X, Li Y, Wang L, Niu L, Shang J, Zheng J. Hypoxia and salinity constrain the sediment microbiota-mediated N removal potential in an estuary: A multi-trophic interrelationship perspective. WATER RESEARCH 2024; 248:120872. [PMID: 38006831 DOI: 10.1016/j.watres.2023.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Reactive nitrogen (N) enrichment is a common environmental problem in estuarine ecosystems, while the microbial-mediated N removal process is complicated for other multi-environmental factors. Therefore, A systematic investigation is necessary to understand the multi-trophic microbiota-mediated N removal characteristics under various environmental factors in estuaries. Here, we studied how multiple factors affect the multi-trophic microbiota-mediated N removal potential (denitrification and anammox) and N2O emission along a river-estuary-bay continuum in southeastern China using the environmental DNA (eDNA) approach. Results suggested that hypoxia and salinity were the dominant environmental factors affecting multi-trophic microbiota-mediated N removal in the estuary. The synergistic effect of hypoxia and salinity contributed to the loss of taxonomic (MultiTaxa) and phylogenetic (MultiPhyl) diversity across multi-trophic microbiota and enhanced the interdependence among multi-trophic microbiota in the estuary. The N removal potential calculated as the activities of key N removal enzymes was also significantly constrained in the estuary (0.011), compared with the river (0.257) and bay (0.461). Structural equation modeling illustrated that metazoans were central to all sediment N removal potential regulatory pathways. The top-down forces (predation by metazoans) restrained the growth of heterotrophic bacteria, which may affect microbial N removal processes in the sediment. Furthermore, we found that the hypoxia and salinity exacerbated the N2O emission in the estuary. This study clarifies that hypoxia and salinity constrain estuarine multi-trophic microbiota-mediated N removal potential and highlights the important role of multi-trophic interactions in estuarine N removal, providing a new perspective on mitigating estuarine N accumulation.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China
| |
Collapse
|
42
|
Wan XS, Sheng HX, Liu L, Shen H, Tang W, Zou W, Xu MN, Zheng Z, Tan E, Chen M, Zhang Y, Ward BB, Kao SJ. Particle-associated denitrification is the primary source of N 2O in oxic coastal waters. Nat Commun 2023; 14:8280. [PMID: 38092778 PMCID: PMC10719265 DOI: 10.1038/s41467-023-43997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The heavily human-perturbed coastal oceans are hotspots of nitrous oxide (N2O) emission to the atmosphere. The processes underpinning the N2O flux, however, remain poorly understood, leading to large uncertainties in assessing global N2O budgets. Using a suite of nitrogen isotope labeling experiments, we show that multiple processes contribute to N2O production throughout the estuarine-coastal gradient, sustaining intensive N2O flux to the atmosphere. Unexpectedly, denitrification, rather than ammonia oxidation as previously assumed, constitutes the major source of N2O in well-oxygenated coastal waters. Size-fractionated manipulation experiments with gene analysis further reveal niche partitioning of ammonia oxidizers and denitrifiers across the particle size spectrum; denitrification dominated on large particles and ammonia oxidizers on small particles. Total N2O production rate increases with substrate and particle concentrations, suggesting a crucial interplay between nutrients and particles in controlling N2O production. The controlling factors identified here may help understand climate feedback mechanisms between human activity and coastal oceans.
Collapse
Affiliation(s)
- Xianhui S Wan
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA.
| | - Hua-Xia Sheng
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Li Liu
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Hui Shen
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Weiyi Tang
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Wenbin Zou
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Min N Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570208, China
| | - Zhenzhen Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570208, China
| | - Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570208, China
| | - Mingming Chen
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yao Zhang
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Shuh-Ji Kao
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570208, China.
| |
Collapse
|
43
|
Zhang H, Chen H, Grossart HP, Jin L, Yan X, Gao X, Zhang H, Xue Y, Yang J. Persistent response of the bottom free-living bacteria to typhoon events in a subtropical reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 908:168069. [PMID: 39492531 DOI: 10.1016/j.scitotenv.2023.168069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Typhoon-induced perturbations can result in long-lasting effects on aquatic communities in subtropical lakes or reservoirs. However, the responses of bacterial communities and their related nutrient cycling to episodic typhoon events throughout the water column in deep waters remain largely unknown. Here, we conducted a four-year field study to reveal the depth-specific responses of both free-living (FL) and particle-attached (PA) bacteria to typhoon events in a subtropical deep reservoir from 2015 to 2018. By comparing the depth-specific responses of FL and PA bacteria, we found that typhoon-induced inputs of organic matter and microorganisms significantly increased FL bacterial diversity and changed FL bacterial community composition in bottom waters perhaps through the density current or undercurrent. Typhoon events had a more persistent effect on FL than PA bacterial communities, especially in bottom waters of the reservoir. Free-living bacteria were more associated with nutrient cycling in bottom waters than particle-attached bacteria. These findings provide deep understanding of how FL and PA bacteria respond to typhoon events at community level in subtropical deep reservoir and thus help us to improve reservoir management in a rapidly changing world.
Collapse
Affiliation(s)
- Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14469, Germany
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Gao
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Haihan Zhang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
44
|
Sun X, Tan E, Wang B, Gan Z, Yang J, Han J, Zhang X, Kao SJ, King G, Dong H, Jiang H. Salinity change induces distinct climate feedbacks of nitrogen removal in saline lakes. WATER RESEARCH 2023; 245:120668. [PMID: 37776589 DOI: 10.1016/j.watres.2023.120668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Current estimations of nitrogen biogeochemical cycling and N2O emissions in global lakes as well as predictions of their future changes are overrepresented by freshwater datasets, while less consideration is given to widespread saline lakes with different salinity (representing salinization or desalinization). Here, we show that N2O production by denitrification is the main process of reactive nitrogen (Nr, the general abbreviations of NH4+-N, NO2--N and NO3--N) removal in hypersaline lake sediments (e.g. Lake Chaka). The integration of our field measurements and literature data shows that in response to natural salinity decrease, potential Nr removal increases while N2O production decreases. Furthermore, denitrification-induced N2 production exhibits higher salinity sensitivity than denitrification-induced N2O production, suggesting that the contribution of N2O to Nr removal decreases with decreasing salinity. This field-investigation-based salinity response model of Nr removal indicates that under global climate change, saline lakes in the process of salinization or desalination may have distinct Nr removal and climate feedback effects: salinized lakes tend to generate a positive climate feedback, while desalinated lakes show a negative feedback. Therefore, salinity change should be considered as an important factor in assessing future trend of N2O emissions from lakes under climate change.
Collapse
Affiliation(s)
- Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zixuan Gan
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616-5270, United States of America
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Gary King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
45
|
Wang J, Vilmin L, Mogollón JM, Beusen AHW, van Hoek WJ, Liu X, Pika PA, Middelburg JJ, Bouwman AF. Inland Waters Increasingly Produce and Emit Nitrous Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13506-13519. [PMID: 37647507 PMCID: PMC10501125 DOI: 10.1021/acs.est.3c04230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Nitrous oxide (N2O) is a long-lived greenhouse gas and currently contributes ∼10% to global greenhouse warming. Studies have suggested that inland waters are a large and growing global N2O source, but whether, how, where, when, and why inland-water N2O emissions changed in the Anthropocene remains unclear. Here, we quantify global N2O formation, transport, and emission along the aquatic continuum and their changes using a spatially explicit, mechanistic, coupled biogeochemistry-hydrology model. The global inland-water N2O emission increased from 0.4 to 1.3 Tg N yr-1 during 1900-2010 due to (1) growing N2O inputs mainly from groundwater and (2) increased inland-water N2O production, largely in reservoirs. Inland waters currently contribute 7 (5-10)% to global total N2O emissions. The highest inland-water N2O emissions are typically in and downstream of reservoirs and areas with high population density and intensive agricultural activities in eastern and southern Asia, southeastern North America, and Europe. The expected continuing excessive use of nutrients, dam construction, and development of suboxic conditions in aging reservoirs imply persisting high inland-water N2O emissions.
Collapse
Affiliation(s)
- Junjie Wang
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Lauriane Vilmin
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
- Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
| | - José M. Mogollón
- Department
of Industrial Ecology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Arthur H. W. Beusen
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
- PBL
Netherlands Environmental Assessment Agency, P.O. Box 30314, 2500 GH The Hague, The Netherlands
| | - Wim J. van Hoek
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Xiaochen Liu
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Philip A. Pika
- Faculty
of Science, Earth and Climate, Free University
of Amsterdam, de Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Jack J. Middelburg
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Alexander F. Bouwman
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
46
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hanqin Tian
- Department of Earth and Environmental Sciences, Boston College, Schiller Institute for Integrated Science and Society, Chestnut Hill, MA 02467, United States
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guirui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
47
|
Wang Y, Peng Y, Lv C, Xu X, Meng H, Zhou Y, Wang G, Lu Y. Quantitative discrimination of algae multi-impacts on N 2O emissions in eutrophic lakes: Implications for N 2O budgets and mitigation. WATER RESEARCH 2023; 235:119857. [PMID: 36924553 DOI: 10.1016/j.watres.2023.119857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
It is generally accepted that eutrophic lakes significantly contribute to nitrous oxide (N2O) emissions. However, how these emissions are affected by the formation, disappearance, and mechanisms of algal blooms in these lakes has not been systematically investigated. This study examined and determined the relative contribution of spatiotemporal N2O production pathways in hypereutrophic Lake Taihu. Synchronously, the multi-impacts of algae on N2O production and release potential were measured in the field and in microcosms using isotope ratios of oxygen (δ18O) and bulk nitrogen (δ15N) to N2O and to intramolecular 15N site preference (SP). Results showed that N2O production in Lake Taihu was derived from microbial effects (nitrification and incomplete denitrification) and water air exchanges. N2O production was also affected by the N2O reduction process. The mean dissolved N2O concentrations in the water column during the pre-outbreak, outbreak, and decay stages of algae accumulation were almost the same (0.05 μmol·L-1), which was 2-10 times higher than in lake areas algae was not accumulating. However, except for the central lake area, all surveyed areas (with and without accumulated algae) displayed strong release potential and acted as the emission source because of dissolved N2O supersaturation in the water column. The mean N2O release fluxes during the pre-outbreak, outbreak, and decay stages of algae accumulation areas were 17.95, 26.36, and 79.32 μmol·m-2·d-1, respectively, which were 2.0-7.5 times higher than the values in the non-algae accumulation areas. In addition, the decay and decomposition of algae released large amounts of nutrients and changed the physiochemical properties of the water column. Additionally, the increased algae biomass promoted N2O release and improved the proportion of N2O produced via denitrification process to being 9.8-20.4% microbial-derived N2O. This proportion became higher when the N2O consumption during denitrification was considered as evidenced by isotopic data. However, when the algae biomass was excessive in hypereutrophic state, the algae decomposition also consumed a large amount of oxygen, thus limiting the N2O production due to complete denitrification as well as due to the limited substrate supply of nitrate by nitrification in hypoxic or anoxic conditions. Further, the excessive algae accumulation on the water surface reduced N2O release fluxes via hindering the migration of the dissolved N2O into the atmosphere. These findings provide a new perspective and understanding for accurately evaluating N2O release fluxes driven by algae processes in eutrophic lakes.
Collapse
Affiliation(s)
- Yiping Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China; School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Peng
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Chengxu Lv
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China.
| | - Han Meng
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Yongjun Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
48
|
Aben RCH, Velthuis M, Kazanjian G, Frenken T, Peeters ETHM, Van de Waal DB, Hilt S, de Senerpont Domis LN, Lamers LPM, Kosten S. Temperature response of aquatic greenhouse gas emissions differs between dominant plant types. WATER RESEARCH 2022; 226:119251. [PMID: 36288666 DOI: 10.1016/j.watres.2022.119251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.
Collapse
Affiliation(s)
- Ralf C H Aben
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Mandy Velthuis
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands; Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, Wageningen, PB 6708, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands.
| |
Collapse
|