1
|
Baldión PA, Díaz CA, Betancourt DE. Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast-Like Cells. J Biomed Mater Res A 2025; 113:e37872. [PMID: 39893556 DOI: 10.1002/jbm.a.37872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin-dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast-like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2',7'-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, p ≤ 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (p < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (p = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.
Collapse
Affiliation(s)
- Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Aldemar Díaz
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Saha U, Jena S, Simnani FZ, Singh D, Choudhury A, Naser SS, Lenka SS, Kirti A, Nandi A, Sinha A, Patro S, Kujawska M, Suar M, Kaushik NK, Ghosh A, Verma SK. The unseen perils of oral-care products generated micro/nanoplastics on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117526. [PMID: 39674028 DOI: 10.1016/j.ecoenv.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The extensive use of plastics in modern dentistry, including oral care products and dental materials, has raised significant concerns due to the increasing evidence of potential harm to human health and the environment caused by the unintentional release of microplastics (MPs) and nanoplastics (NPs). Particles from sources like toothpaste, toothbrushes, orthodontic implants, and denture materials are generated through mechanical friction, pH changes, and thermal fluctuations. These processes cause surface stress, weaken material integrity, and induce wear, posing health risks such as exposure to harmful monomers and additives, while contributing to environmental contamination. MPs/NPs released during dental procedures can be ingested, leading to immune suppression, tissue fibrosis, and systemic toxicities. The gut epithelium absorbs some particles, while others are excreted, entering ecosystems, accumulating through the food chain, and causing ecological damage. Although analytical techniques have advanced in detecting MPs/NPs in oral care products, more robust methods are needed to understand their release mechanisms. This review explores the prevalence of MPs/NPs in dentistry, the mechanisms by which MPs/NPs are released into the oral environment, and their implications for human and ecological health. It underscores the urgency of public awareness and sustainable dental practices to mitigate these risks and promote environmental well-being.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Li X, Vandooren J, Pedano MS, De Munck J, Perdigão J, Van Landuyt K, Van Meerbeek B. Gelatinolytic activity in dentin upon adhesive treatment. Sci Rep 2024; 14:26618. [PMID: 39496727 PMCID: PMC11535179 DOI: 10.1038/s41598-024-78042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
In this multi-parameter study, the effect of diverse factors related to adhesive application on the activation of host-derived gelatinases was investigated by gelatin zymography, in-situ zymography, fluorogenic DQ-gelatin assay and micro-tensile bond-strength (μTBS) testing. Gelatin zymography disclosed the presence of gelatinases in phosphoric acid-etched dentin powder, while two gold-standard adhesives generated no measurable MMP activation. In-situ zymography revealed that the interfacial gelatinolytic activity from specimens treated with the two adhesives appeared similar as that of the EDTA negative control, indicating no detectable gelatinases were activated upon adhesive treatment. In solution, MMP-2/9 activity significantly decreased upon interaction with both adhesives (two-way linear mixed effects model [LMEM]: p < 0.05); gelatinases were almost completely deactivated upon 1-week incubation at 37 °C (general linear model: p < 0.05); light-curing adhesives increased temperature up to 55 °C, which appeared sufficient to dramatically decrease MMP-2/9 activity (two-way ANOVA: p < 0.05). Finally, challenging adhesive-dentin interfaces with highly concentrated MMP-9 (at a much higher concentration than present in saliva) for 1 m did not significantly affect μTBS (two-way LMEM: p > 0.05). Taken together, the two adhesives did not activate but rather inhibited the release and activation of dentinal gelatinases.
Collapse
Affiliation(s)
- Xin Li
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Jan De Munck
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Jorge Perdigão
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Dunavári EK, Kőházy A, Vecsernyés M, Szalma J, Lovász BV, Berta G, Lempel E. Does Preheating Influence the Cytotoxic Potential of Dental Resin Composites? Polymers (Basel) 2024; 16:174. [PMID: 38256973 PMCID: PMC10820920 DOI: 10.3390/polym16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Resin-based dental composites (RBC) release cytotoxic components, however the extent of the elution from preheated RBCs is barely investigated. The aim was therefore to determine the cytotoxic effect of preheated conventional, bulk, and thermoviscous RBCs of clinically relevant sizes using different cell viability methods in a contact-free model. Samples (6 × 4 mm) were prepared from conventional [Estelite Sigma Quick (ESQ), Filtek Z250 (FZ)] and bulk-filled [Filtek One BulkFill Restorative (FOB), SDR Plus Bulk Flow (SDR), VisCalor Bulk (VCB)] RBCs. The pre-polymerization temperature was set to room temperature (RT) and 55/65 °C. Pulp cells were cultured, followed by a 2-day exposure to monomers released from solid RBC specimens suspended in the culture medium. Cytotoxicity was assessed using a WST-1, MTT, and LDH colorimetric viability assays. Data were analyzed using one-way ANOVA, Tukey's post hoc test, multivariate analysis, and independent t-test. The effect size (ƞp2) of material and temperature factors was also assessed. All the RBCs demonstrated cytotoxic effect upon exposure to pulp cells, but to a varying extent (ESQ >> VCB > FZ = FOB = SDR). The effect of pre-polymerization temperature was insignificant (ƞp2 < 0.03), except for the thermoviscous RBC, which showed inconsistent findings when subjected to distinct viability tests. Cell viability was predominantly dependent on the type of material used (p < 0.001) which showed a large effect size (ƞp2 > 0.90). Irrespective of the pre-polymerization temperature, RBC samples in a clinically relevant size can release monomers to such an extent, which can substantially decrease the cytocompatibility.
Collapse
Affiliation(s)
- Erika Katalin Dunavári
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary; (E.K.D.); (A.K.)
| | - Anna Kőházy
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary; (E.K.D.); (A.K.)
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary; (M.V.); (G.B.)
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary;
| | - Bálint Viktor Lovász
- Oral and Maxillofacial Department, Manchester University Foundation Trust, Manchester Royal Infirmary Hospital, Oxford Rd, Manchester M13 9WL, UK;
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary; (M.V.); (G.B.)
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary; (E.K.D.); (A.K.)
| |
Collapse
|
5
|
Wiertelak-Makała K, Szymczak-Pajor I, Bociong K, Śliwińska A. Considerations about Cytotoxicity of Resin-Based Composite Dental Materials: A Systematic Review. Int J Mol Sci 2023; 25:152. [PMID: 38203323 PMCID: PMC10778595 DOI: 10.3390/ijms25010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The dental material industry is rapidly developing resin-based composites (RBCs), which find widespread use in a variety of clinical settings. As such, their biocompatibility has gained increasing interest. This literature review presents a summary of research into the cytotoxicity of methacrylate-based composites published from 2017 to 2023. Subject to analysis were 14 in vitro studies on human and murine cell lines. Cytotoxicity in the included studies was measured via MTT assay, LDH assay, and WST-1 assay. The QUIN Risk of Bias Tool was performed to validate the included studies. Included studies (based entirely on the results of in vitro studies) provide evidence of dose- and time-dependent cytotoxicity of dental resin-based composites. Oxidative stress and the depletion of cellular glutathione (GSH) were suggested as reasons for cytotoxicity. Induction of apoptosis by RBCs was indicated. While composites remain the golden standard of dental restorative materials, their potential cytotoxicity cannot be ignored due to direct long-term exposure. Further in vitro investigations and clinical trials are required to understand the molecular mechanism of cytotoxicity and produce novel materials with improved safety profiles.
Collapse
Affiliation(s)
- Kacper Wiertelak-Makała
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Kinga Bociong
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| |
Collapse
|
6
|
Human Primary Odontoblast-like Cell Cultures—A Focused Review Regarding Cell Characterization. J Clin Med 2022; 11:jcm11185296. [PMID: 36142943 PMCID: PMC9501234 DOI: 10.3390/jcm11185296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cell cultures can provide useful in vitro models. Since odontoblasts are postmitotic cells, they cannot be expanded in cell cultures. Due to their extension into the dentin, injuries are inevitable during isolation. Therefore, “odontoblast-like” cell culture models have been established. Nowadays, there is no accepted definition of odontoblast-like cell cultures, i.e., isolation, induction, and characterization of cells are not standardized. Furthermore, no quality-control procedures are defined yet. Thus, the aim of this review was to evaluate both the methods used for establishment of cell cultures and the validity of molecular methods used for their characterization. An electronic search was performed in February 2022 using the Medline, Scopus, and Web of Science database identifying publications that used human primary odontoblast-like cell cultures as models and were published between 2016 and 2022. Data related to (I) cell culture conditions, (II) stem cell screening, (III) induction media, (IV) mineralization, and (V) cell characterization were analyzed. The included publications were not able to confirm an odontoblast-like nature of their cell cultures. For their characterization, not only a similarity to dentin but also a distinction from bone must be demonstrated. This is challenging, due to the developmental and evolutionary proximity of these two tissue types.
Collapse
|
7
|
Lovász BV, Lempel E, Szalma J, Sétáló G, Vecsernyés M, Berta G. Influence of TEGDMA monomer on MMP-2, MMP-8, and MMP-9 production and collagenase activity in pulp cells. Clin Oral Investig 2021; 25:2269-2279. [PMID: 32845470 PMCID: PMC7966645 DOI: 10.1007/s00784-020-03545-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Resin-based composites may leach monomers such as triethylene-glycol dimethacrylate (TEGDMA), which could contribute to intrapulpal inflammation. The aim of this investigation was to examine whether various concentrations of TEGDMA are able to influence dentally relevant Matrix metalloproteinase (MMP)-2, MMP-8, and MMP-9 production, total collagenase/gelatinase activity in pulp cells, and suggest possible signaling mechanisms. MATERIALS AND METHODS Pulp cells were cultured, followed by a 1-day exposure to sublethal TEGDMA concentrations (0.1, 0.2, and 0.75 mM). Total MMP activity was measured by an EnzCheck total collagenase/gelatinase assay, while the production of specific MMPs and the relative changes of phosphorylated, i.e., activated signaling protein levels of extracellular signal-regulated kinase (ERK)1/2, p38, c-Jun N-terminal kinase (JNK) were identified by western blot. Immunocytochemistry image data was also plotted and analyzed to see whether TEGDMA could possibly alter MMP production. RESULTS An increase in activated MMP-2, MMP-8, and MMP-9 production as well as total collagenase activity was seen after a 24-h exposure to the abovementioned TEGDMA concentrations. Increase was most substantial at 0.1 (P = 0.002) and 0.2 mM (P = 0.0381). Concurrent p-ERK, p-p38, and p-JNK elevations were also detected. CONCLUSIONS Results suggest that monomers such as TEGDMA, leached from resin-based restorative materials, activate and induce the production of dentally relevant MMPs in pulp cells. Activation of ERK1/2, p38, or JNK and MMP increase may play a role in and/or can be part of a broader stress response. Clinical relevance Induction of MMP production and activity may further be components in the mechanisms of intrapulpal monomer toxicity.
Collapse
Affiliation(s)
- Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, 5 Dischka Gy. St, Pécs, 7621, Hungary.
| | - Edina Lempel
- Department of Conservative Dentistry and Periodontology, University of Pécs Medical School, 5 Dischka Gy. St, Pécs, 7621, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, 5 Dischka Gy. St, Pécs, 7621, Hungary
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12 Szigeti St, Pécs, 7624, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12 Szigeti St, Pécs, 7624, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12 Szigeti St, Pécs, 7624, Hungary
| |
Collapse
|
8
|
Lovász BV, Berta G, Lempel E, Sétáló G, Vecsernyés M, Szalma J. TEGDMA (Triethylene Glycol Dimethacrylate) Induces Both Caspase-Dependent and Caspase-Independent Apoptotic Pathways in Pulp Cells. Polymers (Basel) 2021; 13:polym13050699. [PMID: 33669057 PMCID: PMC7956203 DOI: 10.3390/polym13050699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Monomers leached from resin-based composites (RBCs) may reach intrapulpal concentrations of the millimolar (mM) range, which could contribute to inflammation. The aim of this investigation was to assess the cytotoxicity of triethylene glycol dimethacrylate (TEGDMA) monomers on pulp cells as well as to identify molecular mechanisms leading to apoptosis. Pulp cells were harvested from molars extracted for orthodontic reasons and cultured through an explant method. To assess cytotoxicity, cells underwent a 5-day exposure to 0.75, 1.5, and 3 mM TEGDMA and were subject to cell counting and WST-1 staining. Based on the findings, cells were subsequently exposed to 0.1, 0.2, 0.75, 1.5, and 3 mM TEGDMA for 24 h to uncover the details of apoptosis. Changes in the production or cleavage of the apoptosis-specific proteins caspase-8, caspase-9, caspase-3, caspase-12, and Apoptosis-Inducing Factor (AIF) were measured by Western blot. The 5-day study showed concentration- and time-dependent cytotoxicity. Significant cell death was detected after 24 h with TEGDMA concentrations of 1.5 and 3 mM. One-day exposure to TEGDMA led to the activation of caspase-8, -9, -3, and -12 and an increased AIF production. Results suggest that relevant concentrations of TEGDMA monomers, leached from RBCs, induce apoptosis in pulp cells through both caspase-dependent as well as caspase-independent mechanisms. Endoplasmic reticulum stress and the activation of caspase-independent apoptotic pathways may be further mechanisms by which monomers induce apoptosis in pulp cells.
Collapse
Affiliation(s)
- Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
- Correspondence: ; Tel.: +4-479-8860-0193
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
| |
Collapse
|
9
|
Jochums A, Volk J, Perduns R, Plum M, Schertl P, Bakopoulou A, Geurtsen W. Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dent Mater 2021; 37:534-546. [PMID: 33579530 DOI: 10.1016/j.dental.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The angiogenic differentiation of dental pulp stem cells (DPSCs) is important for tissue homeostasis and wound healing. In this study the influence of 2-hydroxyethyl methacrylate (HEMA) on angiogenic differentiation was investigated. METHODS To evaluate HEMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of non-toxic HEMA concentrations (0.1 mM and 0.5 mM). Subsequently, angiogenic differentiation was analyzed on the molecular level by qRT-PCR and protein profiler analyzes of angiogenic markers and flow cytometry of PECAM1. The influence of HEMA on angiogenic phenotypes was analyzed by cell migration and sprouting assays. RESULTS Treatment with 0.5 mM HEMA during differentiation can lead to a slight reduction of angiogenic markers on mRNA level. HEMA also seems to slightly reduce the quantity of angiogenic cytokines (not significant). However, these HEMA concentrations have no detectable influence on cell migration, the abundance of PECAM1 and the formation of capillaries. Higher concentrations caused primary cytotoxic effects in angiogenic differentiation experiments conducted for longer periods than 72 h. SIGNIFICANCE Non-cytotoxic HEMA concentrations seem to have a minor impact on the expression of angiogenic markers, essentially on the mRNA level, without affecting the angiogenic differentiation process itself on a detectable level.
Collapse
Affiliation(s)
- André Jochums
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Peter Schertl
- Department of Cell Biology and Biophysics, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
10
|
Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater 2019; 35:501-510. [DOI: 10.1016/j.dental.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
|
11
|
Inchingolo R, Faletti R, Grazioli L, Tricarico E, Gatti M, Pecorelli A, Ippolito D. MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol 2018; 10:462-473. [PMID: 30079132 PMCID: PMC6068846 DOI: 10.4254/wjh.v10.i7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
To date the imaging diagnosis of liver lesions is based mainly on the identification of vascular features, which are typical of overt hepatocellular carcinoma (HCC), but the hepatocarcinogenesis is a complex and multistep event during which, a spectrum of nodules develop within the liver parenchyma, including benign small and large regenerative nodule (RN), low-grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC, and well differentiated HCC. These nodules may be characterised not only on the basis of their respective different blood supplies, but also on their different hepatocyte function. Recently, in liver imaging the introduction of hepatobiliary magnetic resonance imaging contrast agent offered the clinicians the possibility to obtain, at once, information not only related to the vascular changes of liver nodules but also information on hepatocyte function. For this reasons this new approach becomes the most relevant diagnostic clue for differentiating low-risk nodules (LGDN-RN) from high-risk nodules (HGDN/early HCC or overt HCC) and consequently new diagnostic algorithms for HCC have been proposed. The use of hepatobiliary contrast agents is constantly increasing and gradually changing the standard of diagnosis of HCC. The main purpose of this review is to underline the added value of Gd-EOB-DTPA in early-stage diagnoses of HCC. We also analyse the guidelines for the diagnosis and management of HCC, the key concepts of HCC development, growth and spread and the imaging appearance of precursor nodules that eventually may transform into overt HCC.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy.
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia "Spedali Civili", Brescia 25123, Italy
| | - Eleonora Tricarico
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|