1
|
Zhang X, Li S, Hao L, Jia F, Yu F, Hu X. Influencing factors and mechanism of hepatocyte regeneration. J Transl Med 2025; 23:493. [PMID: 40307789 PMCID: PMC12042435 DOI: 10.1186/s12967-025-06278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
As a research hotspot in the field of regenerative medicine, hepatocyte regeneration has great potential in the treatment of liver diseases. This paper comprehensively summarizes the diverse sources of hepatocyte regeneration and its complex influencing factors, and deeply discusses the typical mechanism. According to the existing research, we observed that Wnt signaling pathway and Notch signaling pathway can play a synergistic role in the process of hepatocyte regeneration. So we further analyzed the crosstalk between Wnt and Notch signal pathway and the cross mechanism with TGF-β, YAP/TAZ pathway during regeneration. Despite the remarkable progress in the study of liver regeneration at the cellular and molecular levels, the comprehensive understanding of the fine regulation of influencing factors and the interaction between mechanisms still needs to be deepened. This paper aims to systematically analyze the interaction between influencing factors and classical mechanisms of hepatocyte regeneration by integrating multi-group data and advanced bioinformatics methods, so as to provide feasible ideas for the treatment of liver diseases and lay a solid theoretical foundation for the future development of regenerative medicine. It is believed that focusing on the rational development of innovative means such as inducing gene tendentiousness expression and anti-aging therapy, and in-depth analysis of the complex interactive network between hepatocyte regeneration mechanisms are expected to open up a new road for the development of more effective treatment strategies for liver diseases.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Fukang Jia
- Henan University of Traditional Chinese, Zhengzhou, China
| | - Fei Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Dai Q, Ain Q, Seth N, Zhao H, Rooney M, Zipprich A. Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Aging Cell 2025:e14502. [PMID: 39912563 DOI: 10.1111/acel.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Liu X, Brenner DA, Kisseleva T. Human Hepatic Stellate Cells: Isolation and Characterization. Methods Mol Biol 2023; 2669:221-232. [PMID: 37247063 DOI: 10.1007/978-1-0716-3207-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liver fibrosis of different etiologies is characterized by activation of hepatic stellate cells (aHSCs) into collagen type I secreting myofibroblasts, which produce fibrous scar and make the liver fibrotic. aHSCs are the major source of myofibroblasts and, therefore, the primary targets of anti-fibrotic therapy. Despite extensive studies, targeting of aHSCs in patients provides challenges. The progress in anti-fibrotic drug development relies on translational studies but is limited by the availability of primary human HSCs. Here we describe a perfusion/gradient centrifugation-based method of the large-scale isolation of highly purified and viable human HSCs (hHSCs) from normal and diseased human livers and the strategies of hHSC cryopreservation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
- Department of Surgery, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
4
|
Radonjić T, Dukić M, Jovanović I, Zdravković M, Mandić O, Popadić V, Popović M, Nikolić N, Klašnja S, Divac A, Todorović Z, Branković M. Aging of Liver in Its Different Diseases. Int J Mol Sci 2022; 23:13085. [PMID: 36361873 PMCID: PMC9656219 DOI: 10.3390/ijms232113085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 09/05/2023] Open
Abstract
The proportion of elderly people in the world population is constantly increasing. With age, the risk of numerous chronic diseases and their complications also rises. Research on the subject of cellular senescence date back to the middle of the last century, and today we know that senescent cells have different morphology, metabolism, phenotypes and many other characteristics. Their main feature is the development of senescence-associated secretory phenotype (SASP), whose pro-inflammatory components affect tissues and organs, and increases the possibility of age-related diseases. The liver is the main metabolic organ of our body, and the results of previous research indicate that its regenerative capacity is greater and that it ages more slowly compared to other organs. With age, liver cells change under the influence of various stressors and the risk of developing chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH) and hepatocellular carcinoma (HCC) increases. It has been proven that these diseases progress faster in the elderly population and in some cases lead to end-stage liver disease that requires transplantation. The treatment of elderly people with chronic liver diseases is a challenge and requires an individual approach as well as new research that will reveal other safe and effective therapeutic modalities.
Collapse
Affiliation(s)
- Tijana Radonjić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Igor Jovanović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olga Mandić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Maja Popović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Slobodan Klašnja
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Anica Divac
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Shu W, Yang M, Yang J, Lin S, Wei X, Xu X. Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal 2022; 20:117. [PMID: 35941604 PMCID: PMC9358812 DOI: 10.1186/s12964-022-00918-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
The liver is unique in its ability to regenerate from a wide range of injuries and diseases. Liver regeneration centers around hepatocyte proliferation and requires the coordinated actions of nonparenchymal cells, including biliary epithelial cells, liver sinusoidal endothelial cells, hepatic stellate cells and kupffer cells. Interactions among various hepatocyte and nonparenchymal cells populations constitute a sophisticated regulatory network that restores liver mass and function. In addition, there are two different ways of liver regeneration, self-replication of liver epithelial cells and transdifferentiation between liver epithelial cells. The interactions among cell populations and regenerative microenvironment in the two modes are distinct. Herein, we first review recent advances in the interactions between hepatocytes and surrounding cells and among nonparenchymal cells in the context of liver epithelial cell self-replication. Next, we discuss the crosstalk of several cell types in the context of liver epithelial transdifferentiation, which is also crucial for liver regeneration. Video abstract
Collapse
Affiliation(s)
- Wenzhi Shu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.,Program in Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengfan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengda Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Li Y, Adeniji NT, Fan W, Kunimoto K, Török NJ. Non-alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis 2022; 13:1239-1251. [PMID: 35855331 PMCID: PMC9286912 DOI: 10.14336/ad.2022.0318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease-related mortality. The prevalence of NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and comorbidities, and effective medical treatments are still lacking. In this review we focused on pathways that are key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies to treat NASH in the elderly.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Nia T. Adeniji
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Natalie J. Török
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
7
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
8
|
Aging and Cancer: The Waning of Community Bonds. Cells 2021; 10:cells10092269. [PMID: 34571918 PMCID: PMC8468626 DOI: 10.3390/cells10092269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.
Collapse
|
9
|
Liu J, Zhu J, Zhang X, Jia Y, Lee X, Gao Z. Hsa-miR-637 inhibits human hepatocyte proliferation by targeting Med1-interacting proteins. LIVER RESEARCH 2021; 5:88-96. [PMID: 39959344 PMCID: PMC11791805 DOI: 10.1016/j.livres.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Background Recent studies have shown that mediator complex subunit 1 (Med1) can significantly affect hepatocyte proliferation and differentiation. Acting as a tumor suppressor, microRNA-637 (hsa-miR-637) can inhibit the growth of hepatocarcinoma cells and further induce cell apoptosis. However, the function of hsa-miR-637 and its target genes during liver regeneration remains to be elucidated. Methods This study used co-immunoprecipitation (Co-IP) assay, transfection, luciferase reporter assay, functional assay by cell counting kit-8 (CCK-8), Annexin V-FITC/propidium iodide apoptosis assay, and quantitative polymerase chain reaction analysis of chromatin immunoprecipitation (ChIP) for analysis. Results Hsa-miR-637 has been suggested to suppress the expression of two Med1-interacting nuclear receptors, identified as the peroxisome proliferator-activated receptor alpha (PPARA) and thyroid hormone receptor alpha (THRA) at the transcriptional and translational levels in the human liver HL-7702 cell line. The interaction between Med1 and PPARA/THRA in HL-7702 cells was then confirmed. The transcriptional repression of hsa-miR-637 on PPARA and THRA was also demonstrated. Moreover, hsa-miR-637 has been determined to suppress the proliferation of HL-7702 cells. Furthermore, cell cycle arrest of HL-7702 cells was induced by transfection of hsa-miR-637 at the S phase, but its apoptosis failed. Finally, PPARA was indicated to directly bind to the promoter of some transcription factors, like β-catenin, mouse double minute 2 (MDM2), and p53. Conclusions This study has confirmed that hsa-miR-637 plays an antiproliferative role during liver regeneration, which may contribute in understanding the regenerative process of the liver.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianyun Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuzhi Jia
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xuejun Lee
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
| |
Collapse
|
11
|
Liver resections for colorectal liver metastases in elderly patients. Eur Surg 2020. [DOI: 10.1007/s10353-020-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Zhu C, Dong B, Sun L, Wang Y, Chen S. Cell Sources and Influencing Factors of Liver Regeneration: A Review. Med Sci Monit 2020; 26:e929129. [PMID: 33311428 PMCID: PMC7747472 DOI: 10.12659/msm.929129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration (LR) is a set of complicated mechanisms between cells and molecules in which the processes of initiation, maintenance, and termination of liver repair are regulated. Although LR has been studied extensively, there are still numerous challenges in gaining its full understanding. Cells for LR have a wide range of sources and the feature of plasticity, and regeneration patterns are not the same under different conditions. Many patients undergoing partial hepatectomy develop cirrhosis or steatosis. The changes of LR in these cases are not clear. Many types of cells participate in LR. Hepatocytes, biliary epithelial cells, hepatic progenitor cells, and human liver stem cells can serve as the cell sources for LR. However, different types and degrees of damage trigger the response from the most suitable cells. Exploring the cell sources of LR is of great significance for accelerating recovery of liver function under different pathological patterns and developing a cell therapy strategy to cope with the shortage of donors for liver transplantation. In clinical practice, the background of the liver influences regeneration. Fibrosis and steatosis create different LR microenvironments and signal molecule interaction patterns. In addition, factors such as partial hepatectomy, aging, platelets, nerves, hormones, bile acids, and gut microbiota are widely involved in this process. Understanding the influencing factors of LR has practical value for individualized treatment of patients with liver diseases. In this review, we have summarized recent studies and proposed our views. We discuss cell sources and the influential factors on LR to help in solving clinical problems.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Leqi Sun
- Department of Oncological Medical Services, Institute of Health Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| | - Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| |
Collapse
|
13
|
Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2020; 51:340-349. [PMID: 32754843 DOI: 10.1007/s00595-020-02092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
14
|
Chen F, Wang H, Xiao J. Regulated differentiation of stem cells into an artificial 3D liver as a transplantable source. Clin Mol Hepatol 2020; 26:163-179. [PMID: 32098013 PMCID: PMC7160355 DOI: 10.3350/cmh.2019.0022n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
End-stage liver disease is one of the leading causes of death around the world. Since insufficient sources of transplantable liver and possible immune rejection severely hinder the wide application of conventional liver transplantation therapy, artificial three-dimensional (3D) liver culture and assembly from stem cells have become a new hope for patients with end-stage liver diseases, such as cirrhosis and liver cancer. However, the induced differentiation of single-layer or 3D-structured hepatocytes from stem cells cannot physiologically support essential liver functions due to the lack of formation of blood vessels, immune regulation, storage of vitamins, and other vital hepatic activities. Thus, there is emerging evidence showing that 3D organogenesis of artificial vascularized liver tissue from combined hepatic cell types derived from differentiated stem cells is practical for the treatment of end-stage liver diseases. The optimization of novel biomaterials, such as decellularized matrices and natural macromolecules, also strongly supports the organogenesis of 3D tissue with the desired complex structure. This review summarizes new research updates on novel differentiation protocols of stem cell-derived major hepatic cell types and the application of new supportive biomaterials. Future biological and clinical challenges of this concept are also discussed.
Collapse
Affiliation(s)
- Feng Chen
- National Key Disciplines for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2019; 10:1801-1824. [PMID: 30157472 PMCID: PMC6128415 DOI: 10.18632/aging.101524] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
The regenerative capacity of the liver after resection is reduced with aging. Recent studies on rodents revealed that both intracellular and extracellular factors are involved in the impairment of liver mass recovery during aging. Among the intracellular factors, age-dependent decrease of BubR1 (budding uninhibited by benzimidazole-related 1), YAP (Yes-associated protein) and SIRT1 (Sirtuin-1) have been associated to dampening of tissue reconstitution and inhibition of cell cycle genes following partial hepatectomy. Extra-cellular factors, such as age-dependent changes in hepatic stellate cells affect liver regeneration through inhibition of progenitor cells and reduction of liver perfusion. Furthermore, chronic release of pro-inflammatory proteins by senescent cells (SASP) affects cell proliferation suggesting that senescent cell clearance might improve tissue regeneration. Accordingly, young plasma restores liver regeneration in aged animals through autophagy re-establishment. This review will discuss how intracellular and extracellular factors cooperate to guarantee a proper liver regeneration and the possible causes of its impairment during aging. The possibility that an improvement of the liver regenerative capacity in elderly might be achieved through elimination of senescent cells via autophagy or by administration of direct mitogenic agents devoid of cytotoxicity will also be entertained.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
16
|
Maeda T, Yokoyama Y, Ebata T, Igami T, Mizuno T, Yamaguchi J, Onoe S, Ando M, Nagino M. Discrepancy between volume and functional recovery in early phase liver regeneration following extended hepatectomy with extrahepatic bile duct resection. Hepatol Res 2019; 49:1227-1235. [PMID: 31117157 DOI: 10.1111/hepr.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
AIM To elucidate the clinical factors having an impact on liver regeneration rate following preoperative portal vein embolization (PVE) and subsequent extended hepatectomy. The correlation between liver volume and functional recovery after extended hepatectomy was also investigated. METHODS Records of patients who underwent extended hepatectomy with extrahepatic bile duct resection following PVE for perihilar cholangiocarcinoma were reviewed retrospectively with attention to liver regeneration. All patients underwent computed tomography before PVE, after PVE (immediately before surgery), and on postoperative day (POD) 7. The kinetic growth rate (KGR) was calculated as the percent increase in liver volume relative to the future liver remnant volume per day after PVE (KGRPVE ) and after POD 7 (KGRPOD7 ) using the computed tomography images before PVE, after PVE, and on POD 7. RESULTS In the 289 study patients, the median of KGRPVE was 1.35%/day whereas that of KGRPOD7 was 5.56%/day. The extent of liver resection had the greatest impact on both KGRPVE and KGRPOD7 and the impacts of other factors were less. There was a significant negative correlation between KGRPVE and KGRPOD7 (P = 0.002). No correlations were observed between KGRPVE or KGRPOD7 and serum total bilirubin and prothrombin time - international normalized ratio on POD 7, nor in the incidence of liver failure after surgery. CONCLUSIONS Early phase liver regeneration after extended hepatectomy was largely influenced by the extent of liver resection and showed no correlation with the indices of liver failure. There was a discrepancy between volume and functional recovery in early phase liver regeneration.
Collapse
Affiliation(s)
- Takashi Maeda
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Tsuyoshi Igami
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Shunsuke Onoe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
17
|
Morsiani C, Bacalini MG, Santoro A, Garagnani P, Collura S, D'Errico A, de Eguileor M, Grazi GL, Cescon M, Franceschi C, Capri M. The peculiar aging of human liver: A geroscience perspective within transplant context. Ageing Res Rev 2019; 51:24-34. [PMID: 30772626 DOI: 10.1016/j.arr.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplant.
Collapse
Affiliation(s)
- Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | | | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Magda de Eguileor
- DBSV-Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | | | - Matteo Cescon
- DIMEC-Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; CSR-Centro di Studio per la Ricerca dell'Invecchiamento, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Shang L, Hosseini M, Liu X, Kisseleva T, Brenner DA. Human hepatic stellate cell isolation and characterization. J Gastroenterol 2018; 53:6-17. [PMID: 29094206 DOI: 10.1007/s00535-017-1404-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
The hepatic stellate cells (HSCs) localize at the space of Disse in the liver and have multiple functions. They are identified as the major contributor to hepatic fibrosis. Significant understanding of HSCs has been achieved using rodent models and isolated murine HSCs; as well as investigating human liver tissues and human HSCs. There is growing interest and need of translating rodent study findings to human HSCs and human liver diseases. However, species-related differences impose challenges on the translational research. In this review, we focus on the current information on human HSCs isolation methods, human HSCs markers, and established human HSC cell lines.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, La Jolla, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - David Allen Brenner
- Department of Medicine, University of California, San Diego, La Jolla, USA.
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0602, USA.
| |
Collapse
|
19
|
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev 2017; 40:20-30. [PMID: 28774716 DOI: 10.1016/j.arr.2017.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a major cause of severe joint pain, physical disability and quality of life impairment in the aging population across the developed and developing world. Increased catabolism in the extracellular matrix (ECM) of the articular cartilage is a key factor in the development and progression of OA. The molecular mechanisms leading to an impaired matrix turnover have not been fully clarified, however cellular senescence, increased expression of inflammatory mediators as well as oxidative stress in association with an inherently limited regenerative potential of the tissue, are all important contributors to OA development. All these factors are linked to and tend to be maximized by aging. Nonetheless the role of aging in compromising joint stability and function in OA has not been completely clarified yet. This review will systematically analyze cellular and structural changes taking place in the articular cartilage and bone in the pathogenesis of OA which are linked to aging. A particular emphasis will be placed on age-related changes in the phenotype of the articular chondrocytes.
Collapse
Affiliation(s)
- Maryam Rahmati
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, The APPROACH Innovative Medicines Initiative (IMI) Consortium, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC) and Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| |
Collapse
|