1
|
Agrawal M, Chowhan AK. Paediatric renal tumors: An insight into molecular characteristics, histomorphology and syndromic association. World J Nephrol 2025; 14:99380. [DOI: 10.5527/wjn.v14.i2.99380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 04/09/2025] Open
Abstract
Paediatric renal tumors are rare and accounts for about 7% of all paediatric malignant tumors. The spectrum of paediatric renal tumors ranges from benign to malignant. Benign tumors include cystic nephroma, metanephric tumors and ossifying renal tumor of infancy. Tumor with low grade malignancy includes mesoblastic nephroma. Malignant tumors are nephroblastoma, clear cell sarcoma, malignant rhabdoid tumor, anaplastic sarcoma and Ewing sarcoma. Additionally, there are molecularly defined renal tumors, which includes renal cell carcinoma (RCC) with MiT translocations, ALK-rearranged RCC, eosinophilic solid and cystic RCC and SMARCB1- deficient renal medullary carcinoma. These tumors apart from having characteristic clinical presentation and histomorphology, also carry typical molecular mutations and translocations. Certain renal tumors have association with various genetic syndromes such as Beckwith-Weidmann syndrome, Wilm’s tumor, aniridia, genitourinary anomalies and mental retardation syndrome, Denys-Drash syndrome, rhabdoid tumor predisposition syndrome and DICER syndrome. This review article focusses on molecular characteristics, histomorphology and syndromic association of pediatric renal tumors, their immunohistochemical approach to diagnosis with recent updates in molecularly defined renal tumors.
Collapse
Affiliation(s)
- Mousmi Agrawal
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences (AIIMS), Raipur 492099, Chhattisgarh, India
| | - Amit K Chowhan
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences (AIIMS), Raipur 492099, Chhattisgarh, India
| |
Collapse
|
2
|
Papke DJ. Mesenchymal Neoplasms of the Kidney and Perinephric Soft Tissue. Surg Pathol Clin 2025; 18:209-227. [PMID: 39890305 DOI: 10.1016/j.path.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Mesenchymal neoplasms of the kidney present challenges because they are uncommon, and because perinephric soft tissue biopsies are sometimes submitted as "kidney" masses, causing diagnostic confusion. Here, the author thoroughly reviews mesenchymal neoplasms of the kidney, including metanephric stromal tumor, classic and cellular congenital mesoblastic nephroma, anaplastic sarcoma and clear cell sarcoma of the kidney, malignant rhabdoid tumor, PEComa/angiomyolipoma, and anastomosing hemangioma. The author also discusses perinephric myxoid pseudotumor of fat, as well as diagnostic pitfalls presented by well-differentiated/dedifferentiated liposarcoma and sarcomatoid carcinoma.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Salgado CM, Gestrich CK, Reyes-Múgica M. Pediatric Genitourinary Tumors: The Developmental Angle. Surg Pathol Clin 2025; 18:191-207. [PMID: 39890304 DOI: 10.1016/j.path.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Pediatric cancer is relatively rare compared to cancer in adults. Most pediatric neoplasms affect the hemopoietic and central nervous systems. Of the solid extracranial tumors, renal and genitourinary lesions are among the most frequent pediatric neoplasms. Wilms tumors (nephroblastomas) and their variants predominate. Others are less frequent, and their rarity leads to significant diagnostic challenges. This review presents the most important points for diagnosis using histopathological, immunophenotypical, and molecular novel information on the most important renal and genitourinary pediatric neoplasms.
Collapse
Affiliation(s)
- Claudia M Salgado
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Jackson Memorial Hospital Children's Holtz, 1611 Northwest 12th Avenue, Suite 2153 A, Miami, FL 33136, USA. https://twitter.com/clamsalgado
| | - Catherine K Gestrich
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Miguel Reyes-Múgica
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Jackson Memorial Hospital Children's Holtz, 1611 Northwest 12th Avenue, Suite 2153 B, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Perotti D, O'Sullivan MJ, Walz AL, Davick J, Al-Saadi R, Benedetti DJ, Brzezinski J, Ciceri S, Cost NG, Dome JS, Drost J, Evageliou N, Furtwängler R, Graf N, Maschietto M, Mullen EA, Murphy AJ, Ortiz MV, van der Beek JN, Verschuur A, Wegert J, Williams R, Spreafico F, Geller JI, van den Heuvel-Eibrink MM, Hong AL. Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers. Nat Rev Urol 2025:10.1038/s41585-024-00993-6. [PMID: 39881003 DOI: 10.1038/s41585-024-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Approximately 20% of paediatric and adolescent/young adult patients with renal tumours are diagnosed with non-Wilms tumour, a broad heterogeneous group of tumours that includes clear-cell sarcoma of the kidney, congenital mesoblastic nephroma, malignant rhabdoid tumour of the kidney, renal-cell carcinoma, renal medullary carcinoma and other rare histologies. The differential diagnosis of these tumours dates back many decades, when these pathologies were identified initially through clinicopathological observation of entities with outcomes that diverged from Wilms tumour, corroborated with immunohistochemistry and molecular cytogenetics and, subsequently, through next-generation sequencing. These advances enabled near-definitive recognition of different tumours and risk stratification of patients. In parallel, the generation of new renal-tumour models of some of these pathologies including cell lines, organoids, xenografts and genetically engineered mouse models improved our understanding of the development of these tumours and have facilitated the identification of new therapeutic targets. Despite these many achievements, paediatric and adolescent/young adult patients continue to die from such rare cancers at higher rates than patients with Wilms tumour. Thus, international coordinated efforts are needed to answer unresolved questions and improve outcomes.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Histopathology, School of Medicine, Trinity College, Dublin, Ireland
- Departments of Histopathology and Paediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Davick
- University of Iowa Hospitals and Clinics Stead Family Children's Hospital, Carver College of Medicine, Iowa City, IA, USA
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Daniel J Benedetti
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nicholas G Cost
- Department of Surgery, Division of Urology, University of Colorado School of Medicine and the Surgical Oncology Program at Children's Hospital Colorado, Denver, CO, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Rhoikos Furtwängler
- Pediatric Hematology and Oncology, Children's Hospital, Inselspital Bern University, Bern, Switzerland
- Childhood Renal Tumour Center Saarland University, Homburg, Germany
| | - Norbert Graf
- Department Paediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Andrew J Murphy
- St. Jude Children's Research Hospital Memphis, Memphis, TN, USA
| | | | - Justine N van der Beek
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Richard Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Filippo Spreafico
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
5
|
Zhang M, Yao X, Zhang N, Yu Y, Jia C, Guan X, Xu W, Ni X, Guo Y, He L. Development, optimization and application of a universal fluorescence multiplex PCR-based assay to detect BCOR genetic alterations in pediatric tumors. Diagn Pathol 2025; 20:11. [PMID: 39871307 PMCID: PMC11770904 DOI: 10.1186/s13000-025-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis. However, gene fusions are usually detected through reverse transcription-polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization. Methods that analyze these variants simultaneously in a sensitive and convenient manner are lacking in clinical practice. METHODS This study validated a Universal Fluorescence Multiplex PCR-based assay that assessed BCOR ITDs, BCOR::CCNB3, BCOR::MAML3 and YWHAE::NUTM2 fusions simultaneously. RESULTS The assay achieved a detection threshold of 10 copies for fusion genes and 0.32 ng genomic DNA for BCOR ITDs. The performance of this assay was also tested in a cohort of 43 pediatric tumors (17 undifferentiated small round cell sarcomas, and 26 tumors with a histological diagnosis of CCSK). In total, 20 BCOR ITDs, 4 BCOR::CCNB3 and one YWHAE::NUTM2 were detected. When compared with the final diagnosis, the assay achieved 93% sensitivity and 100% specificity. CONCLUSIONS Accordingly, this assay provided an effective and convenient method for detecting BCOR- and YWHAE-related abnormalities in tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chao Jia
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
6
|
Atiq MA, Balan J, Blackburn PR, Gross JM, Voss JS, Jin L, Fadra N, Davila JI, Pitel BA, Siqueira Parrilha Terra SB, Minn KT, Jackson RA, Hofich CD, Willkomm KS, Peterson BJ, Clausen SN, Rumilla KM, Gupta S, Lo YC, Ida CM, Molligan JF, Thangaiah JJ, Petersen MJ, Sukov WR, Guo R, Giannini C, Schoolmeester JK, Fritchie K, Inwards CY, Folpe AL, Oliveira AM, Torres-Mora J, Kipp BR, Halling KC. SARCP, a Clinical Next-Generation Sequencing Assay for the Detection of Gene Fusions in Sarcomas: A Description of the First 652 Cases. J Mol Diagn 2025; 27:74-95. [PMID: 39521244 DOI: 10.1016/j.jmoldx.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
An amplicon-based targeted next-generation sequencing (NGS) assay for the detection of gene fusions in sarcomas was developed, validated, and implemented. This assay can detect fusions in targeted regions of 138 genes and BCOR internal tandem duplications. This study reviews our experience with testing on the first 652 patients analyzed. Gene fusions were detected in 238 (36.5%) of 652 cases, including 83 distinct fusions in the 238 fusion-positive cases, 10 of which had not been previously described. Among the 238 fusion-positive cases, the results assisted in establishing a diagnosis for 137 (58%) cases, confirmed a suspected diagnosis in 66 (28%) cases, changed a suspected diagnosis in 25 (10%) cases, and were novel fusions with unknown clinical significance in 10 (4%) cases. Twenty-six cases had gene fusions (ALK, ROS1, NTRK1, NTRK3, and COL1A1::PDGFB) for which there are targetable therapies. BCOR internal tandem duplications were identified in 6 (1.2%) of 485 patients. Among the 138 genes in the panel, 66 were involved in one or more fusions, and 72 were not involved in any fusions. There was little overlap between the genes involved as 5'-partners (31 different genes) and 3'-partners (37 different genes). This study shows the clinical utility of a next-generation sequencing gene fusion detection assay for the diagnosis and treatment of sarcomas.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Numrah Fadra
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jaime I Davila
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kurt S Willkomm
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sydney N Clausen
- University of Minnesota Medical School, Duluth, Duluth, Minnesota
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeremy F Molligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Petersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Lee S, Kim B. Primary renal BCOR::CCNB3 sarcoma in a female patient: case report. J Pathol Transl Med 2025; 59:84-90. [PMID: 39815746 PMCID: PMC11736278 DOI: 10.4132/jptm.2024.09.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 01/18/2025] Open
Abstract
BCOR-rearranged sarcoma was classified by the World Health Organization in 2020 as a new subgroup of undifferentiated small round-cell sarcoma. It is known to occur very rarely in the kidney. This report presents the first case of a primary renal BCOR::CCNB3 sarcoma in a 22-year-old woman. An 8-cm cystic mass was identified in the left kidney by abdominal pelvic computed tomography. Histopathologic examination revealed the mass to be composed of small round to oval or spindle cells with fibrous septa and a delicate vascular network. A BCOR::CCNB3 fusion was detected by next-generation sequencing-based molecular testing. BCOR::CCNB3 sarcoma presents diagnostic difficulties, highlighting the importance of recognizing its histological features. Immunohistochemical markers are helpful for diagnosis, but genetic molecular testing is necessary for accurate diagnosis. These tumors have a very poor and aggressive prognosis, and an optimal therapeutic regimen has not yet been defined. Therefore, further studies are needed.
Collapse
Affiliation(s)
- Somang Lee
- Department of Pathology, Ulsan University Hospital, Ulsan, Korea
| | - Binnari Kim
- Department of Pathology, Ulsan University Hospital, Ulsan, Korea
- University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
8
|
Slack JC, Church AJ. Molecular Alterations in Pediatric Solid Tumors. Clin Lab Med 2024; 44:277-304. [PMID: 38821645 DOI: 10.1016/j.cll.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Pediatric tumors can be divided into hematologic malignancies, central nervous system tumors, and extracranial solid tumors of bone, soft tissue, or other organ systems. Molecular alterations that impact diagnosis, prognosis, treatment, and familial cancer risk have been described in many pediatric solid tumors. In addition to providing a concise summary of clinically relevant molecular alterations in extracranial pediatric solid tumors, this review discusses conventional and next-generation sequencing-based molecular techniques, relevant tumor predisposition syndromes, and the increasing integration of molecular data into the practice of diagnostic pathology for children with solid tumors.
Collapse
Affiliation(s)
- Jonathan C Slack
- Pathology & Laboratory Medicine Institute (Robert J. Tomsich), Cleveland Clinic, Cleveland, OH, USA
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Zhao M, Gan H, Zhong S, Xia Q, Bai Y, Xu J, Teng X, Wang J. Intra-Abdominal Epithelioid Neoplasm With EWSR1::CREB Fusions Involving the Kidney: A Clinicopathologic and Molecular Characterization With an Emphasis on Differential Diagnosis. Mod Pathol 2024; 37:100468. [PMID: 38460673 DOI: 10.1016/j.modpat.2024.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Soft tissue neoplasms, harboring fusions between EWSR1 and FUS with genes encoding CREB transcription factors family (ATF1, CREB1, and CREM), are an emerging heterogeneous group of mesenchymal tumors that differ significantly in morphology, immunophenotypes, and behavior. Recently, EWSR1/FUS::CREB fusions have been recognized to define a group of aggressive neoplasms of epithelioid morphology with multiple growth patterns and a striking predilection for mesothelial-lined cavities. These neoplasms presenting as a primary neoplasm of intra-abdominal visceral organs are rare, which could elicit a wide range of differential diagnoses because of their diverse morphologies and immunohistochemical profiles. We report 3 cases of intra-abdominal epithelioid neoplasms with EWSR1::CREB fusions involving the kidney. This study included 2 female patients and 1 male patient, with age at presentation ranging from 17 to 61 years (mean: 32 years). All the patients underwent radical nephrectomy without adjunctive therapies. Grossly, the tumors were large, and all were solitary masses with sizes ranging from 5.6 to 30.0 cm (mean: 14.5 cm). Histologically, the neoplasms showed infiltrating and indistinct borders and were composed predominantly of monomorphic round-to-epithelioid cells with variable amounts of pale-to-clear cytoplasm, arranged in cords, nests, and sheets and embedded in a sclerotic hyalinized stroma with variable lymphoid cuffing either intermixed or at the periphery. Notably, a hemangiopericytomatous growth pattern was commonly seen. Nuclear atypia was mild, and mitotic activity was scarce. Immunohistochemically, all 3 cases were at least focally positive for epithelial membrane antigen and keratin AE1/AE3, with 2 tumors showing focal MUC4 expression and 1 case displaying diffuse CD34 and focal CAIX positivity. Targeted RNA sequencing identified EWSR1::CREM fusion in 2 cases and EWSR1::ATF1 fusion in 1 case. Subsequent fluorescence in situ hybridization analysis confirmed the RNA sequencing results. On follow-up, 1 patient developed multiple spinal bone metastases 5 months after the surgery while the other 2 patients were free of disease 9 and 120 months after diagnosis, respectively. Our findings demonstrate that intra-abdominal epithelioid neoplasms with EWSR1::CREB fusions may rarely occur primarily in the kidney and should be included in the differential diagnosis of primary renal epithelioid mesenchymal neoplasms.
Collapse
Affiliation(s)
- Ming Zhao
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, China.
| | - Hualei Gan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Pathology, Fudan University, Shanghai, China
| | - Shan Zhong
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qiuyan Xia
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yanfeng Bai
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayun Xu
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Mejbel HA, Harada S, Stevens TM, Huang X, Netto GJ, Mackinnon AC, Al Diffalha S. Spindle Cell Sarcoma of the Uterus Harboring MEIS1::NCOA1 Fusion Gene and Mimicking Endometrial Stromal Sarcoma. Int J Surg Pathol 2023; 31:227-232. [PMID: 35477326 DOI: 10.1177/10668969221098081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MEIS1::NCOA1/2 sarcomas are a newly recognized group of exceedingly rare low-grade spindle cell sarcomas that often involve the genitourinary and gynecologic tracts. Due to its deceptively low-grade morphology and the non-specific immunoprofile, these neoplasms may pose a diagnostic challenge by histologically mimicking other entities such as endometrial stromal sarcoma, smooth muscle tumor, or uterine perivascular epithelioid cell tumor (PEComa). Histologically, MEIS1::NCOA1/2 sarcomas typically show spindle cell proliferation with hyperchromatic nuclei and a generalized cytologic uniformity, arranged in short fascicles and exhibiting alternating zones of hypo- and hypercellularity. Among the previously reported cases, molecular analysis revealed the MEIS1::NCOA2 fusion as the most commonly detected fusion gene, whereas the MEIS1::NCOA1 fusion gene has been reported in only a single case that involved kidney. Herein we report the first case of uterine sarcoma harboring the MEIS1::NCOA1 fusion gene that was initially misclassified as low-grade endometrial stromal sarcoma, demonstrating its clinicopathologic features, and highlighting the essential role of molecular pathology to arrive at the accurate diagnosis that may alter disease classification and inform therapy.
Collapse
Affiliation(s)
- Haider A Mejbel
- Division of Genomics Diagnostics and Bioinformatics, Molecular Genetics Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuko Harada
- Division of Genomics Diagnostics and Bioinformatics, Molecular Genetics Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, Division of Anatomic Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd M Stevens
- O'Neal Comprehensive Cancer Center, 189178The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiao Huang
- O'Neal Comprehensive Cancer Center, 189178The University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J Netto
- Division of Genomics Diagnostics and Bioinformatics, Molecular Genetics Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, 189178The University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, Division of Anatomic Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander C Mackinnon
- Division of Genomics Diagnostics and Bioinformatics, Molecular Genetics Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, Division of Anatomic Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- O'Neal Comprehensive Cancer Center, 189178The University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, Division of Anatomic Pathology, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK). Int J Mol Sci 2023; 24:ijms24043743. [PMID: 36835166 PMCID: PMC9964999 DOI: 10.3390/ijms24043743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Collapse
|
12
|
Gojo J, Kjaersgaard M, Zezschwitz BV, Capper D, Tietze A, Kool M, Haberler C, Pizer B, Hoff KV. Rare embryonal and sarcomatous central nervous system tumours: State-of-the art and future directions. Eur J Med Genet 2023; 66:104660. [PMID: 36356895 DOI: 10.1016/j.ejmg.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The introduction of molecular methods into the diagnostics of central nervous system (CNS) tumours and the subsequent deciphering of their molecular heterogeneity has resulted in a significant impact on paediatric neurooncology. Particularly in the field of rare embryonal and sarcomatous CNS tumours, novel tumour types have been delineated and introduced in the recent 5th edition of the WHO classification of CNS tumours. The rarity and novelty of these tumour types result in diagnostic and therapeutic challenges. Apart from distinct histopathological and molecular features, these tumour types exhibit characteristic clinical properties and require different therapeutic approaches for optimal patient management. However, based on the limited availability of clinical data, current therapeutic recommendations have to be based on data from small, predominantly retrospective patient cohorts. Within this article, we provide guidance for diagnostic work-up and clinical management of rare CNS embryonal tumours ('embryonal tumour with multi-layered rosettes', ETMR; 'CNS neuroblastoma, FOXR2-activated', CNS NB-FOXR2; 'CNS tumour with BCOR-ITD, CNS BCOR-ITD) and rare CNS sarcomatous tumours ('primary intracranial sarcoma, DICER1-mutant', CNS DICER1; 'CIC-rearranged sarcoma', CNS CIC). By emphasizing the significant consequences on patient management in paediatric CNS tumours, we want to encourage wide implementation of comprehensive molecular diagnostics and stress the importance for joint international efforts to further collect and study these rare tumour types.
Collapse
Affiliation(s)
- Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Mimi Kjaersgaard
- Department of Paediatrics and Adolescent Medicine, Children and Adolescents with Cancer and Hematological Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Barbara V Zezschwitz
- Department of Paediatric Oncology and Haematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Universität zu Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Katja V Hoff
- Department of Paediatric Oncology and Haematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Universität zu Berlin, Germany; Department of Paediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
13
|
Yoshida A. Ewing and Ewing-like sarcomas: A morphological guide through genetically-defined entities. Pathol Int 2023; 73:12-26. [PMID: 36484765 PMCID: PMC10107474 DOI: 10.1111/pin.13293] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
The fifth edition of the World Health Organization classification of soft tissue and bone tumors redefined Ewing sarcoma by fusions between EWSR1/FUS and ETS family of transcription factors, and recognized three tumor groups among Ewing-like sarcoma: CIC-rearranged sarcoma, sarcoma with BCOR genetic alterations, and round cell sarcoma with EWSR1::non-ETS fusions. Although this classification underscores the critical role of molecular genetics in the diagnosis of small round cell sarcoma, each entry is recognized as a specific entity not only because they have different genetics but because their phenotypes are distinct and reasonably robust to support the diagnosis. This review focuses on the morphological aspects of Ewing sarcoma and a subset of Ewing-like sarcomas (CIC-rearranged sarcoma, BCOR-associated sarcoma, and EWSR1::NFATC2 sarcoma) for which phenotypic characteristics have been well established. Classic histological findings, uncommon variations, and recurrent diagnostic pitfalls are addressed, along with the utility of recently developed immunohistochemical markers (NKX2.2, PAX7, ETV4, BCOR, CCNB3, and NKX3.1). Phenotypic expertise would significantly expedite the diagnostic process and complement (or sometimes outperform) genetic testing, even in well-resourced settings. Morphological knowledge plays an even more substantial role in facilities that do not have easy access to molecular testing.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center, Tokyo, Japan
| |
Collapse
|
14
|
Zhang M, Yao X, Guan X, Jia C, Zhang R, Wang H, Guo Y, Ni X, Yu Y, He L. Clinical relevance of BCOR internal tandem duplication and TP53 aberration in clear cell sarcoma of the kidney. Hum Pathol 2022; 134:45-55. [PMID: 36563883 DOI: 10.1016/j.humpath.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal malignancy, characterized by BCOR internal tandem duplication (ITD), YWHAE rearrangement, BCOR-CCNB3 fusion, and lack of other consistent structural alteration. We accidentally identified TP53 deletion in CCSK, which was often associated with adverse clinical outcomes. In this study, we assessed the incidence as well as the clinical relevance of these molecules in CCSK patients. BCOR ITD, YWHAE rearrangement, BCOR-CCNB3 fusion and TP53 status were examined by polymerase chain reaction, fluorescence in situ hybridization, or Sanger sequencing in a cohort of 39 patients with CCSK. Among them, 34 cases (87.18%) had BCOR ITD, 1 (2.56%) had YWHAE rearrangement, and 1 (2.56%) had BCOR-CCNB3 gene fusion. The remaining 3 (7.69%) harbored none of these aberrations. BCOR ITD, YWHAE rearrangement and BCOR-CCNB3 were mutually exclusive. Furthermore, 25.64% of the cohort acquired TP53 aberration (10/39, 3 with both copy number deletion and point mutation, 6 with deletion only, and 1 with mutation only), all of which were associated with BCOR ITD. Patients with or without BCOR ITD or TP53 aberration did not differ in demographic characteristics such as sex, onset age, or tumor stage at diagnosis. However, the overall survival rates and progression-free survival rates of BCOR ITD or TP53 deletion groups showed obvious downward trends, albeit not all reaching statistical significance. Patients with both BCOR ITD and TP53 deletion had the poorest prognosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Chao Jia
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Ruqian Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China; Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China; Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China.
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China.
| |
Collapse
|
15
|
Dorwal P, Abou-Seif C, Ng J, Super L, Chan Y, Rathi V. Clear Cell Sarcoma of the Kidney (CCSK) With BCOR-CCNB3 Fusion: A Rare Case Report With a Brief Review of the Literature. Pediatr Dev Pathol 2022; 26:149-152. [PMID: 36533315 DOI: 10.1177/10935266221124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pediatric renal tumors are a rare entity and majority of these tumors are accounted for by Wilms tumor. The second most common renal tumor is clear cell sarcoma of the kidney (CSSK). Most of the CSSK have either BCOR-internal tandem duplication (ITD) or YWHAE-NUTM2B/E fusion. The sarcomas with BCOR-CCNB3 fusion are well documented in soft tissue and bone tumors, but are extremely rare in the pediatric renal setting. We are reporting an extremely rare case of pediatric clear cell sarcoma of the kidney (CSSK) with BCOR-CCNB3 fusion, which was a diagnostic challenge on morphological grounds. A final diagnosis could only be reached after multiple reviews and NGS based RNA fusion testing. We have also performed a brief review of literature which revealed eight (8) other cases of this rare entity.
Collapse
Affiliation(s)
- Pranav Dorwal
- Department of Anatomical Pathology, Monash Health, Clayton, VIC, Australia.,Department of Diagnostic Genomics, Monash Health, Clayton, VIC, Australia.,School of Clinical Sciences, Faculty of Medicine, Nursing and Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Claire Abou-Seif
- Department of Anatomical Pathology, Monash Health, Clayton, VIC, Australia
| | - Jessica Ng
- Department of Anatomical Pathology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Leanne Super
- Department of Paediatrics, Monash Children's Hospital, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Yuen Chan
- Department of Anatomical Pathology, Monash Health, Clayton, VIC, Australia
| | - Vivek Rathi
- Department of Diagnostic Genomics, Monash Health, Clayton, VIC, Australia.,School of Clinical Sciences, Faculty of Medicine, Nursing and Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Hont AB, Dumont B, Sutton KS, Anderson J, Kentsis A, Drost J, Hong AL, Verschuur A. The tumor microenvironment and immune targeting therapy in pediatric renal tumors. Pediatr Blood Cancer 2022; 70 Suppl 2:e30110. [PMID: 36451260 DOI: 10.1002/pbc.30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
This review highlights the role of several immunomodulating elements contributing to the tumor microenvironment of various pediatric renal tumors including Wilms tumor. The roles of innate and adaptive immune cells in renal tumors are summarized as well as immunomodulatory cytokines and other proteins. The expression and the predictive role of checkpoint modulators like PD-L1 and immunomodulating proteins like glypican-3, B7-H3, COX-2 are highlighted with a translational view toward potential therapeutic innovations. We further discuss the current state of preclinical models in advancing this field of study. Finally, examples of clinical trials of immunomodulating strategies such as monoclonal antibodies and chimeric antigen receptor T (CAR-T) cells for relapsed/refractory/progressive pediatric renal tumors are described.
Collapse
Affiliation(s)
- Amy B Hont
- Department of Hematology/Oncology, Children's National Hospital, George Washington University, Washington, District of Columbia, USA
| | - Benoit Dumont
- Pediatric Hematology and Oncology Institute, Léon Bérard Cancer Center, Lyon, France
| | - Kathryn S Sutton
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - John Anderson
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, New York, USA
| | - Jarno Drost
- Princess Máxima Center and Oncode Institute, Utrecht, The Netherlands
| | - Andrew L Hong
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| |
Collapse
|
17
|
Goh JY, Kuick CH, Sugiura M, Aw SJ, Zhao M, Tang H, Gunaratne S, Zhu F, Cai L, Teh BT, Thorner PS, Chang KTE. Paediatric
BCOR
‐associated sarcomas with a novel long spliced internal tandem duplication of
BCOR
exon 15. J Pathol Clin Res 2022; 8:470-480. [PMID: 35836306 PMCID: PMC9353662 DOI: 10.1002/cjp2.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Clear cell sarcoma of the kidney (CCSK) and primitive myxoid mesenchymal tumour of infancy (PMMTI) are paediatric sarcomas that most commonly harbour internal tandem duplications (ITDs) of exon 15 of the BCOR gene, in the range of 87–114 base pairs (bp). Some cases, instead, have BCOR‐CCNB3 or YWHAE‐NUTM2 gene fusions. About 10% of cases lack any of these genetic alterations when tested by standard methods. Two cases of CCSK and one PMMTI lacking the aforementioned mutations were analysed using Archer FusionPlex technology. Two related BCOR exon 15 RNA transcripts with ITDs of lengths 388 and 96 bp were detected in each case; only the 388 bp transcript was identified when genomic DNA was sequenced. In silico analysis of this transcript revealed acceptor and donor splice sites indicating that, at the RNA level, the 388‐bp transcript was likely spliced to form the 96‐bp transcript. The results were confirmed by Sanger sequencing using primers targeting the ITD breakpoint. This novel and unusually long ITD segment is difficult to identify by DNA sequencing using typical primer design strategies flanking entire duplicated segments because it exceeds the typical read lengths of most sequencing platforms as well as the usual fragment lengths obtained from formalin‐fixed paraffin‐embedded material. As diagnosis of CCSK and PMMTI may be challenging by morphology and immunohistochemistry alone, it is important to identify mutations in these cases. Knowledge of this novel BCOR ITD is important in relation to primer design for detection by sequencing, and using RNA versus DNA for sequencing.
Collapse
Affiliation(s)
- Jian Yuan Goh
- Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore
- Pathology Academic Clinical Programme SingHealth Duke‐NUS Medical School Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore
| | - Masahiro Sugiura
- Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore
| | - Sze Jet Aw
- Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore
| | - Manli Zhao
- Department of Pathology The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou PR China
| | - Hongfeng Tang
- Department of Pathology The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou PR China
| | - Sandini Gunaratne
- Department of Pathology Lady Ridgeway Hospital for Children Colombo Sri Lanka
| | - Fucun Zhu
- Department of Pathology Fuzhou Children's Hospital of Fujian Province Fuzhou PR China
| | - Lin Cai
- Department of Pathology Fuzhou Children's Hospital of Fujian Province Fuzhou PR China
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome National Cancer Centre Singapore Singapore
- Cancer and Stem Cell Biology Programme Duke‐NUS Medical School Singapore
| | - Paul S Thorner
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore
- Pathology Academic Clinical Programme SingHealth Duke‐NUS Medical School Singapore
| |
Collapse
|
18
|
Whittle SB, Fetzko S, Roy A, Venkatramani R. Soft Tissue and Visceral Organ Sarcomas With BCOR Alterations. J Pediatr Hematol Oncol 2022; 44:195-200. [PMID: 35537005 PMCID: PMC10026688 DOI: 10.1097/mph.0000000000002480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Sarcomas with BCOR alteration are a heterogenous group characterized by changes including internal tandem duplications (ITDs) and recurring fusions with CCNB3, ZC3H7B, and other rare partners. With widespread genomic testing, these alterations are now associated with histologies such as Ewing-like sarcoma (BCOR::CCNB3), high-grade endometrial stromal sarcoma (ZC3H7B::BCOR), and clear cell sarcoma of kidney (BCOR-ITD). BCOR altered sarcomas of soft tissues and organs were identified through PubMed using keywords "Sarcoma (AND) BCOR" from 2005 through October 2021. Summary statistics and outcome data were calculated using STATA v12.1. Forty-one publications described 190 patients with BCOR altered soft tissue or organ sarcomas. BCOR-ITD was most common, followed by BCOR::CCNB3, ZC3H7B::BCOR. BCOR-ITD tumors occurred mainly in infants, BCOR::CCNB3 commonly occurred in adolescent young adults, and ZC3H7B::BCOR only in adults. The most common site for BCOR::CCNB3 fused tumors was extremity, BCOR-ITD kidney and ZC3H7B::BCOR uterus. Metastasis was rare in patients with BCOR::CCNB3. While most underwent resection and chemotherapy, few received radiation. Median follow-up of survivors was 24 months. Five year overall survival for patients with BCOR::CCNB3 fusions was 68% (95% confidence interval [CI]: 46%-83%). Patients with BCOR-ITD and ZC3H7B::BCOR had worse prognoses with 5 years overall survival of 35% (95% CI: 15%-56%) and 41% (95% CI: 11%-71%), respectively, demonstrating need for collaborative efforts identifying optimal treatments to improve outcomes.
Collapse
Affiliation(s)
- Sarah B. Whittle
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| | - Stephanie Fetzko
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| | - Angshumoy Roy
- Departments of Pathology and Immunology, Texas Children’s Hospital, Houston, TX
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
19
|
Vanhersecke L, Linck PA, Le Loarer F. [Fusion-related round and spindle cell sarcomas of the bone (beyond Ewing)]. Ann Pathol 2022; 42:227-241. [PMID: 35216845 DOI: 10.1016/j.annpat.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
Abstract
Round cell sarcomas represent a diagnostic challenge for pathologists due to the poorly differentiated pattern of these high-grade tumors. Their diagnosis often requires large immunohistochemical panels and the use of molecular pathology. These tumors are largely dominated by Ewing sarcomas, but new families are now well characterized, including in decreasing frequency order in bone, BCOR-altered sarcomas, NFATc2-rearranged sarcomas, mesenchymal chondrosarcomas and more rarely CIC-rearranged sarcomas and myoepithelial tumors. This progress report presents microscopic, immunohistochemical and molecular features of these tumors previously named by the inappropriate term "Ewing-like" sarcomas, in order to enable any pathologist to perceive the morphological features of these sarcomas, to select the immunohistochemical panel that will lead to the diagnosis and to better guide the molecular approach needed to establish the final diagnosis.
Collapse
Affiliation(s)
- Lucile Vanhersecke
- Université de Bordeaux, 33400 Talence, France; Département de biopathologie, institut Bergonié, 33000 Bordeaux, France.
| | | | - François Le Loarer
- Université de Bordeaux, 33400 Talence, France; Département de biopathologie, institut Bergonié, 33000 Bordeaux, France; Inserm U1218, ACTION, institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
20
|
Cotter JA, Judkins AR. Evaluation and Diagnosis of Central Nervous System Embryonal Tumors (Non-Medulloblastoma). Pediatr Dev Pathol 2022; 25:34-45. [PMID: 35168419 DOI: 10.1177/10935266211018554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since the 1990s, the sheer number of defined central nervous system (CNS) embryonal tumor entities has continuously increased, with the trend accelerating in the most recent editions of the World Health Organization (WHO) Classification of Tumours of the CNS. The introduction of increasingly specific tumor groups is an effort to create more internally homogeneous categories, to allow more precise prognostication, and potentially to develop targeted therapies. However, these ever-smaller categories within an already rare group of tumors pose a challenge for pediatric pathologists. In this article we review the current categorization of non-medulloblastoma CNS embryonal tumors (including atypical teratoid/rhabdoid tumor, cribriform neuroepithelial tumor, embryonal tumor with multilayered rosettes, CNS neuroblastoma, FOXR2-activated, and CNS tumor with BCOR internal tandem duplication) and provide an overview of available ancillary techniques to characterize these tumors. We provide a practical approach to workup and development of an integrated diagnosis for CNS embryonal tumors.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Vujanić G, Đuričić S. Renal tumours of childhood: A review. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-38283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal tumours of childhood are rare, although they are one of the most common solid tumours in children. They include numerous entities, which have different clinical, histological, molecular biological and prognostic features, so their precise diagnosis and staging are critical for appropriate treatment. The most common is Wilms' tumour (WT) with ~80-85 % of all cases, whereas other entities including mesoblastic nephroma, clear cell sarcoma, rhabdoid tumour, renal cell carcinoma, metanephric tumours and others are very rare (2-4 % each) which explains why they represent a big diagnostic challenge for diagnostic pathologists. They are subclassified into three risk groups - low, intermediate and high - which have different treatments and prognosis. There are two big study groups which have different approaches but remarkable similar outcomes. The International Society of Paediatric Oncology approach (followed in most of the world) is based on preoperative chemotherapy, followed by surgery and further therapy, whereas the Children's Oncology Group approach (followed mainly in the United States and Canada) is based on primary surgery, followed by postoperative treatment.
Collapse
|
22
|
Yaguchi T, Kimura S, Sekiguchi M, Kubota Y, Seki M, Yoshida K, Shiraishi Y, Kataoka K, Fujii Y, Watanabe K, Hiwatari M, Miyano S, Ogawa S, Takita J. Description of longitudinal tumor evolution in a case of multiply relapsed clear cell sarcoma of the kidney. Cancer Rep (Hoboken) 2021; 5:e1458. [PMID: 34967151 PMCID: PMC8842696 DOI: 10.1002/cnr2.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/06/2022] Open
Abstract
Background Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor. Case A 2‐year‐old boy was diagnosed with CCSK, which relapsed four times until he yielded to the disease at the age of 7 years. To characterize the longitudinal genetic alterations occurring in the present case, we performed targeted‐capture sequencing by pediatric solid tumors panel (381 genes) for longitudinally sampled tumors, including autopsy samples of metastasis. Internal tandem duplication of BCOR (BCOR‐ITD) was the only truncal mutation, confirming the previously reported role of BCOR‐ITD in CCSK. Conclusion Acquisition of additional mutations along tumor relapses and detection of metastasis‐specific mutations were reminiscent of the tumor progression and therapeutic resistance of this case, leading to clonal selection and a dismal fate.
Collapse
Affiliation(s)
- Tomoki Yaguchi
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Pediatrics, Graduate School of Biomedical Sciences Hiroshima University Hiroshima Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yuichi Shiraishi
- Division of Cellular Signaling National Cancer Center Research Institute Tokyo Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Pediatrics, Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
23
|
Davis JL, Al‐Ibraheemi A, Rudzinski ER, Surrey LF. Mesenchymal neoplasms with NTRK and other kinase gene alterations. Histopathology 2021; 80:4-18. [DOI: 10.1111/his.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica L Davis
- Department of Pathology Oregon Health & Science University Portland OregonUSA
| | - Alyaa Al‐Ibraheemi
- Department of Pathology Boston Children’s Hospital Boston MassachusettsUSA
| | - Erin R Rudzinski
- Department of Laboratories Seattle Children’s Hospital Seattle WashingtonUSA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine The Children’s Hospital of Philadelphia Philadelphia Pennsylvania USA
| |
Collapse
|
24
|
Role of Cyclin D1 and BCOR Immunohistochemistry in Differentiating Clear Cell Sarcoma of Kidney From its Mimics. J Pediatr Hematol Oncol 2021; 43:294-300. [PMID: 34673711 DOI: 10.1097/mph.0000000000002262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/21/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM Clear cell sarcoma of kidney (CCSK) is the second most common pediatric renal malignancy, constituting ∼3% of renal tumors. Due to its morphologic diversity, the diagnosis of CCSK is often challenging. Recent studies have identified internal tandem duplication of BCL6 corepressor (BCOR) gene in CCSKs which coupled with cyclin D1 immunoreactivity, is helpful in differentiating it from its mimics, particularly blastema-rich Wilms tumor (WT), malignant rhabdoid tumor (MRT), and congenital mesoblastic nephroma (CMN). We aimed to evaluate the utility of cyclin D1 and BCOR immunohistochemistry in differentiating CCSK from its morphologic mimics. MATERIALS AND METHODS Our cohort comprised of 38 pediatric renal tumors which included CCSK (n=18), WT (n=10), MRT (n=5), and CMN (n=5) cases. A detailed clinicopathologic analysis was performed, and tissue microarray were constructed for CCSK and WT, while MRT and CMN tumors were individually stained. RESULTS The age ranged from 2 months to 16 years with male:female ratio of 3:1. Strong, diffuse nuclear immunoreactivity for cyclin D1 and BCOR was noted in 61% (n=11/18) and 83% (n=15/18) of CCSK, respectively, while it was significantly less in WT (n=3/10 for cyclin D1) (n=2/10 for BCOR). None of the MRT and CMN examples demonstrated any immunoreactivity. Interestingly, only the blastemal component of WTs showed distinct, rare nuclear immunoreactivity for cyclin D1 or BCOR and the combination of these was never positive in a given case. CONCLUSION Our results provide evidence that concurrent immunopositivity with cyclin D1 and BCOR is helpful in distinguishing CCSK from its morphologic mimics.
Collapse
|
25
|
Al-Ibraheemi A, Putra J, Tsai HK, Cano S, Lip V, Pinches RS, Restrepo T, Alexandrescu S, Janeway KA, Duraisamy S, Harris MH, Church AJ. Assessment of BCOR Internal Tandem Duplications in Pediatric Cancers by Targeted RNA Sequencing. J Mol Diagn 2021; 23:1269-1278. [PMID: 34325058 DOI: 10.1016/j.jmoldx.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alterations in the BCOR gene, including internal tandem duplications (ITDs) of exon 15 have emerged as important oncogenic changes that define several diagnostic entities. In pediatric cancers, BCOR ITDs have recurrently been described in clear cell sarcoma of kidney (CCSK), primitive myxoid mesenchymal tumor of infancy (PMMTI), and central nervous system high-grade neuroepithelial tumor with BCOR ITD in exon 15 (HGNET-BCOR ITDex15). In adults, BCOR ITDs are also reported in endometrial and other sarcomas. The utility of multiplex targeted RNA sequencing for the identification of BCOR ITD in pediatric cancers was investigated. All available archival cases of CCSK, PMMTI, and HGNET-BCOR ITDex15 were collected. Each case underwent anchored multiplex PCR library preparation with a custom-designed panel, with BCOR targeted for both fusions and ITDs. BCOR ITD was detected in all cases across three histologic subtypes using the RNA panel, with no other fusions identified in any of the cases. All BCOR ITDs occurred in the final exon, within 16 codons from the stop sequence. Multiplex targeted RNA sequencing from formalin-fixed, paraffin-embedded tissue is successful at identifying BCOR internal tandem duplications. This analysis supports the use of anchored multiplex PCR targeted RNA next-generation sequencing panels for identification of BCOR ITDs in pediatric tumors. The use of post-analytic algorithms to improve the detection of BCOR ITD using DNA panels was also explored.
Collapse
Affiliation(s)
- Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Juan Putra
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Harrison K Tsai
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samantha Cano
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Va Lip
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - R Seth Pinches
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tamara Restrepo
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sekhar Duraisamy
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Zhao M, Zhang Q, He X, Zhang D. Primary Renal BCOR-CCNB3 Fusion Sarcoma: A Case Report and Review of the Literature. Urol Int 2021; 106:644-648. [PMID: 34515251 DOI: 10.1159/000518563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
BCOR-CCNB3 fusion sarcoma is a recently described undifferentiated sarcoma with a novel recurrent inversion of 2 nearby genes BCOR and CCNB3. It typically affects bone and soft tissues of the pelvis, extremity, and paraspinal region and pursues variable clinical course. Primary renal BCOR-CCNB3 fusion sarcoma is very rare, and only a small number of cases have been documented. Accurate diagnosis is often challenging, and there is not any agreement for the treatment of this entity due to its rarity. We report findings of primary renal BCOR-CCNB3 fusion sarcoma in a 16-year-old boy with a brief review of the literature.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xianglei He
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
27
|
Abstract
Pediatric tumors can be divided into hematologic malignancies, central nervous system tumors, and extracranial solid tumors of bone, soft tissue, or other organ systems. Molecular alterations that impact diagnosis, prognosis, treatment, and familial cancer risk have been described in many pediatric solid tumors. In addition to providing a concise summary of clinically relevant molecular alterations in extracranial pediatric solid tumors, this review discusses conventional and next-generation sequencing-based molecular techniques, relevant tumor predisposition syndromes, and the increasing integration of molecular data into the practice of diagnostic pathology for children with solid tumors.
Collapse
Affiliation(s)
- Jonathan C Slack
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Kyriazoglou A, Tourkantoni N, Liontos M, Zagouri F, Mahaira L, Papakosta A, Michali D, Patereli A, Stefanaki K, Tzotzola V, Skoura E, Baka M, Polychronopoulou S, Kattamis A, Dimitriadis E. A Case Series of BCOR Sarcomas With a New Splice Variant of BCOR/CCNB3 Fusion Gene. In Vivo 2021; 34:2947-2954. [PMID: 32871837 DOI: 10.21873/invivo.12125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Undifferentiated round cell sarcomas are a heterogeneous group of sarcomas. Identification of BCOR alterations, such as BCOR/CCNB3 and BCOR/MAML3 fusion genes and BCOR ITD has recently contributed in the precise diagnosis of these neoplasms, defining a new entity of the current classification of soft tissue and bone sarcomas. BCOR sarcomas share both morphological and genetic characteristics distinct from Ewing sarcomas. The scope of our study was to retrospectively identify BCOR sarcomas and find the correlations with the clinical outcome of these patients. PATIENTS AND METHODS Histopathology and immunohistochemistry of pediatric tumor samples were combined with molecular testing (PCR) and fluorescent in situ hybridization to find BCOR sarcomas. RESULTS We, herein, present our experience with BCOR sarcomas in a referral center of Greece. Moreover, we report in one case the detection of a variant BCOR/CCNB3 fusion not previously described. CONCLUSION We are the first to report a splice variant of BCOR/CCNB3 which reveals the central position of BCOR in the oncogenesis of these tumors, furthermore we highlight the importance of molecular diagnostics in Ewing-like sarcomas and discuss the current treatment options for this rare entity.
Collapse
Affiliation(s)
| | - Natalia Tourkantoni
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Louisa Mahaira
- Department of Genetics, Aghios Savvas Hospital, Athens, Greece
| | | | - Dimitra Michali
- Department of Genetics, Aghios Savvas Hospital, Athens, Greece
| | - Amalia Patereli
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Vasiliki Tzotzola
- Department of Pediatric Oncology, Aghia Sofia Children's Hospital, Athens, Greece
| | | | - Margarita Baka
- Department of Pediatric Oncology, Panagiotis and Aglaia Kyriakou Children's Hospital, Athens, Greece
| | | | - Antonis Kattamis
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
| | | |
Collapse
|
29
|
Blattner-Johnson M, Jones DTW, Pfaff E. Precision medicine in pediatric solid cancers. Semin Cancer Biol 2021; 84:214-227. [PMID: 34116162 DOI: 10.1016/j.semcancer.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Despite huge advances in the diagnosis and treatment of pediatric cancers over the past several decades, it remains one of the leading causes of death during childhood in developed countries. The development of new targeted treatments for these diseases has been hampered by two major factors. First, the extremely heterogeneous nature of the types of tumors encountered in this age group, and their fundamental differences from common adult carcinomas, has made it hard to truly get a handle on the complexities of the underlying biology driving tumor growth. Second, a reluctance of the pharmaceutical industry to develop products or trials for this population due to the relatively small size of the 'market', and a too-easy mechanism of obtaining waivers for pediatric development of adult oncology drugs based on disease type rather than mechanism of action, led to significant difficulties in getting access to new drugs. Thankfully, the field has now started to change, both scientifically and from a regulatory perspective, in order to address some of these challenges. In this review, we will examine some of the recent insights into molecular features which make pediatric tumors so unique and how these might represent therapeutic targets; highlight ongoing international initiatives for providing comprehensive, personalized genomic profiling of childhood tumors in a clinically-relevant timeframe, and look briefly at where the field of pediatric precision oncology may be heading in future.
Collapse
Affiliation(s)
- Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Kyriazoglou A, Bagos P. Meta-analysis of BCOR rearranged sarcomas: challenging the therapeutic approach. Acta Oncol 2021; 60:721-726. [PMID: 33630701 DOI: 10.1080/0284186x.2021.1890818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION BCOR rearranged sarcomas comprise a group of malignant mesenchymal tumors that until recently were classified as Ewing sarcomas or as undifferentiated round cell sarcomas. The identification of alterations involving BCOR gene such as BCOR-CCNB3, BCOR-MAML3, ZC3H7B-BCOR fusion genes and BCOR internal tandem duplication (ITD) is characteristic for the differential diagnosis of BCOR rearranged sarcomas. Due to the rarity of these tumors there is no consensus or guidelines regarding the optimal therapeutic algorithm, that clinicians should follow. PATIENTS AND METHODS Herein we have conducted a meta-analysis of the current reports dealing with the therapeutic approach of BCOR rearranged sarcomas. RESULTS Meta-analysis of the 57 eligible cases from 10 studies resulted to similar Incidence Rate Ratio (IRR) and overall survival (OS) for patients who received Ewing protocols and non-Ewing oriented treatment. Further similar death rate was reported for both strategies (non-Ewing 20% Vs Ewing 21.8%). CONCLUSION Our data support that non-Ewing treatment strategy can be considered a safe option, being at least equal to Ewing protocols. The current study provides a hint toward the optimal therapeutic approach of BCOR rearranged sarcomas. Further, the present study challenges the use of the term Ewing-like sarcomas, since the current literature supports that BCOR rearranged sarcomas deserve their own distinct classification in terms of genetics, pathology and therapy.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, Chaidari, Athens, Greece
| | - Pantelis Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| |
Collapse
|
31
|
Targeted RNA expression profiling identifies high-grade endometrial stromal sarcoma as a clinically relevant molecular subtype of uterine sarcoma. Mod Pathol 2021; 34:1008-1016. [PMID: 33077922 DOI: 10.1038/s41379-020-00705-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
High-grade endometrial stromal sarcoma (HGESS) may harbor YWHAE-NUTM2A/B fusion, ZC3H7B-BCOR fusion, and BCOR internal tandem duplication (ITD). NTRK3 upregulation and pan-Trk expression were reported in soft tissue lesions that share similar morphology and genetic abnormalities. To confirm these findings in HGESS, differential expression analysis was performed at gene level comparing 11 HGESS with 48 other uterine sarcomas, including 9 low-grade endometrial stromal sarcomas, 23 undifferentiated uterine sarcomas, and 16 leiomyosarcomas, using targeted RNA sequencing data. Pan-Trk immunohistochemistry was performed on 35 HGESS, including 10 tumors with RNA expression data, with genotypes previously confirmed by targeted RNA sequencing, fluorescence in situ hybridization, and/or genomic PCR. Unsupervised hierarchical clustering of the top 25% of differentially expressed probes identified three molecular groups: (1) high NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and low ESR1 expression; (2) low NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and high ESR1 expression; and (3) low NTRK3, FGFR3, RET, BCOR, GLI1, PTCH1, and ESR1 expression. Among HGESS, 64% of tumors clustered in group 1, while 27% clustered in group 2. Cytoplasmic and/or nuclear pan-Trk staining of variable extent and intensity was seen in 91% of HGESS regardless of cyclin D1 and/or BCOR positivity. ER and PR expression was seen in 44% of HGESS despite ESR1 downregulation. Two patients with ER and PR positive but ESR1 downregulated stage I HGESS were treated with endocrine therapy, and both recurred at 12 and 36 months after primary resection. By RNA expression, HGESS appear homogenous and distinct from other uterine sarcomas by activation of kinases, including NTRK3, and sonic hedgehog pathway genes along with downregulation of ESR1. Most HGESS demonstrate pan-Trk staining which may serve as a diagnostic biomarker. ESR1 downregulation is seen in some HGESS that express ER and PR which raises implications in the utility of endocrine therapy in these patients.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies. RECENT FINDINGS Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly. We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.
Collapse
Affiliation(s)
- Juhi Jain
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE , 400, Atlanta, GA, 30322, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE, 434B, Atlanta, GA, 30322, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Atlanta, GA, USA. .,Health Sciences Research Building, 1760 Haygood Drive NE, E-370, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Abstract
Wilms tumor is the most common renal tumor of childhood. It is a biologically and morphologically diverse entity, with ongoing studies contributing to our understanding of the pathobiology of various subgroups of patients with Wilms tumor. The interplay of histologic examination and molecular interrogation is integral in prognostication and direction of therapy. This review provides an overview of some of the challenging aspects and pitfalls in pathologic assessment of Wilms tumor, along with discussion of current and up-and-coming markers of biological behavior with prognostic significance.
Collapse
Affiliation(s)
- Lauren N Parsons
- Medical College of Wisconsin, Milwaukee, WI, USA; Children's Hospital of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
34
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
35
|
Abstract
Molecular characterization has led to advances in the understanding of pediatric renal tumors, including the association of pediatric cystic nephromas with DICER1 tumor syndrome, the metanephric family of tumors with somatic BRAF mutations, the characterization of ETV6-NTRK3-negative congenital mesoblastic nephromas, the expanded spectrum of gene fusions in translocation renal cell carcinoma, the relationship of clear cell sarcoma of the kidney with other BCOR-altered tumors, and the pathways affected by SMARCB1 alterations in rhabdoid tumors of the kidney. These advances have implications for diagnosis, classification, and treatment of pediatric renal tumors.
Collapse
|
36
|
Khneisser P, Sarnacki S, Orbach D, Brisse H, Pierron G, Galmiche L. [A rare sacrococcygeal tumor]. Ann Pathol 2020; 41:232-234. [PMID: 33036799 DOI: 10.1016/j.annpat.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Pierre Khneisser
- Service d'anatomie et de cytologie pathologiques, hôpital Armand-Trousseau, Paris, France.
| | - Sabine Sarnacki
- Service de chirurgie viscérale pédiatrique, hôpital Necker-Enfants-Malades, Paris, France
| | - Daniel Orbach
- Service d'oncologie pédiatrique, institut Curie, Paris, France
| | - Hervé Brisse
- Service de radiologie pédiatrique, institut Curie, Paris, France
| | - Gaelle Pierron
- Unité de génétique somatique, institut Curie, Paris, France
| | - Louise Galmiche
- Service d'anatomie et de cytologie pathologiques, hôpital Necker-enfants-malades, Paris, France
| |
Collapse
|
37
|
Kenny C, Grehan D, Ulas M, Banga GB, Coulomb A, Vokuhl C, O'Sullivan MJ. Immunophenotype-Genotype Correlations in Clear Cell Sarcoma of Kidney-An Evaluation of Diagnostic Ancillary Studies. Pediatr Dev Pathol 2020; 23:345-351. [PMID: 32364435 DOI: 10.1177/1093526620910658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The purpose of this study was to establish a reliable panel of antibodies for immunohistochemical corroboration of a diagnosis of clear cell sarcoma of kidney (CCSK), taking into consideration the various genotypic subsets of CCSK. METHODS We conducted full genotypic analysis for evidence of YWHAE-NUTM2, BCOR internal tandem duplication (ITD), and BCOR-CCNB3 in 68 archival cases of CCSK and then immunostained all cases for CCND1, TLE1, and BCOR along with 63 control samples representing tumor types that may enter into the differential diagnosis of CCSK, including 7 congenital mesoblastic nephromas, 2 desmoplastic small round cell tumors, 13 malignant rhabdoid tumors, 9 Ewing sarcomas/primitive neuroectodermal tumor, 5 synovial sarcomas, and 27 Wilms' tumors. RESULTS Molecular assays showed that 54 CCSKs harbored a BCOR-ITD, 1 case expressed a YWHAE-NUTM2 fusion transcript while none expressed the BCOR-CCNB3 fusion. The remaining 13 CCSKs were designated "triple-negative" based on the molecular findings. CCND1 showed positive immunoreactivity across all subgroups. TLE1 was positive in 94% of cases, including 1 YWHAE-NUTM2 fusion-positive case. Three BCOR-ITD-positive tumors were TLE1-negative. BCOR immunostaining was most variable among subgroups, with triple-negative tumors showing the weakest staining. In all, 10/68 (15%) tumors did not stain for BCOR, of which 4 were triple-negative (4/13 = 31%) and 6 were BCOR-ITD-positive (6/54 = 11%). The single YWHAE-NUTM2-positive tumor showed strong staining for all 3 markers. No single case was negative for all 3 stains; however, 3 cases showed no reactivity for either BCOR or TLE1 of which 1 was triple-negative and 2 BCOR-ITD-positive. CONCLUSION Having completed the first comprehensive evaluation of immunostaining of 68 fully genotyped CCSK tumors, we show herein that there is a rationale for the use of a small panel of antibodies to assist in the diagnosis of CCSK regardless of genotype, and we demonstrate that in combination CCND1, TLE1, and BCOR are compelling markers in aiding CCSK diagnosis.
Collapse
Affiliation(s)
- Colin Kenny
- Trinity College, University of Dublin, Dublin, Ireland.,Oncology Division, The National Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland
| | - David Grehan
- Histology Laboratory, Our Lady's Children's Hospital, Dublin, Ireland
| | - Mevlut Ulas
- Trinity College, University of Dublin, Dublin, Ireland.,Oncology Division, The National Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland
| | - Gloria Badi Banga
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Armand Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Aurore Coulomb
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Armand Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Christian Vokuhl
- Kiel Pediatric Cancer Registry, Christian Albrechts University, Kiel, Germany
| | - Maureen J O'Sullivan
- Trinity College, University of Dublin, Dublin, Ireland.,Oncology Division, The National Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland.,Histology Laboratory, Our Lady's Children's Hospital, Dublin, Ireland
| |
Collapse
|
38
|
Kutscher LM, Okonechnikov K, Batora NV, Clark J, Silva PBG, Vouri M, van Rijn S, Sieber L, Statz B, Gearhart MD, Shiraishi R, Mack N, Orr BA, Korshunov A, Gudenas BL, Smith KS, Mercier AL, Ayrault O, Hoshino M, Kool M, von Hoff K, Graf N, Fleischhack G, Bardwell VJ, Pfister SM, Northcott PA, Kawauchi D. Functional loss of a noncanonical BCOR-PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes Dev 2020; 34:1161-1176. [PMID: 32820036 PMCID: PMC7462063 DOI: 10.1101/gad.337584.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, Kutscher et al. investigated the transcriptional corepressor BCOR as a putative tumor suppressor and used a genetically engineered mouse model to delete exons 9/10 of Bcor in GNPs during development. Their data suggest that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors. Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9–10) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9–10). While BcorΔE9–10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9–10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/−;BcorΔE9–10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/− GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/−;BcorΔE9–10 tumors. Overall, our data suggests that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.
Collapse
Affiliation(s)
- Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nadja V Batora
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia B G Silva
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Mikaella Vouri
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Sjoerd van Rijn
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Laura Sieber
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Micah D Gearhart
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Norman Mack
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Audrey L Mercier
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Katja von Hoff
- Department for Paediatric Oncology and Haematology, Charité University Medicine, 13354 Berlin, Germany
| | - Norbert Graf
- Department for Pediatric Oncology and Hematology, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Gudrun Fleischhack
- Pediatric Haematology and Oncology, Pediatrics III, University Hospital of Essen, 45147 Essen, Germany
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Setoodeh S, Palsgrove DN, Park JY, Pedrosa I, Kapur P, Jia L. Primary Renal Sarcoma With BCOR-CCNB3 Gene Fusion in an 18-Year-Old Male: A Rare Lesion With a Diagnostic Quandary. Int J Surg Pathol 2020; 29:194-197. [PMID: 32648496 DOI: 10.1177/1066896920941087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary renal sarcoma with BCOR-CCNB3 gene fusion is a rare tumor with only 7 cases reported in the English literature. The morphologic features of this tumor strikingly overlap with clear cell sarcoma of the kidney and synovial sarcoma. Accurate diagnosis can be challenging. In this article, we report a case of an 18-year-old male who presented with hematuria. Subsequent imaging study showed a left renal mass with level II (infra-hepatic) inferior vena cava thrombus, which was resected. Detailed pathologic findings and immunohistochemical and molecular studies revealed an ovoid to spindle cell renal mass with a BCOR-CCNB3 gene fusion.
Collapse
Affiliation(s)
- Sasan Setoodeh
- Department of Pathology, 89063UT Southwestern Medical Center, Dallas TX, USA
| | - Doreen N Palsgrove
- Department of Pathology, 89063UT Southwestern Medical Center, Dallas TX, USA
| | - Jason Y Park
- Department of Pathology, 89063UT Southwestern Medical Center, Dallas TX, USA
| | - Ivan Pedrosa
- Department of Radiology, UT Southwestern Medical Center, Dallas TX, USA
| | - Payal Kapur
- Department of Pathology, 89063UT Southwestern Medical Center, Dallas TX, USA
| | - Liwei Jia
- Department of Pathology, 89063UT Southwestern Medical Center, Dallas TX, USA
| |
Collapse
|
40
|
Lei L, Stohr BA, Berry S, Lockwood CM, Davis JL, Rudzinski ER, Kunder CA. Recurrent EGFR alterations in NTRK3 fusion negative congenital mesoblastic nephroma. Pract Lab Med 2020; 21:e00164. [PMID: 32490123 PMCID: PMC7260589 DOI: 10.1016/j.plabm.2020.e00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives To identify oncogenic driver mutations in congenital mesoblastic nephroma (CMN) cases lacking ETV6-NTRK3 fusion and discuss their diagnostic value. Design The institutional pathology database was queried for cases with a morphologic diagnosis of CMN. Cases positive for ETV6 rearrangement or with unavailable blocks were excluded. Four cases met the inclusion criteria and were sequenced by next-generation sequencing. Three additional cases were contributed by our collaborators. Results Three of four internal cases harbor an EGFR kinase domain duplication (KDD), which is known to be oncogenic yet exceedingly rare in other histologies. All three outside cases are positive for EGFR alterations, including KDD in two and a splicing site mutation in one. The splicing site mutation is predicted to be EGFR activating. One of the outside cases was a retroperitoneal mass without a clear site of origin. A diagnosis of CMN is suggested based on exclusion of differential diagnoses by expert consultation and detection of EGFR KDD. Conclusions EGFR activation, predominantly via EGFR KDD, is a common recurrent genetic alteration in CMN lacking NTRK3 fusions. CMN can be molecularly classified into NTRK3 fusion type, EGFR activation type and others.
Collapse
Affiliation(s)
- Li Lei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bradley A Stohr
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Stacey Berry
- Department of Pathology, Cook Children's Medical Center, Fort Worth, TX, USA
| | | | - Jessica L Davis
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Han H, Bertrand KC, Patel KR, Fisher KE, Roy A, Muscal JA, Venkatramani R. BCOR-CCNB3 fusion-positive clear cell sarcoma of the kidney. Pediatr Blood Cancer 2020; 67:e28151. [PMID: 31876361 DOI: 10.1002/pbc.28151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/08/2022]
Abstract
Clear cell sarcoma of the kidney (CCSK) is the second most common malignant pediatric renal tumor. Two of the recurrent somatic alterations reported in CCSK are BCL-6 corepressor (BCOR) internal tandem duplication (ITD) and YWHAE-NUTM2B/E gene fusion. A minority of patients with CCSKs have other rare somatic alterations. We report two patients with CCSK showing BCOR-CCNB3 (where CCNB3 is cyclin B3) fusion, who had similar clinical presentation of a large renal mass with tumor thrombus extending through the inferior vena cava into the right atrium and a favorable response to chemotherapy. We recommend BCOR-CCNB3 fusion testing for all patients with CCSK who lack BCOR-ITD or YWHAE-NUTM2B/E gene fusions.
Collapse
Affiliation(s)
- Hyojeong Han
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Kelsey C Bertrand
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Kalyani R Patel
- Department of Pathology & Immunology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Kevin E Fisher
- Department of Pathology & Immunology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Angshumoy Roy
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas.,Department of Pathology & Immunology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Jodi A Muscal
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Rajkumar Venkatramani
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Ooms AH, Vujanić GM, D’Hooghe E, Collini P, L’Herminé-Coulomb A, Vokuhl C, Graf N, van den Heuvel-Eibrink MM, de Krijger RR. Renal Tumors of Childhood-A Histopathologic Pattern-Based Diagnostic Approach. Cancers (Basel) 2020; 12:cancers12030729. [PMID: 32204536 PMCID: PMC7140051 DOI: 10.3390/cancers12030729] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022] Open
Abstract
Renal tumors comprise approximately 7% of all malignant pediatric tumors. This is a highly heterogeneous group of tumors, each with its own therapeutic management, outcome, and association with germline predispositions. Histopathology is the key in establishing the correct diagnosis, and therefore pathologists with expertise in pediatric oncology are needed for dealing with these rare tumors. While each tumor shows different histologic features, they do have considerable overlap in cell type and histologic pattern, making the diagnosis difficult to establish, if based on routine histology alone. To this end, ancillary techniques, such as immunohistochemistry and molecular analysis, can be of great importance for the correct diagnosis, resulting in appropriate treatment. To use ancillary techniques cost-effectively, we propose a pattern-based approach and provide recommendations to aid in deciding which panel of antibodies, supplemented by molecular characterization of a subset of genes, are required.
Collapse
Affiliation(s)
- Ariadne H.A.G. Ooms
- Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands (M.M.v.d.H.-E.)
- Pathan B.V., 3045 PM Rotterdam, The Netherlands
| | | | - Ellen D’Hooghe
- Department of Pathology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway;
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Aurore L’Herminé-Coulomb
- Sorbonne Université, Department of Pathology, Hôpital Armand Trousseau, Hopitaux Universitaires Est Parisien, 75012 Paris, France;
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, D-66421 Homburg, Germany;
| | | | - Ronald R. de Krijger
- Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands (M.M.v.d.H.-E.)
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-088-9727272
| |
Collapse
|
43
|
Yoshida A, Arai Y, Hama N, Chikuta H, Bando Y, Nakano S, Kobayashi E, Shibahara J, Fukuhara H, Komiyama M, Watanabe SI, Tamura K, Kawai A, Shibata T. Expanding the clinicopathologic and molecular spectrum of BCOR-associated sarcomas in adults. Histopathology 2020; 76:509-520. [PMID: 31647130 DOI: 10.1111/his.14023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
AIMS BCOR gene alteration is a genetic signature of rare subsets of sarcomas. Most BCOR-associated sarcomas thus far reported are in the pediatric population, except for uterine sarcomas. We studied seven cases of BCOR-associated non-uterine sarcomas in adult patients. METHODS AND RESULTS The patients were four men and three women ranging from 26 to 71 years in age. Three tumors, two of which primarily affected the kidney, showed BCOR-CCNB3. One tumor with a ZC3H7B-BCOR occurred in the chest wall, and a tumor with a novel CIITA-BCOR was found in the sinonasal tract. Two tumors in the lung and breast harbored exon 15 internal tandem duplications of BCOR, a highly unexpected observation in this age group. All seven sarcomas consisted of dense proliferations of uniform round to spindle cells with fine chromatin within vascular stroma. BCOR-CCNB3 sarcomas showed swirling fascicular growth. The tumor with the ZC3H7B-BCOR fusion showed a multinodular growth of spindle cells, and the tumors with the CIITA-BCOR fusion showed palisading of oval cells. Both tumors with BCOR internal tandem duplication demonstrated nested to palisading growth of round cells within sclerotic non-myxoid stroma. All seven sarcomas diffusely expressed BCOR and SATB2 immunohistochemically, with all three BCOR-CCNB3 sarcomas being immunopositive for CCNB3. BCOR alterations were confirmed by RNA sequencing, polymerase chain reaction, Sanger sequencing, and/or fluorescence in situ hybridization. CONCLUSIONS This study expands the clinicopathologic and molecular spectrum of BCOR-associated sarcomas, and emphasizes the importance of being aware of this entity in the differential diagnosis of adult non-uterine sarcomas.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Chikuta
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Seiichi Nakano
- Department of Otolaryngology, Tokushima University Graduate School of biomedical Sciences, Tokushima, Japan
| | - Eisuke Kobayashi
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Motokiyo Komiyama
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
44
|
Fuller MY. Pediatric Renal Tumors: Diagnostic Updates. KIDNEY CANCER 2020. [DOI: 10.1007/978-3-030-28333-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Khan MZ, Akhtar N, Hassan U, Mushtaq S. Diagnostic Utility of BCOR Antibody in Clear Cell Sarcomas of Kidney. Int J Surg Pathol 2019; 28:477-481. [DOI: 10.1177/1066896919895119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose. Clear cell sarcoma of the kidney (CCSK) is an uncommon malignant renal tumor. It is the second most common renal pediatric renal malignancy after Wilms tumor. It exhibits a heterogeneous morphology, with overlapping features with its close differentials, which results in diagnostic challenges. There was no specific immunohistochemical marker in the past, to help in this regard. BCOR antibody has recently been suggested to be helpful in the differential diagnosis. We aim to study the utility of the BCOR antibody in the diagnosis of CCSK. Methods. We selected a total of 27 cases of CCSK (n = 12), Wilms tumor (n = 12), and congenital mesoblastic nephroma (n = 3). All cases were evaluated for the extent and intensity of nuclear labeling for BCOR antibody by immunohistochemistry (IHC). Results. We found that BCOR IHC was positive in 11 out of 12 cases with diffuse and strong staining in 8 of the cases. None of the cases of Wilms tumor and congenital mesoblastic nephroma were positive. Only 2 cases of Wilms tumor showed minimal and weak staining in <5% of cells. Conclusion. Diffuse and strong nuclear staining for the BCOR antibody is highly specific for CCSK among common pediatric renal malignancies. Our study confirms that BCOR IHC is a good IHC marker for the diagnosis of CCSK.
Collapse
Affiliation(s)
| | - Noreen Akhtar
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Usman Hassan
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Sajid Mushtaq
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
46
|
Diffuse Strong BCOR Immunoreactivity Is a Sensitive and Specific Marker for Clear Cell Sarcoma of the Kidney (CCSK) in Pediatric Renal Neoplasia. Am J Surg Pathol 2019; 42:1128-1131. [PMID: 29851702 DOI: 10.1097/pas.0000000000001089] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
48
|
Nagaputra JC, Goh RCH, Kuick CH, Chang KTE, Sittampalam K. ZC3H7B-BCOR high-grade endometrial stromal sarcoma with osseous metaplasia: Unique feature in a recently defined entity. HUMAN PATHOLOGY: CASE REPORTS 2019. [DOI: 10.1016/j.ehpc.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Torre M, Meredith DM, Dubuc A, Solomon DA, Perry A, Vasudevaraja V, Serrano J, Snuderl M, Ligon KL, Alexandrescu S. Recurrent EP300-BCOR Fusions in Pediatric Gliomas With Distinct Clinicopathologic Features. J Neuropathol Exp Neurol 2019; 78:305-314. [DOI: 10.1093/jnen/nlz011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Matthew Torre
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pathology
| | | | - Adrian Dubuc
- Center for Advanced Molecular Diagnostics, Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California
| | | | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, New York
| | - Keith L Ligon
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pathology
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pathology
| |
Collapse
|
50
|
Uddin N, Minhas K, Abdul-Ghafar J, Ahmed A, Ahmad Z. Expression of cyclin D1 in clear cell sarcoma of kidney. Is it useful in differentiating it from its histological mimics? Diagn Pathol 2019; 14:13. [PMID: 30736802 PMCID: PMC6368701 DOI: 10.1186/s13000-019-0790-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/01/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Clear cell sarcoma of the kidney (CCSK) is a rare malignant pediatric renal neoplasm with a heterogeneous histological appearance which often results in misdiagnosis. There are no specific immunohistochemical markers which can help in differentiating CCSK from other pediatric renal neoplasms. Recently Cyclin D1 has been investigated as a possible marker in this regard. In this study, we aim to determine the usefulness of Cyclin D1 in differentiating between CCSK and other pediatric renal neoplasms and to compare our results with those of recently published studies. METHODS A total of 48 cases of CCSK, Wilms tumor (WT), renal rhabdoid tumor, mesoblastic nephroma, renal Ewing sarcoma and neuroblastoma were included in the study. All cases were stained with cyclin D1. Extent of Cyclin D1 staining was graded according to percentage of positive tumor cells as diffuse (> 70%), focal (5 to 70%), and negative (< 5%). Intensity of Cyclin D1 staining was graded as strong or 3+, moderate or 2+ and weak or 1 + . RESULTS Most or all cases of CCSK, neuroblastoma and renal Ewing sarcoma demonstrated diffuse and strong positivity for Cyclin D1. Most cases of Wilms tumor (epithelial component) also demonstrated diffuse and often strong positivity for Cyclin D1. In most cases of WT, blastemal component was negative. CONCLUSIONS Cyclin D1 is a sensitive but not specific immunohistochemical marker for CCSK and many other pediatric renal malignant neoplasms as well as for neuroblastoma. Hence, careful examination of histological features is important in reaching an accurate diagnosis in CCSKs. However, Cyclin D1 is very helpful in distinguishing between blastema-rich WT and CCSK.
Collapse
Affiliation(s)
- Nasir Uddin
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Khurram Minhas
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Laboratory Medicine, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan
| | - Arsalan Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|