1
|
Taga M, Yoshida K, Yano S, Takahashi K, Kyoizumi S, Sasatani M, Suzuki K, Ogawa T, Kusunoki Y, Tsuruyama T. Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo. Radiat Res 2024; 202:862-869. [PMID: 39449628 DOI: 10.1667/rade-23-00127.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Radiation exposure causes hepatitis which induces hepatic steatosis and fibrosis. Although hepatic stellate cells (HSCs) have been considered potential pathological modulators for the development of hepatitis due to viral and microbial infections, their involvement in radiation-induced hepatitis is yet to be determined. This study aimed to clarify the relationship between radiation exposure and expressions of inflammatory cytokines and chemokines in HSCs in vitro and in vivo. HSCs were obtained from 1-week-old mice, known to be highly sensitive to radiation-induced hepatocellular carcinoma, using a newly established method combining liver perfusion, cell dissociation, and density gradient centrifugation, followed by magnetic negative selection of hematopoietic and endothelial cells with anti-CD45.2 and CD146 antibodies. The isolated HSCs were confirmed by the expression of desmin and glial fibrillary acidic protein (GFAP). We demonstrated that primary cultured HSCs, exposed to X-ray irradiation (0, 1.9, and 3.8 Gy) and cultured for 3 and 7 days, produced elevated levels of C-C motif chemokine ligand 5 (CCL5, also known as RANTES) inflammatory chemokine in a dose-dependent manner. An in vivo immunofluorescence method confirmed that increased CCL5 signals were observed in GFAP-positive HSCs in mouse livers 7 days after whole-body X-ray irradiation (1.9 and 3.8 Gy). Adequate expression of C-C motif chemokine receptor 5 (Ccr5), a receptor for CCL5, was also detected using real-time PCR in the liver of both irradiated and non-irradiated mice. Taken together, our data suggest that HSCs may drive hepatitis via CCL5/CCR5 axis in the liver under radiation-induced stress. Furthermore, this newly established experimental protocol can help evaluate the expression of other inflammatory cytokines in primary cultures of HSCs isolated from infant mice.
Collapse
Affiliation(s)
- Masataka Taga
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Shiho Yano
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Keiko Takahashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Keiji Suzuki
- Radiation Risk Control Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Ogawa
- Center for the Advancement of Higher Education, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Tatsuaki Tsuruyama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
3
|
Dong R, Li H, He XC, Wang C, Perera A, Malloy S, Russell J, Li W, Petentler K, Mao X, Yang Z, Epp M, Hall K, Scott A, McKinney MC, Huang S, Smith SE, Hembree M, Wang Y, Yu Z, Haug JS, Unruh J, Slaughter B, Kang X, Li L. Characterization of Multicellular Niches Supporting Hematopoietic Stem Cells Within Distinct Zones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601225. [PMID: 39071430 PMCID: PMC11275884 DOI: 10.1101/2024.06.28.601225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Previous studies of hematopoietic stem cells (HSCs) primarily focused on single cell-based niche models, yielding fruitful but conflicting findings 1-5 . Here we report our investigation on the fetal liver (FL) as the primary fetal hematopoietic site using spatial transcriptomics. Our study reveals two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche. The PV niche, composing N-cadherin (N-cad) Hi Pdgfrα + mesenchymal stromal cells (MSCs), endothelial cells (ECs), and N-cad Lo Albumin + hepatoblasts, maintains quiescent and multipotential FL-HSCs. Conversely, the sinusoidal niche, comprising ECs, hepatoblasts and hepatocytes, as well as potential macrophages and megakaryocytes, supports proliferative FL-HSCs biased towards myeloid lineages. Unlike prior reports on the role of Cxcl12, with its depletion from vessel-associated stromal cells leading to 80% of HSCs' reduction in the adult bone marrow (BM) 6,7 , depletion of Cxcl12 via Cdh2 CreERT (encoding N-cad) induces altered localization of HSCs from the PV to the sinusoidal niches, resulting in an increase of HSC number but with myeloid-bias. Similarly, we discovered that adult BM encompasses two niches within different zones, each composed of multi-cellular components: trabecular bone area (TBA, or metaphysis) supporting deep-quiescent HSCs, and central marrow (CM, or diaphysis) fostering heterogenous proliferative HSCs. This study transforms our understanding of niches by shifting from single cell-based to multicellular components within distinct zones, illuminating the intricate regulation of HSCs tailored to their different cycling states.
Collapse
|
4
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
5
|
Peixoto MM, Soares‐da‐Silva F, Schmutz S, Mailhe M, Novault S, Cumano A, Ait‐Mansour C. Identification of fetal liver stroma in spectral cytometry using the parameter autofluorescence. Cytometry A 2022; 101:960-969. [PMID: 35491762 PMCID: PMC9790487 DOI: 10.1002/cyto.a.24567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023]
Abstract
The fetal liver (FL) is the main hematopoietic organ during embryonic development. The FL is also the unique anatomical site where hematopoietic stem cells expand before colonizing the bone marrow, where they ensure life-long blood cell production and become mostly resting. The identification of the different cell types that comprise the hematopoietic stroma in the FL is essential to understand the signals required for the expansion and differentiation of the hematopoietic stem cells. We used a panel of monoclonal antibodies to identify FL stromal cells in a 5-laser equipped spectral flow cytometry (FCM) analyzer. The "Autofluorescence Finder" of SONY ID7000 software identified two distinct autofluorescence emission spectra. Using autofluorescence as a fluorescence parameter we could assign the two autofluorescent signals to three distinct cell types and identified surface markers that characterize these populations. We found that one autofluorescent population corresponds to hepatoblast-like cells and cholangiocytes whereas the other expresses mesenchymal transcripts and was identified as stellate cells. Importantly, after birth, autofluorescence becomes the unique identifying property of hepatoblast-like cells because mature cholangiocytes are no longer autofluorescent. These results show that autofluorescence used as a parameter in spectral FCM is a useful tool to identify new cell subsets that are difficult to analyze in conventional FCM.
Collapse
Affiliation(s)
- Márcia Mesquita Peixoto
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance,Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal,Instituto Nacional de Engenharia BiomédicaUniversidade do PortoPortoPortugal,Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Francisca Soares‐da‐Silva
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | | | - Marie‐Pierre Mailhe
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | - Sophie Novault
- Flow cytometry core facility, CRT2, Institut PasteurParisFrance
| | - Ana Cumano
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | | |
Collapse
|
6
|
Ganuza M, Hall T, Myers J, Nevitt C, Sánchez-Lanzas R, Chabot A, Ding J, Kooienga E, Caprio C, Finkelstein D, Kang G, Obeng E, McKinney-Freeman S. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat Cell Biol 2022; 24:1475-1486. [PMID: 36202972 PMCID: PMC10026622 DOI: 10.1038/s41556-022-00999-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Current dogma asserts that the foetal liver (FL) is an expansion niche for recently specified haematopoietic stem cells (HSCs) during ontogeny. Indeed, between embryonic day of development (E)12.5 and E14.5, the number of transplantable HSCs in the murine FL expands from 50 to about 1,000. Here we used a non-invasive, multi-colour lineage tracing strategy to interrogate the embryonic expansion of murine haematopoietic progenitors destined to contribute to the adult HSC pool. Our data show that this pool of fated progenitors expands only two-fold during FL ontogeny. Although Histone2B-GFP retention in vivo experiments confirmed substantial proliferation of phenotypic FL-HSC between E12.5 and E14.5, paired-daughter cell assays revealed that many mid-gestation phenotypic FL-HSCs are biased to differentiate, rather than self-renew, relative to phenotypic neonatal and adult bone marrow HSCs. In total, these data support a model in which the FL-HSC pool fated to contribute to adult blood expands only modestly during ontogeny.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chris Nevitt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raúl Sánchez-Lanzas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Juan Ding
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilia Kooienga
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claire Caprio
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Esther Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
7
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
8
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
9
|
Chen H, Miao X, Xu J, Pu L, Li L, Han Y, Mao F, Ma Y. Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats. Anim Biosci 2021; 35:544-555. [PMID: 34530511 PMCID: PMC8902208 DOI: 10.5713/ab.21.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.
Collapse
Affiliation(s)
- Haolin Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Jinge Xu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Ling Pu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Yong Han
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Fengxian Mao
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, Guizhou, 550000, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
11
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
12
|
Lemarié M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet 2021; 17:e1009478. [PMID: 33770102 PMCID: PMC8026084 DOI: 10.1371/journal.pgen.1009478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals. NOTCH1 deregulation can favor hematological malignancies. In addition to RBP-Jκ/NICD/MAML1, other regulators are required for the measured activation of NOTCH target genes. IKAROS is a known repressor of many NOTCH targets. Since it can also favor transcriptional activation and control gene expression levels, we questioned whether IKAROS could participate to the activation of specific NOTCH target genes. We are reporting that upon NOTCH induction, the absence of IKAROS impairs the measured activation of two groups of NOTCH target genes: (i) those overexpressed and characterized by an additive effect imposed by the absence of IKAROS and NOTCH induction; and (ii) those ‘desensitized’ and no more activated by NOTCH. At genes of both groups, IKAROS controls the timely recruitment of the chromatin remodelers CHD4 and BRG1. IKAROS then influences the activation of these genes through the organization of chromatin and poised transcription or through transcriptional elongation control. The importance of the IKAROS controlled and measured activation of genes is not limited to NOTCH signaling as it also characterizes Cdkn1a expression upon genotoxic stress. Thus, these results provide a new perspective on the importance of IKAROS for the adequate cellular response to stress, whether imposed by NOTCH or genotoxic insults.
Collapse
Affiliation(s)
- Maud Lemarié
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Lucendo-Villarin B, Meseguer-Ripolles J, Drew J, Fischer L, Ma E, Flint O, Simpson KJ, Machesky LM, Mountford JC, Hay DC. Development of a cost-effective automated platform to produce human liver spheroids for basic and applied research. Biofabrication 2020; 13:015009. [PMID: 33007774 DOI: 10.1088/1758-5090/abbdb2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Liver disease represents an increasing cause of global morbidity and mortality. Currently, liver transplant is the only treatment curative for end-stage liver disease. Donor organs cannot meet the demand and therefore scalable treatments and new disease models are required to improve clinical intervention. Pluripotent stem cells represent a renewable source of human tissue. Recent advances in three-dimensional cell culture have provided the field with more complex systems that better mimic liver physiology and function. Despite these improvements, current cell-based models are variable in performance and expensive to manufacture at scale. This is due, in part, to the use of poorly defined or cross-species materials within the process, severely affecting technology translation. To address this issue, we have developed an automated and economical platform to produce liver tissue at scale for modelling disease and small molecule screening. Stem cell derived liver spheres were formed by combining hepatic progenitors with endothelial cells and stellate cells, in the ratios found within the liver. The resulting tissue permitted the study of human liver biology 'in the dish' and could be scaled for screening. In summary, we have developed an automated differentiation system that permits reliable self-assembly of human liver tissue for biomedical application. Going forward we believe that this technology will not only serve as anin vitroresource, and may have an important role to play in supporting failing liver function in humans.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Both authors contributed equally to this manuscript
| | - J Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Both authors contributed equally to this manuscript
| | - J Drew
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom
| | - L Fischer
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - E Ma
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, G61 1BD, United Kingdom
| | - O Flint
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - K J Simpson
- Scottish Liver Transplant Unit, Royal Infirmary, Edinburgh EH16 4SA, United Kingdom
| | - L M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, G61 1BD, United Kingdom
| | - J C Mountford
- SNBTS, 52 Research Avenue North, Heriot-Watt Research Park, Edinburgh EH14 4BE, United Kingdom
| | - D C Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Author to whom any correspondence should be addressed
| |
Collapse
|
14
|
Soares-da-Silva F, Peixoto M, Cumano A, Pinto-do-Ó P. Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Front Cell Dev Biol 2020; 8:612. [PMID: 32793589 PMCID: PMC7387668 DOI: 10.3389/fcell.2020.00612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.
Collapse
Affiliation(s)
- Francisca Soares-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Márcia Peixoto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ana Cumano
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Perpetua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Chen F, Wang H, Xiao J. Regulated differentiation of stem cells into an artificial 3D liver as a transplantable source. Clin Mol Hepatol 2020; 26:163-179. [PMID: 32098013 PMCID: PMC7160355 DOI: 10.3350/cmh.2019.0022n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
End-stage liver disease is one of the leading causes of death around the world. Since insufficient sources of transplantable liver and possible immune rejection severely hinder the wide application of conventional liver transplantation therapy, artificial three-dimensional (3D) liver culture and assembly from stem cells have become a new hope for patients with end-stage liver diseases, such as cirrhosis and liver cancer. However, the induced differentiation of single-layer or 3D-structured hepatocytes from stem cells cannot physiologically support essential liver functions due to the lack of formation of blood vessels, immune regulation, storage of vitamins, and other vital hepatic activities. Thus, there is emerging evidence showing that 3D organogenesis of artificial vascularized liver tissue from combined hepatic cell types derived from differentiated stem cells is practical for the treatment of end-stage liver diseases. The optimization of novel biomaterials, such as decellularized matrices and natural macromolecules, also strongly supports the organogenesis of 3D tissue with the desired complex structure. This review summarizes new research updates on novel differentiation protocols of stem cell-derived major hepatic cell types and the application of new supportive biomaterials. Future biological and clinical challenges of this concept are also discussed.
Collapse
Affiliation(s)
- Feng Chen
- National Key Disciplines for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Retinoids in Stellate Cells: Development, Repair, and Regeneration. J Dev Biol 2019; 7:jdb7020010. [PMID: 31137700 PMCID: PMC6630434 DOI: 10.3390/jdb7020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/17/2023] Open
Abstract
Stellate cells, either hepatic (HSCs) or pancreatic (PSCs), are a type of interstitial cells characterized by their ability to store retinoids in lipid vesicles. In pathological conditions both HSCs and PSCs lose their retinoid content and transform into fibroblast-like cells, contributing to the fibrogenic response. HSCs also participate in other functions including vasoregulation, drug detoxification, immunotolerance, and maintenance of the hepatocyte population. PSCs maintain pancreatic tissue architecture and regulate pancreatic exocrine function. Recently, PSCs have attracted the attention of researchers due to their interactions with pancreatic ductal adenocarcinoma cells. PSCs promote tumour growth and angiogenesis, and their fibrotic activity increases the resistance of pancreatic cancer to chemotherapy and radiation. We are reviewing the current literature concerning the role played by retinoids in the physiology and pathophysiology of the stellate cells, paying attention to their developmental aspects as well as the function of stellate cells in tissue repair and organ regeneration.
Collapse
|
17
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Mordaunt CE, Kieffer DA, Shibata NM, Członkowska A, Litwin T, Weiss KH, Zhu Y, Bowlus CL, Sarkar S, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin 2019; 12:10. [PMID: 30709419 PMCID: PMC6357467 DOI: 10.1186/s13072-019-0255-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Wilson disease (WD) is an autosomal recessive disease caused by mutations in ATP7B encoding a copper transporter. Consequent copper accumulation results in a variable WD clinical phenotype involving hepatic, neurologic, and psychiatric symptoms, without clear genotype-phenotype correlations. The goal of this study was to analyze alterations in DNA methylation at the whole-genome level in liver and blood from patients with WD to investigate epigenomic alterations associated with WD diagnosis and phenotype. We used whole-genome bisulfite sequencing (WGBS) to examine distinct cohorts of WD subjects to determine whether DNA methylation could differentiate patients from healthy subjects and subjects with other liver diseases and distinguish between different WD phenotypes. RESULTS WGBS analyses in liver identified 969 hypermethylated and 871 hypomethylated differentially methylated regions (DMRs) specifically identifying patients with WD, including 18 regions with genome-wide significance. WD-specific liver DMRs were associated with genes enriched for functions in folate and lipid metabolism and acute inflammatory response and could differentiate early from advanced fibrosis in WD patients. Functional annotation revealed that WD-hypermethylated liver DMRs were enriched in liver-specific enhancers, flanking active liver promoters, and binding sites of liver developmental transcription factors, including Hepatocyte Nuclear Factor 4 alpha (HNF4A), Retinoid X Receptor alpha (RXRA), Forkhead Box A1 (FOXA1), and FOXA2. DMRs associated with WD progression were also identified, including 15 with genome-wide significance. However, WD DMRs in liver were not related to large-scale changes in proportions of liver cell types. DMRs detected in blood differentiated WD patients from healthy and disease control subjects, and distinguished between patients with hepatic and neurologic WD manifestations. WD phenotype DMRs corresponded to genes enriched for functions in mental deterioration, abnormal B cell physiology, and as members of the polycomb repressive complex 1 (PRC1). 44 DMRs associated with WD phenotype tested in a small validation cohort had a predictive value of 0.9. CONCLUSIONS We identified a disease-mechanism relevant epigenomic signature of WD that reveals new insights into potential biomarkers and treatments for this complex monogenic disease.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl-Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Souvik Sarkar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Mohamed R Ali
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
19
|
Analysis of Hematopoietic Niche in the Mouse Embryo. Methods Mol Biol 2019. [PMID: 30671734 DOI: 10.1007/7651_2018_176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The development, differentiation, and maturation of hematopoietic cells are regulated by the intrinsic and extrinsic regulation. Intrinsic activity is affected by cell autonomous gene expression and extrinsic factors originate from the so-called niche surrounding the hematopoietic cells. It remains unclear why the hematopoietic sites are shifted during embryogenesis. Flow cytometry and immunohistochemistry enable us to study embryonic regulation of hematopoietic niche in the mouse embryo.
Collapse
|