1
|
Early Colorectal Responses to HIV-1 and Modulation by Antiretroviral Drugs. Vaccines (Basel) 2021; 9:vaccines9030231. [PMID: 33800213 PMCID: PMC8000905 DOI: 10.3390/vaccines9030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Innate responses during acute HIV infection correlate with disease progression and pathogenesis. However, limited information is available about the events occurring during the first hours of infection in the mucosal sites of transmission. With an ex vivo HIV-1 challenge model of human colorectal tissue we assessed the mucosal responses induced by R5- and X4-tropic HIV-1 isolates in the first 24 h of exposure. Microscopy studies demonstrated virus penetration of up to 39 μm into the lamina propia within 6 h of inoculation. A rapid, 6 h post-challenge, increase in the level of secretion of inflammatory cytokines, chemokines, interferon- γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed following exposure to R5- or X4-tropic isolates. This profile persisted at the later time point measured of 24 h. However, exposure to the X4-tropic isolate tested induced greater changes at the proteomic and transcriptomic levels than the R5-tropic. The X4-isolate induced greater levels of CCR5 ligands (RANTES, MIP-1α and MIP-1β) secretion than R5-HIV-1. Potential drugs candidates for colorectal microbicides, including entry, fusion or reverse transcriptase inhibitors demonstrated differential capacity to modulate these responses. Our findings indicate that in colorectal tissue, inflammatory responses and a Th1 cytokine profile are induced in the first 24 h following viral exposure.
Collapse
|
2
|
Stoner KA, Beamer MA, Avolia HA, Meyn LA, Hillier SL, Achilles SL. Optimization of processing female genital tissue samples for lymphocyte analysis by flow cytometry. Am J Reprod Immunol 2020; 83:e13227. [PMID: 31991032 DOI: 10.1111/aji.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022] Open
Abstract
PROBLEM A variety of methods have been used to process cervical cytobrush and genital tissue for flow cytometric evaluation of immune cell populations. We sought to optimize genital tract specimen processing and to determine if blood could be used as a model for assessment of tissue processing methods. METHOD OF STUDY Cervical cytobrushes, PBMCs, and genital tissue samples (cervical and endometrial biopsies) were subjected to varying processing conditions to characterize the effects on cell yields, lymphocyte viability, and surface receptors. We exposed PBMC and tissue specimens to varied collagenase types, concentrations, and exposure durations and cytobrushes to immediate vs delayed processing with/without vortexing. RESULTS PBMCs and tissues exposed to varying enzymatic digestion conditions demonstrated stability of some cell surface receptors, including CD3+ , CD4+ , and CD8+ , while others, including CCR6+ , were cleaved when exposed to any concentration of collagenase B, or ≥0.25 mg/mL of collagenase D. We observed increased CD69 expression (marker of cell activation) after exposure to collagenase B. Neither a 2-hour delay in cytobrush processing nor vortexing at a setting of 50% for 30 seconds had significant impacts on viability or quantities of genital immune cells of interest. CONCLUSION Although tissue digestion with collagenase D was sufficient to recover and analyze cells from endometrial biopsy specimens, cervical biopsy specimens required a limited exposure to collagenase B at 1 mg/mL to optimize cell yield and viability for cytometric analysis. PBMCs can be used as a model to assess the impact of tissue processing on co-receptor expression and to optimize methods prior to study implementation.
Collapse
Affiliation(s)
- Kevin A Stoner
- Magee-Womens Research and Foundation, Pittsburgh, PA, USA
| | - May A Beamer
- Magee-Womens Research and Foundation, Pittsburgh, PA, USA
| | | | - Leslie A Meyn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon L Hillier
- Magee-Womens Research and Foundation, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon L Achilles
- Magee-Womens Research and Foundation, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Sarrami-Forooshani R, Mesman AW, van Teijlingen NH, Sprokholt JK, van der Vlist M, Ribeiro CMS, Geijtenbeek TBH. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission. Retrovirology 2014; 11:52. [PMID: 24990163 PMCID: PMC4227116 DOI: 10.1186/1742-4690-11-52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal transmission models. Results Immature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation by TNF facilitated transmission of X4 as well as R5 HIV-1. Conclusions These data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively restrict X4 at the level of transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Kleppa E, Ramsuran V, Zulu S, Karlsen GH, Bere A, Passmore JAS, Ndhlovu P, Lillebø K, Holmen SD, Onsrud M, Gundersen SG, Taylor M, Kjetland EF, Ndung’u T. Effect of female genital schistosomiasis and anti-schistosomal treatment on monocytes, CD4+ T-cells and CCR5 expression in the female genital tract. PLoS One 2014; 9:e98593. [PMID: 24896815 PMCID: PMC4045760 DOI: 10.1371/journal.pone.0098593] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
Background Schistosoma haematobium is a waterborne parasite that may cause female genital schistosomiasis (FGS), characterized by genital mucosal lesions. There is clinical and epidemiological evidence for a relationship between FGS and HIV. We investigated the impact of FGS on HIV target cell density and expression of the HIV co-receptor CCR5 in blood and cervical cytobrush samples. Furthermore we evaluated the effect of anti-schistosomal treatment on these cell populations. Design The study followed a case-control design with post treatment follow-up, nested in an on-going field study on FGS. Methods Blood and cervical cytobrush samples were collected from FGS negative and positive women for flow cytometry analyses. Urine samples were investigated for schistosome ova by microscopy and polymerase chain reaction (PCR). Results FGS was associated with a higher frequency of CD14+ cells (monocytes) in blood (11.5% in FGS+ vs. 2.2% in FGS-, p = 0.042). Frequencies of CD4+ cells expressing CCR5 were higher in blood samples from FGS+ than from FGS- women (4.7% vs. 1.5%, p = 0.018). The CD14+ cell population decreased significantly in both compartments after anti-schistosomal treatment (p = 0.043). Although the frequency of CD4+ cells did not change after treatment, frequencies of CCR5 expression by CD4+ cells decreased significantly in both compartments (from 3.4% to 0.5% in blood, p = 0.036; and from 42.4% to 5.6% in genital samples, p = 0.025). Conclusions The results support the hypothesis that FGS may increase the risk of HIV acquisition, not only through damage of the mucosal epithelial barrier, but also by affecting HIV target cell populations, and that anti-schistosomal treatment can modify this.
Collapse
Affiliation(s)
- Elisabeth Kleppa
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital (OUH), Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Veron Ramsuran
- HIV Pathogenesis Programme, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Siphosenkosi Zulu
- School of Public Health Medicine, Nelson R Mandela School of Medicine, UKZN, Durban, South Africa
| | | | - Alfred Bere
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Jo-Ann S. Passmore
- Division of Medical Virology, IDM, University of Cape Town, Cape Town, South Africa
| | | | - Kristine Lillebø
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital (OUH), Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigve D. Holmen
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital (OUH), Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Svein Gunnar Gundersen
- Research Unit, Sorlandet Hospital, Kristiansand, Norway
- Centre for Development Studies, University of Agder, Kristiansand, Norway
| | - Myra Taylor
- School of Public Health Medicine, Nelson R Mandela School of Medicine, UKZN, Durban, South Africa
| | - Eyrun F. Kjetland
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital (OUH), Oslo, Norway
- School of Public Health Medicine, Nelson R Mandela School of Medicine, UKZN, Durban, South Africa
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| |
Collapse
|
5
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|